! " #$% &!'
! " ! #$ %& 964 − 96823 − 7 − 6 '&" ( ))) *+ , - %.+/ 0)1 234 5 60 78" 5
!" #$% % & ' ( )*+$ , + -. % ) " ( % /+
01 23 & ' 3 " ( % ! 2 4 % " 5 )$
6* * -7
89 +: '; )*+$ % <= 9 >*6/' % 23 0?$ *@: 5 )$ 6! A ? @ B +% 2 )$% C +:A ? @ %
D ' E F +
6= G H ; I D , + -J
+* ' % E = ( ? '
% * ? % K '
6 + % $ +
% I D , + -L
% < M " 0 N ' 3 = K ? +A ? H 0$%
*$ %A >! O >! O *! $ $
" "%% P 3 Q* R: 5$ "% /+ , + SD 0 H1 % -T %
*A% P 3 U ?' <
, + " ! 3 V % "% : V ? % V -W + % P 3 % : # * ? $ ' 23 < " ( % / + , ? D P 3 % / + X 6Y O% %
D O% % EC7 . I B C3 3 3 3 3 E3 I B
D
D 6Y O%
!" # $% % \ = & ' 6 = ] D , + Y ! ( & ' 3 N ] \+X " ( % 6Y % "% \+X !+
% $' N;^[ ( ! $ ! E "
$: %% + 5+[ " ( $1 <9 > \= ( , + <= 9 _^1 %
% " ( % V * = , +
6 $3 < * ' + E * [ ' ! H # + $ E * ? $ / % , ? D % ] F I > " * $ i7 I j i. I j ' 0 [
!0 3 E*[' ! H#+$ E*?$/%
( K= 9 V* I R*= $3 % V* I R*= $3 K= 9 % +1%4 *
% 6 *4 % @+$ E+`$ $A !
E2 K ] > " # $% EV $ E2 6 '
O%3 B 2
%a# 2 * % CI " ( `$% < $ $ ? ( ! ' > $% 5; % 1 ) %
! k: * U ' _1
` *=% iH#+$j il+j Ei Dj dX FI E?*$ ` " V
Rn → Rm
5: U ' ( K= 9
K= 9 % D D ` " >*?@' \+X
6X
, + l 9 B V I O% % % * A = D K E%% A K = 9
R → R 5 : U ' EC%
& '
m=n=
E% I O% % E<9 H^D &4 E + : A K = 9 % C
% U 'B
5: U ' " #$3 C"*m+ Y U 'B %*A % C
%
R → Rm
5 : U ' +
R → R ` U ' &Q n
6$ * 6+ #$B
Rn → Rm
>*@+? *n >*@+? 0= 9 EI D " ( % SD 0
!" * 2 ' , +
*Z$ %$ "% /+ *[' ! H#+$ E*?$/%
EC7 . I B
, ? D h 0 ' %
$*A "% /+ % 6+? % E% 56/ 2 * H ^: % ^: $
% , +
% " +1%4 g+X % 56/ oM + 6$ 23 * I " o 9 , + % "% / + % U ' F $ 5% ^ : V ! ' @ _ 1 > * ' # $ # Y E ' @ U ' 3 ` 5 ^ : % " % A o 9 V * ` / ' 6 $3 % % + 1% 4 U ' # + * 4 D K E ] F I 6 *
> ! : M V D E5 6 U : 2 Y ' I ^ :
V U ' l + F I 5 6 Y ^ : % %% A o 9 6 ` Y l+ _1 H] 2 * I ^: % % +1%4 "*m+ H # + $ ] _ 1 %% A o 9 R * $ 23 %*A % >) 4 ^: %
!% E * ? $ / %
*#=#+$
6 *K $
$ ) $% Y > ` ' $"% $ ! ! ( * 6 ' %
%% A 2 * 23 F +
Y $" %A 23 2 '" $; S %1 ' % N `$ O `K$
2
N D ] % ) S % 1 ( $ * 6 : N $ ` !
U % * A % > + / ! ^ : % E 2 U '
R * $ $ + % ( D > $ 1 , + $" 23 %
% 6 * 4 % = 0 $% 5 6 / ` $3 # E ? * $ `
c : R: 5$ V H K: $"%$ b4 ' V'
^: % %%A l@[ >+! ^: % p% o9
d
$=
6
*D ( $ : >$ 1
3 , e : I D
3 ,
!% * K H # + $ > ^ : %
! % * K H # + $ K * 0 M > * K ' E" $ H # + $
+ 6 $ % + 1% 4 K '
Photoshop EPaint
E
!R: 5$ V \= g' 6` 5% ( "%$ *6'
GSview
Maple
6 ! = 0 $% 2 * $ 4 )$ K '
`' H 2R R ( ! f % N D ) % E $"%$
23
6 S[0
7 E. I E I O % 6 = C I ( + 2 ) $% _ ^ X B 3 3 3 3 3 E3 q O % R * $ $ + 0 U E% & '
3 : N @ * @ [ ' E5 5 + [ N , ^
!" # $% % 6 ^ :
Z$ % R*$ O% 2 )$% g H D * % "% "% 3 O % & ' 6 = % 1 \ = % $ % % * # ( !% $ + ' R*$ <9 > E "% Hm "%$ ' 5 E2 6 % % _^X 6$3 1
+? N `$
% , +
9)
. . . . . . . . . . . . . .
:;8 <
9=>
9
. . . . . . . . . . . . . .
?< ! @+A/
6=>
90
. . . . . . . . . . .
B< C 2DE
F=>
9>
. . . . . . . . . . . . . . . . .
G !+H
I=>
9F
. . . . . . . . . . . . .
8$ %+&
1=>
9J
. . . . . . . . . . . . . .
K+ L !
J=>
6
. . . . . . . . . . . . . . . . . .
6>
. . . . . . . . . .
M
=9
N DB @D!3
0=9
. . . . . . . . . . .
O& @D PM
. . . . . . . . . . . . .
@Q@
6
6F
. . . . . . . . . .
5+DX C C.
=
. . . . . . . . . .
Y+34 C @C.
0=
S C @C.
>=
N+N C @C.
9=
Z ,: < C $
6=
;7 ( C @C.
F=
K+ L !
I=
0
F
>=9 9=9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
0>
. . . . . . . . . . . . . .
F0
. . . . . .
" < R SO T,< A/
6=9
0F
. . . . . .
U& V+! M L !
F=9
0F
. . . . . . . . . . . . . . . .
FI < < P3 2DE M L !
I=9
01
. . . . . . . . . . . . . .
>)
. . . . . . . . . . . . . . . .
>
. . . . . . . . . . .
< & M & 1=9 I) . . . . . . . . . . . . . . . 7C G PW(&
=0
U& & ,.C
0=0
U& .
>=0
U& . N
9=0
, +HP C/
J=9
>>
. . . . . . . . . . . . . . . .
7+ @+A/
)=9
>>
. . . . . . . . . . . . . . . .
+
=9
>F
. . . . . . . . .
. . . . . . . . . . . . . . . .
>1
. . . . . . . . . . . . . . . . .
I
. . . . . . . . . . . . . .
I0 I9 I6
U& [5
. . . . . . . . . . . . . .
K+ L !
0=9 6
[5
=>
@D!3 DB \<
0=>
& U:
>=>
! "! #
)I )I
]KQG
=F
II
. . . . . . . . . . . . . . . . . .
^+5 ,G Z
0=F
I1
. . . . . . . . . . . .
_ +DO ` ^+ @+A/
>=F
1)
^+5 ,G +a ++a
9=F
^+5 ,G DZ_B & DZ_B
. . . . . . . . . . . . . . .
. . . . . . . . . . .
9
. . . . . . . . . .
I
. . . . . . . .
J
. . . . . . .
[5
=6
+GQG @Q@
0=6
. . . . .
+a ++a \< & +GQG
>=6
10
. . . . .
DZ_B & DZ_B \< & +GQG
9=6
6=F
1>
. . . . . . . .
U& L +GQG
6=6
1J
. .
U& & 8!S< ! \<
F=6
0
. . . . . . . . . . . . .
+G .Q \<
F=F
0>
. . . . . . . . . . . . .
% @D!3
I=F
0I
. . . . . . . . . . . .
c/ ,X @D!3
1=F
0J
. . .
< B % < V @D!3
J=F
K+ L !
)=F
!
. . . . . . . . . . . . . .
$" ! "! %
>> >>
. . . . . . . . . . . . . . . . . .
[5
=I
>F
. . . . . . . . . . . . G.P Ld
0=I
9)
. . . . . . . . . . . . .
X< G.P
>=I
H & &< ! QG
9=I
K+ L !
6=I
" 9I
. . . . .
" ! "! +
II
. . . . . . . . . . . . . .
' L ]B " U& L +GQG I=6 . . . . . . . . . . . . . . . . . < B C J9
. . . . . . .
J6
. .
JF
. . . . . . . . . . . .
JI JJ
9J
. . . . . . . . . . . . . .
60
. . . . . . .
F)
. . . . . . . .
F
QD '
1=6
7+ 7.B < L +GQG
J=6
Q< P+a ++a
)=6
< c+! Y+34 L +GQG . . . . . . . . . . . . . . . . . . . .
. . . .
e7e S U& L +GQG
)
& & '()" *
9J
8" & U& L +GQG
P (x) cos(ax) 8" & U& +GQG
=6 . c+
0=6
.
>=6 . 2< 6=6
. . . . . . . . . . . . . . . . . P (x) sin(ax)
QQ]P < e7e 2fD L ! 9=6 ) . . . . . . . . . . . . . . V4 QG &
=1
: V+.5 DZ_B & DZ_B ,:
F=6
. . . . . . . . . . . . . .
%SL& \<
I=6
. . . . . . . . . . . . . .
K+ L !
1=6
PQD G.P Ld
0=1
)0
. . . . . . .
QD & U& @;&
>=1
)>
. . . . . . . . . . . . . . . . . . . !
9=1
#
& '()" ,
I>
F>
. . . . . . . .
! G.P Ld
6=1
FF
. . . . . . . .
M7; G.P Ld
F=1
>=J
FJ
. . . . . . . . . . .
:+H Ld $
I=1
9=J
I0
. . . . . . . . . . . . . .
K+ L !
1=1
I>
. . . . . . . . . . . . . . .
5& @QD
=J
I1
. . . . . . . . . . . . . . .
5& !
0=J
88 G.P Ld !
$#
. . . . . . .
$
. . . . . . . . . . . . . . . .
:S / & B %! ^+Q< C _+ C TB PL+ < L %"]S & =%! 7+!< C & C & Tfke =%! : \ S +l C j & <_Q + < " \." & =D 5+DX
L ! ^ + Q< T% ! + H 5 + D X C X . P Pg 2+ 8 +! + 5+DX ;& P C = d B& < "
" LO < %:S O& D!3 & L+ : : T L mH =Y+34 C @ C. S n; 4 < C @ Q@ fk e Td B& C L @ D!3 & L+ d & < ! ^+& 8P % & +L V+N & L+ o =D + ^ Y+34 C & d W+H < V! =S n; S C @C. & X ^
4 A C L C. L & V+hS 4 < T ∈ A V+hS =n + ∈ A V+"& " n ∈ A P
-
!.
+ i:
A = { , , } , B = {, , · · · , n, n + , · · ·} , C = {, } , D = {− , , , , · · · , n, n + , · · ·} .
& B< QX " 75 L %"]S & √ & = +p T + +& &/ 5+DX C L S 8" C & ^8. DB QX @ .P @ C. c! ^+.P = . n; N+N C @C.
E< B =%+ E< Q< T%! 8 A 24 ^ D =E< < %! 8 C =%+ 8 Q< T%! =%! E< < 8 8 C C . ^ 8 $
N . & < +
SL< d PL+ @ .P % _+ C. ^ & LO + 8Q n; +B Tfke =
B< i: = . r4 Q5 ^ N+N C ?+P C @ C. [ & & Q@ ^ & B =S s7 (
)/ ! ! '01 E< <
G 2DC & =V+P
N = { , , · · · , n, n + , · · ·}
G d T"& E< < 8 A ⊆ N S TO& [5 && T< 2DE ! _& C & ! V8 ^ L =N " ! = = = < <
A=
Zj .8
P (n)
S
$ C = < " t.P ! ^ ="& "f ! ^ L ^ 7+P %P C < 7
T%! " :S W+H ^ +& & u "< = ^ ( < & 8_ e
DZ
V+ & < "& n C T%! %! P ( ) T%! %! P (n + ) G d T"& %! P (n) S =%! %! 5+DX n P L & P (n) V8 T24 ^
23(! 24
L ! d & "d j : ^ L v P ,G < + %! C PC. =N ⊂ Z ⊂ Q ⊂ R ⊂ C +S / ! J
%! n 5+DX C @.P @C. A ⊆ N V+ i: 2DE T24 ^ ="& %! d L & P (n) V8
Twx i: && < %! 8 A @C. Tw[Qx i: && + >= = [5 L ^&& T"& E< A @C. 2 =%! . P& < A = N T^&& < N ⊆ A S
^ T ≤ n < "& %! P (n) S T
= −n + n + n +
Tm 5+DX C P L & + %&E
≤ −n + n + n + n = n (−n + )
+ + · · · + n =
=%! " 2DE V8 < − n ≤ mH Tn ≥ $
=%! Y+34 n ≥ P L & V8 ^&& + %&E DZN ! L ! & + + ···+ n =
n(n + )(n + )
+ + + · · · + n " x n! =
n−
<
n(n + )(n + )
n
× × × · · · × n 4
=n < n! n ≥ P L & Tw y :z
n
+
n
+
n
−
n
w>
=
w6
wI
=
( + + · · · + n ) + (n + )
=
=
=
n (n + ) + (n + ) (n + ) (n + (n + )) (n + ) (n + ) ) 5
^
+ i: DZ ! ="& 5+DX C Zj _S P (n) < 5+DX C V+ & S T%! %! P (k ) T%! %! P (n + ) G d T"& %! P (n) S =%! %! k ≤ n P L & P (n) V8 T24 ^ " i: 9= = @+A/ P& %! : 2DE k
23(! 24
C Tn 5+DX C P L & w1 =%! 5+DX
A = m ∈ N %! %! n = m + k −
n
L & P (n)
=A = N ^&& < %! E< < 8 A 24 ^ < S_& P n @.P L & P (n) @_S %&E ^ 2 =%! Y+34 k & < n ≥
5+DX C @C. DB Z ^ . L @+A/ =%! "
G d Tn, m, l ∈ N S
( ) ( + ) ≡
=%! %! _+ P (n +
n + − ··· × × × n · · · + (− )n+ = + + ···+ n(n + ) n n+ −
V+ i: p ^ & = 24 ^ =%!
+ + · · · + n + (n + ) =
n 5+DX C P L & wJ n
n (n + )
! < "& %! P (n) V+ i: , =%! Y+34
V+ %&E P (n + )
w0
n P L& wF
× ! + × ! + · · · + n × n! = (n + )! − n n! ( z " x 4 = k k!(n − k)! V Twyn L k n n n
_+
P( ) ≡ =
w
G d Tn ≥ S w9
=
P (n)
+ + · · · + (n − ) = n × + × + · · · + n(n + ) =
O& V8 G.
5+DX C P L & + %&E
"
=n ≤ n TOk< =n ≤ n 5 P (n) V+ i: p ^ & = P () ≡ ≤ ≡ L T%! Y+34 P () %! ^"<
)
=n + m ∈ N wU.B & &x w
=n + (m + l) = (n + m) + l wU.B ]K "x w0
"& 5+DX C T5+DX C < <_Q " VP: p & %! LO mH = − = − 5+DX CC. T5& P & {! _& =V+P& \ S L 2j&
=n + m = m + n wU.B &Bx w> =n ≤ n w≤ &L&x w9 =n = m G d Tn ≤ m, m ≤ n S w6 =n ≤ l G d Tn ≤ m, m ≤ l S wF
. & x + y = x Q@ B S & x + y = Q@ B S _+ < V+P y = 2j& TV+P y = −x . Z = · · · , −n, · · · , −, −, − , , , , , · · · , n, · · · =V+ [5
=m = n + G d T n < m ≤ n + S wI
567 !! '801
G d Tn, m, l ∈ Z S
=nm ∈ N w & &x w1 =n(ml) = (nm) + l w ]K "x wJ =n
= n=n
=n(m + l) = nm + nl wU.B ]K5Lx w
=nl ≤ ml G d Tn ≤ m w 0
=n + m ∈ Z wU.B & &x w
=n + l ≤ m + l G d Tn ≤ m w >
=n + (m + l) = (n + m) + l wU.B ]K "x w0 =n + = + n wU.B e B<x w> )+n =
=n + (−n) = (−
w e jCx w )
8" & 8 2j& 5+DX C P
w5.B c85 B<x w9
n = a +
a +
#
a + ···+
=n + m = m + n wU.B &Bx w6
=n = n = w4 L$Hx w1 =n
= n=n
w& e B<x wJ =n ≤ n w≤ &L&x w )
=n ≤ l G d Tn ≤ m < m ≤ l S w≤ 5x w =n = m G d Tn ≤ m < m ≤ n S w 0 =m = n + G d Tn < m < m ≤ n + S w > =n + l ≤ m + l G d Tn ≤ m S w 9 =nm ≥ G d Tn ≤ < m ≤ S w 6 nm ≤
G d Tn ≤ < m ≥ S w F
=nm ≤ nl G d Tn ≥ < m ≤ l S w I
k ak < k ∈ N d
a , a , a , · · · , ak ∈ {, , , , , , , , , }
=nm ∈ Z w & &x wF =n(ml) = (nm)l w ]K "x wI
%" L
n = n
9:
V+ < V+ P ai T%Q ^ ] 2DC ak ak− · · · a a a =V+hS
& ! 0"
C ^ S_& [x] S + %&E C P L & 24 ^ "& x & < < 8$
" %: X k ∈ {, , , · · ·} C ' n 5+DX + i: = k ≤ n < k+
n n − k ak , a ak = = , k− k− k n − k ak − k− ak− , ··· ak− = k− =n = ak ak− · · · a
a
24 ^
5+DX C < m < n + i: $ r ∈ N ∪ {} < q ∈ N C 24 ^ =m ≤ n < P(Q ≤ r < < n = mq + r " %: $ T 8 24 & V+N .C .+/& r T+7C N m TN n =m =
=nm ≥ nl G d Tn ≤ < m ≤ l S w 1
< %! & .C & %D Y+34 C @C. d L AC P <_Q T%! ' e AC B< 3+34 C ?+P Tfke ="& & @/ L 2j& 8 ^ =S ' && 4 < " =V+
T < m ≤ |n| < m, n ∈ Z S $ B< X q < r & j3 Y+34 C G d = ≤ r < m < n = mq + r
< m, n ∈ Z mx = n @Q@ B & h+" ^+$ @C. =V+P n . & Tm = m C =V+hS d & < Q . s n
0@
.+/& m & n V+N 4 n m < %! m n V+hS T" 4 r ' m V+hS Tm|n < m|n S =m|n V+ < n =%! n < n } C =V+P (n, n ) . & n
!
A BC" D .E
; !! '801
Y+34 C P ( ) *+ , - k ∈ N d T%" ±ak ak− · · · a 8& W. ^ a , · · · , ak ∈ {, , , , , , , , , } < . Y+34 C < S T5 =%! & j3 = && G d T"& && + i: DZ & ! ="& Y+34 C Zj _S P (n) < Y+34 C %! P (n) S T%! %! P (k ) V+ & S P (n) V8 T24 ^ T%! %! P (n + ) G d T"& =%! %! k ≤ n Y+34 C P L & " i: 9= = @+A/ P& %! : 2DE k
24
< n Y+34 C < n ∈ Q S %& $' m & G d T"& %./ &/ < k ∈ N 5+DX C & T
k
k
q
m
C ="& %De P |( .P V+P +B < "D ! &/ V+hS 4 = < m
! ' & 24 ' & kN+/ S C P %" "
$ < =
Q=
"
=+ D!3 : )) B 0 C 5 w < : L & n 5+DX C ]HW(& & Ld w0 =+ %&E d mK!
=n + (m + l) = (n + m) + l wU.B ]K "x w0 =n + m = m + n wU.B &Bx w>
./ $ C +&+& X abc ./ ! C w> = r4 abc = × abc @;& abc < abc
=n + = + n = wU.B e jCx w9 )n =
L & P (n)
=A = N ^&& < %! E< < 8 A 24 ^ < S_& P n @.P L & P (n) @_S %&E ^ 2 =%! Y+34 k & <
=n + m ∈ Q wU.B & &x w
=n + (−
23(!
A = m ∈ N %! %! n = m + k −
n n ∈ Z , m ∈ N , (n, m) = m
G d Tn, m, l ∈ Q S
n ∈ Z
j3 W. Y+34 < 5+DX C vf & %" 24 %+& & S C P T & & n; ! 8 ^ U: & = mn = m n =V+
n m
>! ?
w5.B c85 B<x w6
P 5 d an = · · · − · · · + i: w9 L N L & =%! n && P 0 5 < n && -%! U& an C Tn
=nm ∈ Q w & &x wF =n(ml) = (nm)l w ]K "x wI 0
= ?
=
+ +
+ +
+ ···+ + ···+
+ n × n + ··· n
=nm = mn &Bx w1 =n
=nm ≥ nl G d Tm ≤ l < n ≤ S w =n + l ≤ m + l G d Tn ≤ m S w 0
= . · · · · · · = .
n m
n ∈ Q m
V+ i:
=n(m + l) = nm + nl wU.B ]K5Lx w >
a + a +
=n ≤ n w≤ &L&x w 9
( ) *+ , - !
=n ≤ l G d Tm ≤ l < n ≤ m S w≤ 5x w 6
%" 24
=m = n G d Tm ≤ n < n ≤ m S w≤ +7ex w F
= ± ak ak− · · · a ~b b b · · · bn · · · = ± k ak + k− ak− + · · · +
b
+
b
+ ··· +
=nm ≥ G d Tm ≤ < n ≤ S w I bn
n
+ ···
=nm ≤ G d Tm ≥ < n ≤ S w 1 =nm ≥ G d Tm ≥ < n ≥ S w J
=k ∈ N _+ < bi , ai ∈ {, , , , , , , , , } d
="& C W. ' S C <_Q fke
=nm ≥ nl G d Tm ≥ l < n ≥ S w0) =m < l < n B< l ∈ Q G d Tm < n S w0
= ~ = ~ · · · · · · = ~
· · · · · ·
TV+N .C & %D Q & & &
D!3 < V+& n 8& S C %! d & m T>I~90 9090 S C < U.B fke TV+
!. p & ! `>~0 9600
T < m ≤ |n| < m, n ∈ Z S $ " %: $ r < p & j3 S C G d @ .+/& r < %./ | p = ≤ r < m < n = mp + r =V+ m _& n V+N
"
=
+ −
√ √
=
√ + √ −
+P w
+&+& X β < α S C w0 √ = + = α+β
√
x − x
+
w e jCx wJ
=n × n = G d Tn = S w& c85 B<x w )
V+P +& C ! %./ k5& - < +Q %" " %! +Q ^+.P & =
^
= n=n
_+ < 5+DX C P ./0 - ( ) *+ , - T5x %! ' Y+34 C P ^ S C & Q< qwP 4 [Q( / 5 & =%+ %! p C 2j& S C ,e C & +h+& $ =V+ < mH = + $ =V+& ^&& = = = < V+ < & VP L& T = + = + = + + + = + + = + + = + + + == =
F G & ! 0"
x − = @Q5 S P w> - fk4 d =+&+&
V+ [5 n ∈ N i< 5+DX C @L & w9 n P L & + %&E =Hn = + + · · · + n =%! Y+34 +l S C ' Hn p < < & ! ' p + i: n+ q n q p − " ! L mH +P =%! q n+ =%! 8$ p L W4 " 4
p @! P @L& + %&E @N ! & mK! q
w6
>
%: $ nk , · · · , n
<] %! 5+DX C ' n + i: w %&E =%" . m ∈ N m 8& 5 =%+ √ =%+ S n +
Z @+7
√ Q( )
, n
5+DX C T
p = + + ···+ q n n nk
@C. +P w0 =%! >=>= n<
=
+
<
p < q
"
,e C &
= + + + +
√
+P mK! < + [5 Q( ) .P Q(π) w> =%! >=>= n< Z @+7
S
+
√
+
−
=L&
√
√
V+ Q -" G -%! S C d @;& c < b < f < a < & @<_QVh/ 7e ' a = & b = c = L & < T%! /& a = b + c √ √ " i: S L T%+ S , P a = √ √ T"& " " ! 24 & = n < ∈ Q m √ + < vX < ! < & & =m = n V < %! |
√ √ & Q L C. ^ Q( ) = a + b a, b ∈ Q %! √ √ ^ ,@! mH = ∈/ Q( ) L T%! +5 LP Q< %! √ ' _+ O& @C. & : y- & $z %! %! %/ |fC
C +P w9 =%!
√ Q( + ) @C.
w6
√
^ T%+ S V. P W(& ^ & √ ' +p @;N S C Q @C. %! 5 & = N+N C @C. 8 ^ = B< ="& L+ L [5 & T{7; ^ Y+ &
$B
4 s C =A ⊆ R + i: L & V+P sup A . & < S A =x ≤ s x ∈ A P x ∈ A ' < P L & S A 4 s C =s − < x " %: V+P inf A . & < =s ≤ x x ∈ A P L & " %: x ∈ A ' < P L & =s + > x
23(! F0BC!
24
F
√ √ √ √ √ Q( , ) = a + b + c + d |a, b, c, d ∈ Q}
23(! 24
$ ! mH =" _+ DQB π C g & ! ^ < - & V+ U: L [5 & 8 ^
&H I!
P L & V+hS A ' 4 s C V+hS A ' 4 s C =x ≤ s x ∈ A 4 A @C. =s ≤ x x ∈ A P L &
@C. ="& " O& ' / V+hS ^+hH ' / V+hS 4 A ="& "
>!
CJ I!
!"! J >!
± ak ×
!"! H
2DC 4
k + · · · + a × + a
+b ×
+b ×
+ · · · + bn ×
+ ···
@C. =V+P ±ak · · · a ~b · · · bn · · · 8& < R . & h+" ^+$ C ! %./ k5& CfX & B & =V+ lim rn 2j& r N+N C P T
KK !! '801
24 ^ =A = [; ] + i: 1 E < x ≤ x ∈ A P L & Ok< L =sup(A) = + x = L & G d Tx ≤ x ∈ A P L & S = ≤ S 9
n
+ i: < +
23 &4+ 2456 , -
KK !! 6 d < "& N: %! s ' =V+ ( DZ!) & d & O ;N :5 BC d $ %.! < M)N DZD %! %.! +S L ! C & ; H , =V+
@+7 R N+N C @C.
=>= @+A/ n< Z = H! R L +l < O& L @C. L P = .+ R L +l < ^+hH L @C. L P
& < O L & & < Td / VP H & < :S p 4
N =V+ | d %!& 3 T%De %.! < ! T< T' C & TDZD L <" & < 54 {+ & DZD $ %.! & .C ^+.P =V+ ]S ." === T`0 T` C & $ & %! L 4 C < & 7+!< {+ ^ & =V+ ]S ." === < `> =%! " VP: Y+34 C W.
& 4 2.+N L ' P V+N & VP: ±¯a~¯b : & C C W. 8 T< W(& %./ & B 2.+N L ' P V+N & TmK! =V+ VP: ±¯a~bc : & C C W. 8 T< & M: k < TV+P t.P ^ =V+ +& N+N 3 &
N T =VS S C @.P W. = P S C L +&
2 2
A = p ∈ Q p <
!
+P w C. L H! Q Q< T%! Q +l < O& L O& n< ww0x _+ <x w x Z Q T5 = = T"& (a−b)b > & S C b < a S +P w0
b¿ + a a+ b √
a − b¿ + b
√
b¿ + a a− b
a − b¿ b
=& P S C _+
+ T + S C L 8 a + i: √ √ √ √ √ √ √ √ T T < ( + )/( − ) T + √ √ √ √ & 7.B $ ' =%! + + −
L QD ' 8" & N+N C P 8 & B & Tw" B =9= [5 &x %" S C 5/< 8 & 8_ e %: N+N 3 & XN ^ T%S %+5/ ^ t d p C %! i:
+
w>
="& d @ a +&+& S & Y+34 {
" 4 r C C W. T%: d / " 8 }7& ' & V+hS
&
C @C. + '+D8 g 78 # = B< N+N 3 & U/<
N @C. < N+N
N+N C = = ~ · · · < ~ = ~ · · · < C W. %! S /< < /< r ="&
DZ < %! 7+73 @!P D T4 ^ ! i: ="& 2+ +& {Q; {7X LD Q $
2 N
√
^ =A = {x ∈ Q | x < } + i: √ + A [5 L =%+ A AC sup(A) = 24 √ = + < %! 8$ L A L AC P S √ √ √ = ( + )/ > G d T > S , =sup(A) ≥ √ / "& A O& ' < %! L . √ = ^&& ="&
P4 5 < k && |( P 5
=%! m &&
S
−
~ < ~ C +P w =+& ! 8& d mK! < P
< ~ · · · C +P w0 = P S ~ ···
C P + %&E =%! 5+DX C n + i: w =%! %./ &/ n & V/ n &
T"& V/ P bi < P ai < ≤ n ∈ Z S +P w6
G d
=n = k− < %! P(Q 5+DX C k + i: w0 n T (Q 5+DX C n − P ^+& L + %&E n & d . . ( X C =%! %./ &/
n~a a · · · am b b · · · bk = a · · · am b · · · b k − a · · · am =n+
· · · · · ·
6
√
√ √ √ √
! "# $ %& '
≈ ≈ ≈ ≈ ≈
ln ≈
≈
~ ~ ~
~
=
√ π≈
≈
~
≈
~
ln ≈ log e ≈
ln
Γ Γ Γ
= ◦
=
%&E =abc ≤ < De N+N C c < b Ta + i: w> c a b = + + > a + b + c +
~ ~ ~ ~
~
b
< V/ %! ! + %&E w6 ! C W. T+ q B< V/ n! & V8 ^ d = B< 4 %! -+P V+.5 +
!" # $
~
◦ /π ≈ ~ π/ ≈ ~
n −n n! ~ ~ ~ ~ ~ ~ ~ ~
~ ~ × ~ ~ × n
=
x + xy + y
(x − y)
=
x − xy + y
(x + y)
=
x + x y + xy + y
(x − y)
=
x − x y + xy − y
x −y
=
(x − y)(x + y)
x − y
=
(x − y)(x + xy + y )
π/ ≈
x + y
=
(x − y)(x − xy + y )
π/ ≈
x − y
=
π/ ≈
x + y
=
(x − y)(x + y)(x + y ) √ √ (x + xy + y )(x − xy + y )
π
n(n − )
xn− y e
n(n − )(n − ) n− x y + ··· ! · · · + nxy n− + y n n(n − ) n− xn + nxn− y − x y
=
≈
e/ ≈ √ e ≈
+
(x − y)n
≈
π/ ≈ √ π =
V n 5+DX C < y < x (Q N+N C DZL & xn + nxn− y +
%
%7C =VLH Z C $ :5 & & W(& ^
(x + y)
=
a
= P x+y+z = & N+N C z < y Tx + i: w9 =(x + y + z ) ≤ (x + y + z ) + %&E
V y < x (Q N+N C DZL &
(x + y)n
c
n(n − )(n − ) n− x y − ··· ! · · · + nxy n− − y n
+
F
eπ
≈
πe
≈
~ ~ ~ ~ ~ Γ
≈
~
~ ~ ~ ~ ~
()*+ ,
&'()
TG +& & ="& Q & >=>= @+A/ n< Z =%! + ' < U.B ,.C .P & C
=
− i Tu
uvw
=
−i
2
S
G d Tw = − i
= =
( − i)( − i) = ( − ) + (− − )i
=
− i = − i.
G d Tv = − i < u = + i S
u v
C & & & ^+Q< & L L ,! 96) & '_ O<+S T( 2 c! & =]S " "d s7 ( "d s7 ( C & 696 ,! %! ,<
,. & 8 ^ L& T < =" "& + DZ+" ^ 7D& h: s7 ( C & 7.C @D!3 ^+Q< T \7.B ^ < @+ = 6I0 ,! %! S . 4f
!
u[vw] = ( − i)( − i)( − i) ( − i) ( − ) + (− − )i
=
2 N
C ^ B< \]H C < \]H ^+& . T DZ& i . _ +DO I)0 ,! < T & : 8& 2 f;4 & ^ =%" < ^ =P C < s7 ( C . P @;& /& 7< $ S_& + II) ,! √ = G" g − − = " ,NQ M . + ,X ^ & q P _+ SL! T
A/ < & S ?+P " 2D!3 5 & c<S W: & VPP / H U/< =P. VP: C ^ !P V & s7 ( @34 DZ& ^+& 5x ,! $ L . L 2 d L mH =. < " $ . %.P & < w 16 < 1 9 Q! =%: 5! 2" & s7 ( C @p .
= ( + i) − i i + ( + i)
+ + + i ( + i)
− + + i = i.
=
u
= = =
v
G d Tz =
+
√
i S
2 N
√ √ z − z + = ( i − ) − ( + i) + =
+ D!3 L N L ' P ) ( − i)( + i),
!
) ( − i)( + i),
) + i , − i
)
−i ( + i). +i
24 &
)
)
!
(a + bi) + (c + di) := (a + c) + (b + d)i, (a + bi)(c + di) := (ac − bd) + (ad + bc)i.
V+ /
( + i) − ( − i) , ( + i) − ( + i) + i tan θ , − i tan θ
2j& < U.B ,.C C. ^ & =V+ [5 V+ [5 L
=
+ D!3 L N )
OP G!! @ C.
C = a + bi a, b ∈ R
%! s7 ( C w√+ i: w6 X b < a N+N C ww = − + i Tfkex + w + w = a + bw + ^++5 = − w w +w+
*
( − i) − ( + i) +
:= + i, := + i, −(a + bi) := (−a) + (−b)i, a −b = + i. a + bi a +b a +b
.
=+ %&E 0=F= @+A/ L w )x < wIx wJ
@+7
C
s7 ( C @C.
!
Girolamo Cardano½ Rafael Bombelli¾
I
()*+ ,
=|Im(z)| ≤ |z| < |Re(z)| ≤ |z| w
2
s7 ( C A ⊆ C @C. ! =+ ( |z − | + |z + | > < r4 T%! M75 A & z = a + bi + i: p ^ & = ^&& z
|a − + bi| + |a + + bi| > , (a − ) + b + (a + ) + b > , (a − ) + b − (a − ) + b + > (a + ) + b , (a − ) + b > a − ,
(a
− a +
a
+ b ) > a − a + + b >
[Q`0= 8" C. ^ =
,
+ i: 9:0 &4+ 2) '& , - ! =%! Q.5 @34 R = {(x, y) | x, y ∈ R} [5 C s7 ( C @C. < R ^+& L 2j& g %! '+D8 g ^ C a + bi → (a, b) ∈ R V+ s7 ( C mH =w" B [Q` = 8" &x C %! +Q ^+.P & = V R @34
N 5& %! d & T L +& = _+ s7 ( @34 (a, b) @;N & (, ) DZD & & a + bi C
s7 ( C < U.B T S ^ & =V+G& 8 T j =w" B ` = 8" &x & P & < U.B t.P
.
a
+
b
+ =V . V+! >
s7 ( C U.B +D5 w T W. w[Q = 8" & U.B C &
> ,e 7e w
24 ^ Tz = a + bi + i: ! ! [5 a + b 2j& < |z| . & z a =V+ Re(z) . & < + z Im(z) . & < + z b =V+P z . & < [5 a − bi 2j& z =V+P =V+P
KK M0<: M0<: R S
,e A @C. w[Q 0= 8"
2 N
/< z , z , z ∈ C s7 ( C +P < β < α N+N C / %! s ' & /< < =α+ β + γ = < αz + βz + γz = " %: $ γ z < z < z
N V+ B Tp ^ & = − z−→ z P& 5/< %! s ' & /< < /< z−→ " %: α N+N C 5 T"& L − z < − − → − − → z − z = t(z − z ) G +& & =z z = tz z
" i: %! : =(t − )z − tz + z = 24 & V8 ^ m8C & =γ = < β = −t Tα = t − ="& 2DE &/ & < z + z
+ z =
+ i:
2j Tz, w ∈ C + i:
PQ :
" !
|z| ≥ wM7; / &
x w
=z = S < S |z| = w0 =|zw| = |z||w| w> =|z + w| ≤ |z| + |w| we7e < x w9 =z − w = z − w < z + w = z + w w6 =
2 N
z w
=
z w
< zw = zw wF
=Im(z) = (z − z) < Re(z) = (z + z) wI =|z|
|z | = |z | = |z | =
= zz
w1
=z ∈ R S < S z = z wJ
fO < 7e ' ch z < z Tz +P 8" & = P wC : |z| = T5x < @
3
=|z| = |z| < z¯ = z w ) 1
()*+ ,
P |<_ B < ^ D/ ^. && " B
=" B `0= S p f TI=F= @+A/ & B & =
!
|z − z | = (z − z )(z − z )
"& |z| = M7; / & z s7 ( C S + %&E w " %: t N+N C G d Tz = − _+ < =z = +ti −ti
= z z + z z − z z − z z = =
L C/x + %&E TP(Q z, w ∈ C + i: w0 =|z + w| + |z − w| = (|z| + |w| ) wfO =+ %&E I=F= @+A/ L w
d @74: mH T B< N
a + b +
+& s&< r4 P z @.P @C. T P ) |z −
) |z −
+ i| = |z +
| + |z + i| = ,
) |z −
| ≤ |z + |, z+ ) z − i = ,
)
− i|,
) |z − i| = Re(z) +
a + bi
+P T|α| = |β| = |γ| = + i: |βγ + γα + αβ| = |α + β + γ|,
)
(β + γ)(γ + α)(α + β) ∈ R. αβγ
+
b y
c = . z x∈R
− α ≤ a ≤ + α, b=± α + a −
−a
.
2+ N
=
= P (z) = an z n + · · · + a z + a
= an z n + · · · + a z + a = an z n + · · · + a z + a = P (z)
TBC & ( F 'U '8( D 2# N
V+ i: 2j = = b − ac < < ax + bx + c = ^&& =(x − ba ) = b −aac Ta(x − b ) + c − b = a a
i: & L 2O5 w 1
) (x + i)n − (x − i)n = ,
)
− a b + b − a + a b = α
{ & 7.B $ ' P (x) S +P $ ^ @ _+ z G d Td L ' z < "& N+N =%! 7.B n P (x) = an x + · · · + a x + a V+ i: =
G d T"& P (x) @ z S = N+N C P ai
V+S |<_ ;& ^ ^+:X L =P (z) =
< ch z < y < x _+ < c < b < a S +P w I 7e < ^ 4 G d T"& R = C 7e & a x
^+& $ < = && <&<
z
5 T%! ,D/ + mH T N+N C b < a $
%De ,8 L & =b = ± α + a − − a ^&& =(a − ) ≤ α T +a ≤ α + a 5 T"& %! ^+$ Q@ B
) |z| − Re(z) = ,
)
<
(a + b + ) = a + α b = −a − ± α + a
) |z| + Re(z) ≤ ,
|z − | = | − z¯|
z
α = |z − | = |a − b + abi − | = (a − b − ) + (ab) .
< |α| < S +P w6
G d T|β| ≤ -" /& < 4 $ =|β+α| ≤ | +αβ|
+ i| < ,
<
+ ( P z = a+ bi ∈ C @.P @C. =|z − | = α
G d T r4
" ^ z = a + bi S =
+P T|α| = |β| α, β, γ ∈ C + i: w9 =|α + γ| + |α − γ| = |β + γ| + |β − γ|
) |z −
z
= .
2 N
x < wFx Tw>x w>
) Re(z) ≥ Im(z),
|z | + |z | − (z + z )(z + z ) − |z + z | = − | − z | = − |z |
b ± x= a
cos x + i sin x = sin x + i cos x.
J
b − ac b ± = a a
ac − b a
i.
()*+ ,
)
(reiθ )n = rn enθi ,
)
reiθ
= re
−θi
)
V T
+i=
( + i)
=
iθ −
)
, √
eπ/ $
+ %&E T%! P(Q 5+DX C α + i: w J
− reiθ = rei(θ+π) , (re )
2
=
r
e
−θi
+ i tan α − i tan α
,
=
=
= ( )
4 < ' [Q( s7 ( C b < a + i: w0 < a < TO ch & 7e < +P ="& = P & ab < b TO ch & _+
√
eπi/
+ i: 9:0 &4+ 2;< , - # ! @74: =%! 4 [Q( s7 ( C ' z = a + bi ∈ C Oz s(.+ < Re 3 ^+& %De @<L < r DZD z @;N V+ θ
( + i)
! V8 @." & TP_ H C T8 Y+ = " 0=F= @+A/ L
−i=
√
eπi/ <
+
√
i = eπi/ $
= ( )
=
a ⎧+ b . ⎪ arctan (b/a) ⎪ ⎨ π/ θ := arg(z) = ⎪ π/ ⎪ ⎩ arctan (b/a) + π
r := |z| =
2 N
√ + i eπi/ = √ −i e−πi/ √ √ () = e(πi/+πi/) (=) ( ) e(πi/
)
! V8 @." & TP_ H C T8 Y+ = " 0=F= @+A/ L
|z|
z = a+bi Re(z) Im(z) − i −i +i −i − +i − −i
sin θ + sin(θ) + · · · + sin(nθ)
θi
S S S S
z = reiθ
V [5 & B &
2 N
= Im(eθi + e
z = r exp(iθ)
%!& sin θ+sin θ+· · ·+sin nθ 2DC N V T 0=F= +A/ L w x %./ L ! & =V
θi
a> a=b a<
e(π+πi/ ) (=) e−πi/ cos − π + sin − π = − i.
= Im(eθi ) + Im(e
+ i tan(nα) . − i tan(nα)
=
%&E 24 ^ T(cos α + i sin α)n = + i: w0) =(cos α − i sin α)n = +
!
() √ = e π/i √ √ e(π+πi/) (=) eπi/ √ √ cos π + sin π
n
) + · · · + Im(enθi )
+ · · · + enθi )
()
= Im(eθi + (eθi ) + · · · + (eθi )n ) − (eθi )n θi ( ) − enθi θi = Im e = Im e − eθi − eθi enθi/ (enθi/ − e−nθi/ ) θi e = Im eθi/ (eθi/ − eθi/ ) nθ () (n+)θi/ i sin = Im e i sin θ sin nθ n+ () . = sin θ sin θ
−
−
−
− − −
√ √ √ √
s7 ( C D;/ W.
! V8 @." & TP_ H C T8 Y+ = " 0=F= @+A/ L
)
reiθ =
)
reiθ = r cos θ + r sin θi,
)
cos θ =
) 0)
(r e
iθ
eiθ + e−iθ
)(r e
iθ
arg(z)
π π/ π/ π/ −π/ π/ π/
z = reθ ei eπi eπi/ πi/ √e πi/ √ e −πi/ √e πi/ √e eπi/
!
%! L n" & Z
r = r , θ = θ + kπ, k ∈ Z,
) reiθ = r eiθ ⇔ ⇔ r=
!
< θ = kπ ,
),
)
k∈Z
sin θ =
) = (r r )ei(θ +θ ) ,
eiθ − e−iθ , i
()*+ ,
Tnθ = θ = kπ < r = rn V+S √ =θ = (θ + kπ)/n < r = r ^&& √ G d Tv = e πi/n < u = reθi/n V+ i: S %"
=%! (Q k
∈Z
!
n
T−
n
√ n re(θ+
kπ)i/n
=
√ n reθi/n e
πi/n
k
=
=
√
T(
− i)
√
exp
+ kπ i
+&+&
= e
= cos
π
+ i sin
π
√
sin z =
i
^+t.P =z =
z
z + + z
z + +z
= = = = =
z = + z
z + + /z
=
z + +z
<
<
cos z =
zi e + e−zi
+ %&E 24 ^ Tsin z + cos z = w[Q < tan z = sin(a) + i sinh(b) w cos(a) + cosh(b) =sin z = sin a cosh b + i cos a sinh b w| √ n
+ D!3 L DC L ' P . w1 < cos x + cos(x) + · · · + cos(nx) w[Q =sin x + sin(x) + · · · + sin((n − )x) w
z = + /z
z z z z + + + z+ +z +z z + z + z +z +z z + z + z + z ( + z )( + z)
(
5+DX C ^ 8$ w6 √ m = + i = ( − i)n
n
5 Tz z = L %! 2DC
z
−i +i
+P Txn + iyn = + i 4 wI √ < xn yn+ − xn+ yn = n w[Q =xn+ xn + yn+ yn = n w
5 =zz = ^&& Tz = $ =
O& < ,< vX T^&& =z z + +z
<
zi e − e−zi
2 N
z + +z
i: & 24 ^
√
N L ' P w0
ez := ea ebi = ea cos b + (ea sin b) i
i =− − V Tk = &
V+ [5 Tz = a + bi ∈ C S wF
π π i = eπi/ = cos + i sin =− + T%! ' VH P L 8 z = + i: + %&E 24 ^ √
m
ei = cos + i sin =
π/
√
+√i − i
G d Tθ ∈ R S +P w> Tsin θ = sinθ cos θw[Q π < T sin θ = sin θ sin − θ sin π + θ w π π sin θ = sin θ cos θ sin − θ sin + θ w| + %&ETn ≥ 4 w9 π sin n sin nπ · · · sin (n−n)π = n/n−
V Tk = & √
T
=+ D!3
V Tk = & =k = , , d
√
√
n
2
ei =
√
T− + i T− C L ' P w +cos α+i sin α =+& D;/ 8" & +cos α−i sin α
√ i √+ +i
^ n = < z = + i: ! ! & && ' C ! @ ! T24
√
√
= uv k .
fk.C uvn ^&& Tun = e πi/n = e π = :X L < 4 ^+& N k %! : mH =%! uv = u .P 2 = + n −
√
− i
< z = reθi ∈ C − {} V+S ) =/& ! L DC z C n @ n 2j =n ∈ N √ n
z=
√ n r exp
θ + kπ i n
=k = , , , · · · , n − d
< w = r e Tz = reiθ + i: 2DE V T 0=F= @+A/ L wIx %./ && < z = wn ^&& + 0=F= @+A/ L w x %./ L =reiθ = rn einθ
+ z + z + z )( − z) ( + z )( − z )
√ =w = n z
(z −
) = . (z + )(z − )
0
iθ
()*+ ,
%! s P wGS j Tx . %"G L ! & S & < & %!
; =" "G S & P < C
; . mH = ]S N L " j . & wG x @;N ^ ! ;N ' & %+& & ;N ^ =w" B `>= 8" &x V+P ∞ g N & C∗ = C ∪ {∞} =%! g N ∈ S Z ^ . = T%! L DC ∞
" !
T
) z∞ = ∞
√
√ − √ cos π + i sin π √
T − + i T i T
D!3
N L ' P w <
√
+ i =+
=+&+& >0 VH P . w0
' V W <; OP G '86B7
)z+∞=∞
√+i −i
√
P mK! < " D;/ 8& − i C w> =+&+& d $
) w = ∞ w ) =
=+ D!3 (
∞
' n P = =w + w
%+& & T^&& =w ∈ C∗ = C − {} < z ∈ C d
= s7 ( C .P ∞ s7 ( C %Q & %! ^ " :S p & 8 ∞ Y+34 fk 2D!3 24 ^ =V+! < VD ∞ P
− i)/
[7 ( N . w9
S +P w6 + · · · + wn = G d T"&
w , · · · , wn
L 2DC +P Tm
∈ N
< a ∈ R + i: wF %! x x −a && −a m
m
π x − ax cos +a m π × x − ax cos +a m (m − )π × x − ax cos +a . m √
G d Tw = − + i S +P wI
(x + y + z)(x + yw + zw )(x + yw + zw) =
@34 \ S w
= x + y + z − xyz
GS %"G w[Q >= 8" ∞ <_: & s7 (
=+ a ∈ R x − ax + (a +
!
> ?$@ 9:0 AB8
) = @Q5
w1
C ) % ' !
& _+ R
8" & ! @B DB @Q5 + i: w E : X + AX + BX + C =
= P N+N C d { T%! " X = x − A/ i: & +P 24 ^ D E : x + bx + c = ! : & E @Q5 +P < x = s + t + i: , =. v] & T =s + t = −c/ < st = −b/ & s { & < @B Q5 & TO& @Q5 < ^+& t E &B T d %!& @Q5 & TmK! =+!& =" B & =+&+&
S : x + y + (z − ) =
&x "& S ,." {;/ N (, , ) + i: ^+t.P L x+iy = (x, y, ) ;N P DZL& =w" B [Q`>= 8" 3 < :S p N < ;N ^ ^+& 4 < %! s TC ^ & =V+P f (x + iy) . & S @ & d /f ^ =d %!& S − {N } & C L '&' "G {+ S < %"G
XX
I0 $8
C < N = c + d < M = a + b S +P w0 5+DX C < L C. 24 & "& 5+DX C. 24 & _+ M N G d T " "
"0 M@"
f : C −→ S − {N } f (x + yi) =
00
+x +y
x, y, x + y
- . / 0*1 2
2DC .Px =%" 5+DX C < L w=+G& p |(a + bi)(c + di)|
^+.P & < d & & L .+& 5 w1 =%! . Q. H 2f8 +Q Q< G %! _: c! K+ & =. X 78 +! : : < d B< & & + d \ S , +SR< < t( @p f 5B % @8D" & http:\www.maplesoft.com cd =+
{7X LD Q $
# !
i: & x + y = < x + y = 2O5 G ! w =+ x, y ∈ C P 34 ;N $ D < C TB TA + i: w0 < =w P s7 ( C B G 2D5&x |AB|.|CD| + |BC|.|AD| ≥ |AC|.|BD| Xf: =+ 2DE
n; ^ L O & " D " L ! & : +Q & P . P 7O Q T"& \Ld K+ ! p & 8 D & " +S L < V75 Tc w =" v5 +( P_+$ d '. & c w0 {7; V+ G G$ < +& +C & S = U L 4 d %!& %4: L c w> +& 2. < LK& {Q; M.C & TK+ +S8& = cf B 5! Q. P w9 =" U7; d ! G G$ < .
< 7e < B B B < A A A + i: w> + s7 ( C d chx P(Q fAQ Ai Bi s H s!< Ci + i: =w+G& p _+ C C C 7e + %&E =i = , , T%! =%! fO < =%! N+N C a < 5+DX C n + i: w9 2DC N s7 ( C '.8& T24 ^ n
sin a +
n
n sin(na) sin(a) + · · · + n
=
+& 7C ^+jj( + -/ED " <: 2e D "Ld '. P_& +S8& _+ < 3 Q< QNQ M d B< 4 G.P B< = P < 2p d L ! G G$ < _+ T n; P_: <3 @ ! ^N 8 " < ,. TP_: L S +S 8& & %! ^ 8 ^ =< Pg < & H < {7; M.C L V75 U &+"L < m @+" & ! M & p& 8" & %! & c! ^+.P & =. & 7.C P8P < . M+N3 Zj ^
D =. h V ^ L 28 & 3 @ " +4 c! ^+.P & "& " : B s+3 & L K+ _: & "d & w Q< + d '. & _+ ! ,e $ < " "d d 7B & +P %4: < + +& %/< v4 L =<& ;& wwp 3&xx & Z P w0 wwK+ L !xx W(& & mK! < +P / B =+ 5B T%! "
+, - ./(0
1
L =%! / +& +K _: ' wMaplex K+ & < M+N3 T\Ld S 8" & _: ^ %! .+& _ +K =" ! T8 T{7 T8+ . T+p x & P_: ! L d n" & +SR< ^ L & =L! _. w= = = < L = d Y+34 C & 2D!3 w = V/ 5 P & C 2D!3 w0 = d '. & ^. 2D!3 w> &L & .+& _: P & < " ! U& w9 8& Zj(& C P B< K+ =d 25: < sD D3 S P w6 =. ! 5& +K {! ' C & d s+3 L wF =. ! , ^+C < / +& & &L ' K+ wI =%! ! 0>
- . / 0*1 2
=+ +u
d mK! < %! & & +Q< Qe + 5! w> =+. K+ '. & 96 P P Tc < @ P L 5& " +4 w9 d < " :S p w GLdx C & N+/ (&! _+ < ! G G$ \Ld & K+ & s7 ! =LK& d & .P 7 X& c " +4 w6 = {7X S" L Vp X & K+ L ! & < !
& L ,<B 2/ FG/ ( 6& - ! " %! " u d ,5 < 2+ ,.5 P. L
Q.5 ^ K+ s+3 a+b a−b ab a/b ab sin cos tan cot sec csc sinh cosh tanh coth sech csch arcsinh arccosh arcsin arccos arctan arccot (x) ln(x) [x] |x| n (x) max(x, y) min(x, y) log (x) logn (x) π √ i = −1 Re(x) Im(x) x¯ /x sgn(x) ex
a+b a−b a∗b a/b aˆb sin cos tan cot sec csc sinh cosh tanh coth sech csch arcsinh arccosh arcsin arccos arctan arccot sqrt{x} ln(x) f loor(x) abs(x) root[n]{x} max{x, y} min{x, y} log (x) log[n](x) Pi I Re(x) Im(x) conjugate(x) /x sgn(x) exp(x)
@ %! LO K+ L ! & I 5*J " "d ^. TX& "Ld { L 8 & 5B & 3 G G$ < '. L ! $ DQ; TK+ s+3 & =+G&: d {Q; K+ s+3 ! P C= (K ) /& " < &/ & s! %! P. < v< L QD
! q & < P. L & ! P ="& d @+ < " B ! T" ! q . L S =" ! ' d . S Q< TS Pg 5& s
W. < " B p: ! d T" ! =" P( d
L ' %6 (& 2 I %& B I M "
& < / ! Zj( X & ." G ! =+ B Setup : T<& =. P {j K+ _: & T5x K+ 8" d & ^8d ' T{j L mH & <" & =S Pg T%! & WN w| % ' ^ L mH =+ '+7 & < ^8d d & %! :
d O& < $ %.! @"S S Pg +! @34 %! : 2 ! . < & T/ _8.$ ! ' P d =+ & <" < '7+7 ] @34 & =S fC + < " B ! TL Enter & ! +7 T : Shift %+" +7 Q t $ < & B s ' T" B ! 8 <& T+ _& =" L& 7D/ 2 ! @
%! : T ! B Qe L ! & < : {+ & Open < File P+7
P , =<+& ! Examples\Volume_1 wworksheetx 34 & < " p 7j: L ' =+ '+7 p ,e " + T Qe 3 ++a t $ w / ." G ! x G @+ Maple7
& < B C ! + i: ( )H@& - " " %" V+P 24 ^ TV+"& +! R @+ K+ C −−−−→ R
09
- . / 0*1 2
m
C %Q 9:0 &4+ G + " x + s7 ( C . < & =%! s7 ( K+ s+3 √ S =x+y*I " TK+ s+3 yi = x + y − %! : TV+P %Q D!3 x N+N C V+P(& =V+ B assume(x,real) !
,X z = reθ C z Sd z D;/ W. z <<
n
V+ i:
NA8 &4+ G + "
24 ^ T"& 5+DX C
Q.5 ^ m @ .+H & n n C @_ -%! ,< C n d
K+ s+3
} +7C N ^ 8$
^ S_&
n < m } A n :
( ,< C ^+ n m n L e(k) . n m
K+ s+3 Re(z) Im(z) conjugate(z) abs(z) polar(r, theta) argument(z) convert(z, polar) 1/z
n mod m factor(n) isprime(n) gcd(m, n) lcm(m, n) n! binomial(m, n) ithprime(n) sum( e(k) , k = n..m)
C m < n V+ i: /@ &4+ G + " V TD/ 2 ! &
< Q5 P & & 73 " TV+ < K+ s+3 V! ' & Q5 ]H 24 eq_name:=equation ! & ^ ="& Q5 @;& equation < Q5 eq_name @Q5 eq_1:=x^2+y^2=1 eq_1 & x + y = = :5
!
ifactor(n) simplify(n) numer(n) denom(n)
23 &4+ G + # "
i: N+N C +P(& t $ < " #$%& '( #) =+ B with(RealDomain) ! & & " &
2O5 " 2O5 G ! V+P(& t $ ! L %! : TV+ eq_m < === Teq_1 " ! solve({eq_1,...,eq_m},{x_1,...,x_n}) = P Q@ 2O x_n < === Tx_1
cd
<
Q.5 ^
"
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
06
K+ s+3
m k @ root[k](m) n @ sqrt(n) n @" ! simplify(n) n @" L& expand(n) V/ m & n C W. evalf(n, m) n @" S 24 rashnalize(n)
- . / 0*1 2
0F
2
√
L T%+ U& yx = y S sN: < S x → xz g =" g y = − < y = jC < & x =
< + ^ 74 C L mH U& < + L .C %./ TU/< =%! ,G [5 Rn → Rm : & U& @ 5Q; V7C ,G & & T3& %Q3! & %! ^"< T DQ q. 7 %Q < =VLH m = n = ! %Q @5Q;
"d j: ^ L vP =V+ 5Q; < 7B T%! R → R 8" & 5& 5 TU& L 4 & U& I j: = +S / ! 5& 25Q; =& P U& ^+.P @ !
3 '8C!
=f : X → Y + i: f (x) d L & P x ∈ X @.P @C. L %! 2DC " [5 f
Df := {x ∈ X | f (x) ∈ Y }
x ∈ Df %! P f (x) @.P @C. L 2DC f
Rf := {f (x) | x ∈ Df }
&!
4 < Df = X V+hS 4 f U& f U& 4 =Rf = Y V+hS < Tf (x) = f (y) < L x, y ∈ X P DZL & V+hS =S + x = y
=).
234 5!4
@
4C PG ! %! G ! ' " p L U& & Zj(& +7.C mH < :S 3 C. %! ^+$ U& .! [5 = fC + Td
2
,e %P =R = X = Y + i: !! < & "H T& '+D8 Z P L " Z ^ L 8 U& 5 =7N & "D 8 < "& G Z 8 L N T"& f (x) x log x
Df R (; +∞) x R √ x [; +∞) x + x R tan x R−{kπ+ π } x R /x R − {} x +x
Rf R R (; +∞) [; +∞ R R [; +∞) (; +∞)
=P(Q @C. < Y < X + i: Y < X DZAC ^+& %! g TY X L p %D Y L AC ' e X L AC P & S & f : X → Y V+ TV+P f & g ^ S =P s! x ∈ X AC S = Y X f V+ < . & < + x f y T" g y ∈ Y & f & x → f (x) ]S. L =V+P f (x) =" ! f @;&
' >! =
'+D8 "H !! √ √ √ √
√ √
√ √
√
M! ' >! DZ!>! ' !K
√ √ √
24 ^ =R = X = Y + i: =f () = Tfke =w .P U&x %! U& ' x → x g k e =%! U& ' x → x g f () = Tf ( ) = Tf f (−x) = f (x) ≥ U& ^ =f (−) = <
2 2
2 N
@;& & f : R → R + i: '+D8 f d + ( Tf & < ^++5 ^. =%! -%!
f (x) =
0F
345 6 # 5
) f ) f
x+ x
345
x
=x +
=x+
x
5 T" [5 x+x x ∈ Df /< < /< = =Df = R − {− } L %! 2DC f @ TmH = + x = f (x) = y @Q5 =y ∈ R V+ i: f & ^++5 &
(|x| ≥ )
,
+x ,
(x > )
2%
^&& =x
"& (Q N+N C c < b Ta S +P
G d Tf (x) = ax + bx + c <
x
f (x + ) − f (x + ) + f (x + ) − f (x) =
x V+S +x y ± y + y y ± (y + ) −
− yx − y = = =
' I ⊆ Df < f : R → R V+ i: ! DZL & %! I f V+hS 4 =%! L& 4 =f (x) ≤ f (y) V+"& " x < y x, y ∈ I P I f V+hS x, y ∈ I P DZL & %! & 24 & =f (x) < f (y) V+"& " x < y
4 U& =S [5 < 4 d q"& Q<_ < 54 V+hS %! ^"< ="& Q<_ k+ < 54 k+ V+hS =P + & '+D8 T8 k+
&7
( S" Y! ! ( S"
" U& 8 @ T P
< Tx
xy + y = mH Ty =
V+ (
& =f (y)
2 N
− x U& =V+G& p f (x) = < y 24 ^ T ≤ x < y ≤ V+ i: = ^&& = − x > − y ]Q f (x) =
−x >
< x P DZL & f : R → R S x =+ ( f @;& T r4 f
"
p
x G d T|y + | ≥ S 5 T(y + ) − ≥ S mH %! S ^ & ,5
" ^ T =f (x) = y %P T5 =y + ≤ − y + ≥ L %! 2DC f & T^&& =y ∈ (−∞; −] ∪ [; +∞) T%+ '+D8 f U& T
&7 Y! !
!C. !C. Y! !
T
x x+
=
2 N =x
x+
V+ i: p ^ & = y −y
^&& =x
y −y
=
Tx
" B =f (x) = x V
-$ =%!
− y = f (y)
L 2j&
V+ i: S =%! Q<_ k+ I = [; ] @L& & f T5 =f (x) < f (y) ]Q < y < x 24 ^ T− ≤ x < y ≤ & B & =%! 54 k+ I = [− ; ] @L& & f U& 5 =%! . TDf = [− ; ] 8
)y=
4 + ( f @ T"& " :5
y = f (x)
x − x ,
) y =
) y = (x − )
2 N
=V+S p f (x) = x + U& x− !& f (x) < f (y)
" = < x < y + i: = T P %De x − < y − $ = x + < y + V+ x− y− V+ (x − )(y − ) vX < V+
) y = sin
(x + )(y − ) < (y + )(x − )
) y = ln(
√
x+ , −x
√ sin( x),
) y = log(x
− ),
) y =
x,
|x| − x
.
+ ( y = f (x) & < T P
) y = + x − x
=y < x < Txy − x + y − < xy − y + x − mH %&E & 2j& =%! Q<_ k+ I = (; +∞) & f mH & T =%! Q<_ k+ _+ I = (−∞; ) & f " ' P & f V+S + TDf = R − {} 8 & B =%! Q<_ \ P L& L
,
− cos x),
) y = (− ) y =
)x , x . +x
P '+D8 L y = f (x) U& L '+
) y = x − x ,
) y = x ,
) y = x + −x , ) y = x − −x . +&+& 4 y = f (x) U&
0I
345
345 #4 "
f (x)g(x) = (x + )( − x) = −x − x − x + ,
( L U& 8 P
(x + ) , f (x) = = −x − − g(x) ( − x) x− f (g(x)) = f ( − x) = ( − x) +
= x − x + ,
g(f (x)) = g(x + ) = − (x + ) = −x + , f (f (x)) = f (x + ) = (x + ) +
g(g(x)) = g( − x) = − ( − x) = x.
2 N
=
x
=
/x
:= = =
f (x)
:= =
2 N
/( − x) + i: f (f (x)) = f −x −x = − /( − x) −x− x− = − x x f (f (x)) = f − ( − /x)
− =
/x
=x
= f (x) = f (x) = · · · = fn+ (x) =
f (x)
= f (x) = f (x) = · · · = fn+ (x) =
f (x)
= f (x) = f (x) = · · · = fn (x) = x
) y = ax + b . cx + d
f + g : x → f (x) + g(x),
f g : x → f (x)g(x),
f (x) f : x → , g g(x)
01P7 f + g Tf a 4?P7 af f M0<: RZ f /g Tg f 4?P7
f g Tg f f ◦ g O& < g
−x −
af : x → af (x),
f ◦ g : x → f (g(x)).
x
Df +g = Df g = Df ∩ Dg , = Df ∩ Dg − x ∈ Dg g(x) = , = x ∈ Dg g(x) ∈ Df = g − (Rg ∩ Rf ).
Daf = Df Df /g Df ◦g
Tf (g(x)) U& TL L ' P +&+& g(g(x)) < f (f (x)) Tg(f (x)) /x,
+ bx + c,
^ Ta ∈ R < 5& g < f + i: V+ [5 f ◦ g < f /g Tf g Tf + g Taf U& 24
x
f (x)
) f (x) =
) y = ax
T ! U& _+ < d P d n" Q.C L ! & ! +& \< ^ =
V+ [5 < "& P(Q 5+DX C n S T <
G d T fn (x) := f (f (· · ·!f (x)))" & n
) f (x) = x ,
) y = sin(x + π).
234 !3
Dg◦g = R − {}.
= ,
24 ^ =f (x) = f (x)
) y = log x,
∗
) y = (ax − b)(cx − d)
Df ◦f = R.
x
) y = x ,
, Dg◦f = R − {}.
(f ◦ f )(x) = f (x ) = x , (g ◦ g)(x) = g
) y = x − [x],
Df ◦g = R − {}.
, x x
) y = x − x + , ) y = − x ,
∗
p g(x) = x < f (x) = /x @! U& < Dg = R TDf = R − {} 24 ^ =V+S
(g ◦ f )(x) = g(f (x)) =
+
L U& 8 P d < c Tb Ta [7 ( N DZL & + (
= x + x + ,
(f ◦ g)(x) = f (g(x)) =
<
g(x) = x + . g(x) = x + .
2
@! U& 24 ^ =V+S p g(x) = − x
f (x) = x +
f (x) + g(x) = (x + ) + ( − x) = x − x + ,
01
345 #4 "
345
$ < < L ! & (
%!& fn (x) U& Tf (x) = x/ + x 8+4 w0
S [5 0=0=0,e L w>x %./ fn x =
√
−x x< S x +x ≤ x S √ @;& & [ ; ∞) @L& & < − x @;& & (−∞; ) @L& &
( f (x) Tf (x+
f (x) =
4 f : X < Dg = Rf @ & g
$ U& [5 & X" =%! S [5 x +x T5 T"& SL! P;& %! ^ B< ;& N d G d T" [5 N < & x = x DZL & f S ="& && U& & < & f (x) =
x− x
x< ≤x
) = x − x+ 4
=+
→ Y
U&
w>
P/Q
\].
5& V+hS S %: $ Rg = Df &
: Y → X
) ∀x ∈ Df : g(f (x)) = x,
) ∀y ∈ Dg
#
y = f − (x)
S S
=
: f (g(y)) = y.
. & < + f
^.
g %Q ^ =P
U& ' ]K!85 ^++5 +& & = B< L n" & ! +A/ Ti< f : X → U& 8 & : < LO
"
="& '+D8 %! ^ T"& ]K!85 Y && W!85 U& & & U& P @ ! c85 =%! && W!85 U& @ & U& P & =%! TQ<_ U& P c85 =%! 54 5& T54 U& P =%! '+D8 5& T'+D8 U& P c85 =%! Q<_ 5& =%! && U& & TU& P c85 c85 ( f (x) =
x + U& c85 x +
"
=+
=Df = R − Ok< V+ B p ^ & = < xf (x) + f (x) = x + G d Tx = − S c# f (x)) ^ =x = ((−f (x)− ^&& =(f (x) − )x = − f (x) )
Rf = Df − = (−∞; ) ∪ [ ; +∞)
L U& L ' P & < B< 24 d L ' P c85 mK! < + ( +&+& ⎧ x< S ⎨ x ) f (x) = x ≤ x ≤ S ⎩ x < x S ⎧ x ≤ S ⎨ x+ ) f (x) = ⎩ x + < x < S (x + ) ≤ x S ! =". <3 $ ^+.P & U& [5 \< =" P u k5& < P +& p 2N "< k e f (x) = + x + x + · · · 2j& 5& %! ^8. Tf V+ [5
−
Rf = Df− = R −
24 L U& L ' P c85 )y=
x− , x +
) y = x/ + 0J
) y = ,
) y =
+&+& B< x , x+
x − x .
345
345 7 8
^+t.P < Df x f (x)
= [; ]
S p f Tp ^ & < Rf = [; ) ∪ (; ]
/ /
234 67
!0"
f : X → Y i< [5 Γf := {(x, f (x)) ∈ X × Y | x ∈ Df } 2j& R & X × Y mH TX = Y = R {7l $ =V+ = R @34 Γf
N < %:S 8
/ /
=S 4 ` =0 8" ^&& + V! L U& L ' P . )y = x− ,
) y =
) y = x − x
√ cos x,
) y =
) y =
[x]
,
,
) y = arctan(x
,
x −x
) y =
V+! \< ^ ! 2G <- ? ) $ \< ^ =&;N \< & ! %! "< TU& 34 (x, f (x))
N mK! < ( Df L ;N ^ =V+ 4< V&
N ^ T G d =V+ ( 7+Q $ %+ M+/ B< ?+P & Q< T%! ! +& \< -"& j i< @;N < ^+& U& . +& < -+ %! ! d T& j 24 L ' P & !H & < %! nX &/ G 2O! V+P Tk5& ="& U+!< 2CfX & L+ T d 5 < %! d G !+H 5 & TU& ' . & j = G & f < f P4 5 & _+ f !
) y = [sin x],
) y = x − [x],
),
x+ . x−
+ V! ;& $ U& L ' P ⎧ ⎨
) y = ⎩
x
x≤− − <x< x≥
/x
x ⎧ √ ⎨ x+ arcsin x )y= ⎩ √ x−
S S S
f (x) = x
) y =
x<− − ≤x≤ x>
f (x),
) y =
) y = −f (x), " y
= g(x)
f (x)
−
[5
/ −/
/
U& . 4 + V! L U& . TV+"&
= f (x)
) y = f (g(x)),
) y = f (x)g(x),
) y = f (x) + g(x),
)y=
f (x) . g(x)
< y = f (x)f (x − a) 4 f (x) =
2
4
N < . V+! R
N ^ %! : =w" B [Q` =0 8" &x + j V&
,
) y = [f (x)].
U& .
x − − − f (x) − / − / −
) y = |f (x)|,
(x),
/( + x)
=+ V! V 9= =0 ,e L w0x %./ = & Q<B =Rf = (−∞; −] ∪ [; +∞) < Df = R − { } V+ + L n"
S S S U& . & 75 & B & L U& L ' P . + V! y = f (x) ) y = f
− |x|
|x| ≤ |x| >
w[Q =0 8"f (x) = x
2
S S
/( +x)
0 ,e U& . w U& .
V+ V! L U& . ⎧ ⎨ x
+ V+! Q y U& . =a = w| < a = w Ta = w[Q
f (x) =
>)
⎩
x+
≤x< x= <x≤
S S S
2 N
345 7 8 7 975
345
x + = ln x−
= − ln x − x +
= −f (x)
234 67 6 864
IK 4 I ⊆ R @C. L ="& M75 I & _+ −x T x ∈ I P DZL & V+hS R > 4 %! N \ y = f (x) U&
+ ^++5 L U& & : < |
) y = x sin
) y = sin x + cos x, ) y = x
x,
P DZL & V+hS 5& ^+$ . =f (−x) = f (x) V+"& " x ∈ D B [Q`0=0 8" &x %! N P y 3 & %D =w" 4 %! N \ y = f (x) U& P DZL & V+hS 5& ^+$ . =f (−x) = −f (x) V+"& " x ∈ D =w" B `0=0 8" &x %! N DZD & %D
− |x|, − e + x
) y = arcsin x.
) y = x e x
) y = sin x,
) y = sin(sin(cos x)),
,
V
) y = x + sin x.
2_
- B< "& : VP < |
4 C
4 C
: U& ' . w |
2
=%! |
∀x : f (x + T ) = f (x)
2 2 2 2+ 2# 2%
"& T < & < < 5& y = f (x) S = r4 8 & G d TV+"& V! [; T ] @L& f . < L G 25;/ TT A @L & < P x 3 ! =w>=0 8"x V
y =
f (x) + f (−x)
<
y =
f (x) − f (−x)
f = 24 ^ =%! : 5& y < |
< U& ' . >=0 8"
f (−x)
! < T < & y = f (x) + i: T4 [Q( C a = < %! S < & y = g(x) 24 ^
2
= (−x) sin(−x) = (−x)(− sin x) = x sin x = f (x)
L T%! : f (x) = ln x − x+ (−x) − = ln −x − f (−x) = ln −x + (−x) +
=%! T < & 5& af (x) w >
U&
2 N
345
345 7 8 7 975
2+ N
@< V
x∈Q x∈ /Q
=%! "& De C ^ S_&
S S
S 24 ^ ="& S C T + i: _+ < + < %! S _+ x + T G d T"& S
< & S C S N
<
S T T N
S w>
f (x) < f (x)g(x) Tf (x) − g(x) Tf (x) + g(x) &< g(x) t $x ="& d L ' P < L &A N < S w=&< ] U& T"D S C
2
T
T%! π < & y = sin x U& " x U& + U& < %! π = × π < sin ="& π < − sin x
< %! S _+ x + T G d T"& S x ∈ R S x ∈ R P DZL & TmH =f (x) = f (x + T ) = ^&& & (Q < T ∈ Q V B Tf (x) = f (x + T )
2 N
2
^ =%! π < y = cos x U& = P π < & − sin x < cos x T24
π +P ="& y = sin x U& & < ' . < U& L ' P < @< T&< L U&
< & 5& f (ax) w0
U& L ' P G d T"& 5+DX C
f (x) = f (x + T ) =
N
T |a|
2 N
) y = cos x,
) y = sin(πx),
) y = sin
) y = tan x + sin x,
%! π < y = tan x = sin x U& cos x O& @+A/ L w>x %./ " :5 N C Q " B =%! π && y = cos x < y = sin x U& =π = × N
) y = x −
<
) y = cos
x, x−π
,
) y = arctan(x), ) y = x
x
,
) y = | cos x|, ((x + ))
+ sin x.
i< C & Y+34 C ^ 8_ f (x) + i: w + %&E Tf (x) U& @;& ^++5 ^. ="& x ∈ R mK! < %! < f (x) − x Q< %+ < f (x) =+ ( d <
2 N
DZ_B U& Ok< L T%! T
=
(x + ) − [x + ] = x +
=
x − [x] = ((x))
=
− ([x] + )
T((x + T )) = ((x)) x P L & < < T S T E < < ((T )) = α S L T"& 5+DX C T & G d @D!3 & B & < T = n + α & G d T < α < ( T C & _+ + α " P O& < n = k. T"& ^ 8$ T & $ T^&& =" 8 & B & = < α < T = α + V T((x + T )) = ((x))
d . < %! R @ & 5& y = f (x) + i: w 0 %&E ="& N x = b < x = a s < & %D =%! < U& ^ +
L ' P < @< mK! < &< L U& +P +&+& d ) y = x − [x]
((x)) = x − [x]
= (( + (T − α))) = (( − α + T )) = (( − α)) =
−α
=%! 5+DX C ' T mH =%! / α = 5 @;& r4 5+DX C ^ 8$ ' 8 & B & , =T = V+S + T%! ((x + n)) = x
) y = sin{π(x − [x])}
) y = ( x − [ x])
>0
d L ! mK! < @ h j: ^ L vP & & ^+Q< 3D ^ ="& U& G !+H @ 5Q; =%! w,G < + x &
7 Ok.5 TG +& & =V+ :5 δ T (Q < ε vP @5Q; & ^ =V+ v] L V GQ $ L @;& /& 5 7 < |x − x | < δ ⇒ |f (x) − | < ε
5!4
=%! " h L ,e V GQ S$
=
+ i : (x − ε; x + ε) @L& x L −ε ' L p L& @C. Tx L −ε Lp =%! R L
2
Tf (x) = x + x + i: ^ lim (x + x) V+ C T5 = = < x = x→ %! 5 & ∀ε∃δ∀x
< |x − | < δ ⇒ |x
V+ Lld |x |x + x −
+ x −
|
| &
+ x −
| < ε
=
|x + ||x − | < |x + |δ
< U& ' y = f (x) + i: / f @ d L ! 8.P−ε ' %! C < " [5 x L G.P ' f G +& & T =S. [5 x @;N Ok. + x & x /< y = f (x) V+hS 4 ' T (Q < ε P L& %! ∈ R C && @ ! G.P−δ x P L & S %: $ < δ G.P−ε & f (x) C Tx @;N L (x − δ; x + δ) − {x} G 2D5& ="& M75 L ( − ε; + ε)
x
` [a I & ` '8P
mH Tδ < V+ i: δ ^&& =|x − | < V |x − | < δ +Q< i: && $ =|x +x− | < δ + = < x+ < < x < < vX %! ^ vP δ fkD/ =δ < ε δ < ε & mH T"& ε O& < ^ _.P /& & T^&& =δ ≤ V& i: =δ = min , ε V+ i: %! : Ti: < δ O& c V+P
ε δ = min , V+ i: Tp ^ & =%! %! ε L =|x − | < < |x − | < mH =|x − | < δ < − < x − < S + |x − | <
" ^&& T < x + <
` !K ^ ` '8P
∀ε∃δ∀x
`! b)-! ` '8P
|x + x −
| = |x + ||x − | < ×
ε
< 0 ' B <0
G.P−ε ' L %! 2DC C. ^ U/< ="& =V "& d L x @;N x L
`δ [a V ` '8P
|(x + )(x − )|
∈ R
(x − ε; x ) ∪ (x ; x + ε) = (x − ε; x + ε) − {x }
=
< ε
< ε, x
< |x − x | < δ ⇒ |f (x) − | < ε
. & < + x ;N y = f (x) U& 24 ^ =V+P x→x lim f (x)
&& + x & x /< f ” C ^ $ V8 ^ < T%! N; V8 ' 2DE & ,5 ”%! L & %! : mH TS& δ B< & 74 C
=ε
>>
:*1; $
6 # 5
%! " i:
=%! . P& <
√ x+ − − = x √ √ x+ − x+ + = ×√ − x x+ + (x + ) − = √ − x( x + + ) √ − x + = √ − = √ ( x + + ) x+ + √ √ − x+ x + + = √ ×√ ( x + + ) x+ + − (x + ) = √ ( x + + ) |x| δ √ = < √ ( x + + ) ( x + + )
f (x) = T^&& q lim
x→
x+ = − V+ %&E x−
2 N
V+ %&E V+P TG +& & = = − < x = T
x+ x−
x + ∀ε∃δ∀x < |x − | < δ ⇒ − (−) < ε x− x + =V+ Lld − (−) & δ x− x + x − x − + = x − = |x − | |x − | < |x − | δ
` [a V ` '8P
=δ
` [a I & ` '8P
V+ i: δ ^&& =|x − | < V T|x − | < δ i: && $ − M7; / L mH = < x − < − − < x − < mH Tδ ≤ V+ i: δ w-δ ≤ i: $x = < x − < V T^ :S ^&& =− < x < V T|x| < δ +Q< i: && $ x+ = x− + < / δ = δ + √ √ + = < x + < < x + < < vX %! ^ vP δ √ x+ − δ δ δ f k D/ =δ ≤ ε δ ≤ ε & mH T"& ε O& < − = √ < = x ( x + + ) ( + ) ^ _.P /& & T^&& =δ ≤ V& i: < vX %! ^ vP δ ε δ = min ,
V+
i: %! : Ti: < = fkD/ =δ ≤ ε δ ≤ ε & mH T"& ε O& < ε O& c V+P ^ _.P /& & T^&& =δ ≤ V& i: ε =δ = min{ , ε} V+ i: %! : Ti: < δ = min , V+ i: Tp ^ & =%! %! δ O& c V+P S + |x − | <
" L =|x − | < δ < < δ = min{ , ε} V+ i: Tp ^ & =%! %! ^&& T < |x − | <
" L =|x| < ε < |x| < Tx = mH = < |x| < δ x + < < x + < − < x < V+S + |x| < √ √ x − − (−) = |x − | |x − | V T @7 2D!3 M&; ]Q T < x + < δ≤ × ε =ε √ < x+ − / / |x| ε − = √ < =ε x ( x + + ) ( + ) =%! . P& < =%! . P& < ≤
` [a I & ` '8P
` !K ^ ` '8P
` !K ^ ` '8P
`! b)-! ` '8P
`! b)-! ` '8P
& %! 5& f : R → (; +∞) + i: = lim f (x) = + %&E = lim f (x) + x→
x→
:X L =f (x) + ' ε
>
f (x)
≥
mH Tf (x)
>
q lim
2 N f (x)
√
x→
x+ − x
TG +& & = =
=
$ =
2 N
V+ %&E V+P √ < x = Tf (x) = x + − T5 x V+ %&E V+P =
√ x+ − ∀ε∃δ∀x < |x − | < δ ⇒ x √ x+ − − @5Q; & δ x
= P L & T^&& T lim f (x) + f (x) x→
G d T|x| < δ S B< δ >
− <ε
` [a V ` '8P
≤ f (x) + f (x) − < ε
x =
>9
5 T < |x| i: & & B qV+ Lld
6 # 5
:*1; $
8" & x→−∞ lim f (x) = +∞
" + < ^ L
∀M ∃N ∀x x < −N ⇒ M < f (x)
≤
≤
8" & x→+∞ lim f (x) = −∞
< δ
mH T
x→
≤
G +& &
lim
x +
−x
x→
< |x − | < δ
V+ i:
x
δ M =δ = min
G +& & qx→+∞ lim
x
=−
) )
< ε + ε
< ε + ε ^&&
lim (x + ) =
x→
x− lim √ x−
=
x→
∀M ∃δ∀x < |x − x | < δ ⇒ M < f (x)
8" & x→x lim
5 ^ =
M
,√
M
δ " i:
V+ %&E
∀M ∃δ∀x
f (x) = −∞
< |x − x | < δ ⇒ f (x) < −M
8" & x→+∞ lim f (x) =
2 N
∀ε∃N ∀x N < x ⇒ |f (x) − | < ε
x ∀ε∃M ∀x x > M ⇒ − < ε
8" & x→−∞ lim f (x) =
x <ε =
f (x)
−
δ
≤
=
+
/ > = δ
< √
w0=> x
<ε
< < %! U& y = f (x) + i: T24 ^ ="& N+N C 8" & x→x lim f (x) = +∞
5 T"& < < S_& M L d 2DC %! LO %! : mH =δ
C < x d V 5Q; P T"& +∞ < −∞ && < x 8 & & = N+N d =%! [5 &/ L G %P =V+ %!: L [5
x+ x+ > (x − ) δ
w => x
<ε
!
]Q < V+ i: , = < δ (x − ) ^&& = < x + < + < − < x − <
mH Tδ
) lim (x − x) = −
)
x+ ∀M ∃δ∀x < |x − | < δ ⇒ >M (x − ) )
f (x) −
+ %&E L < L ' P
< (x −
f (x)
−
= De C ε < δ TN TM d TV+ [5
f (x) −
=%! " 2DE V8 < f (x) −
∀M ∃N ∀x x < −N ⇒ f (x) < −M
2
≤
8" & x→−∞ lim f (x) = −∞
V+ %&E
f (x)
−
&& < & 4 < ! < & w => x ^+:X S S + TV+ U.B w0=> x
∀M ∃N ∀x N < x ⇒ f (x) < −M
q lim x + = +∞ x→ (x − )
+ f (x) −
∀ε∃N ∀x x < −N ⇒ |f (x) − | < ε
4 $ V+!H C ^ 2DE & x
8" & x→+∞ lim f (x) = +∞
T%! Q<_ 5& y = log/ x $ = < ε T5 " i: %! : 8 5 =x > log/ ε V mH =M = log/ ε
∀M ∃N ∀x N < x ⇒ M < f (x)
>6
:*1; $
1 <# = >$ 7
sin(x) = x
) lim
x→
)
ex − = x x→ √ n +x− ) lim x x→
)
)
lim
)
x→∞
)
lim ax =
=
lim
ln(x + ) = x
lim
− cos x = x
x→
x→
x→
|a| < a=
x + x+
S S
ex − x x→ − cos x = sin
lim
x→
ln(u + ) = u u→
÷ lim
=
x + x+
+ Tu =
sin u u→ u
) lim
x→
)
lim
=
ln(x + ) = exp( ) = e x x→
wIx 2DE
u→
=%! . P& <
< 5& y = g(x) < y = f (x) + i: R 24 ^ a, x ∈ R )
) ) )
lim af (x) = a lim f (x)
x→x
x→x
lim {f (x) ± g(x)} = lim f (x) ± lim g(x)
x→x
x→x
lim
x→x
x→x
^ Tx→x lim
x+
>x−
+=x− =M
g(x) = y
x− x
lim
x→−∞
= −∞
)
x→−∞
x = +∞ − x
)
x→+∞
>N−
%! : mH
"
lim ( + x ) = lim
−
x √ x+
= −∞
sin x lim sin (x) sin (x) ÷ x x→ x lim = = = lim x→ sin(x ) x→ sin(x ) ÷ x sin(x ) lim x→ x
x→x
f (x) = lim f (x) ÷ lim g(x) x→x g(x) x→x
lim f (g(x)) = 24
x→x
x→x
lim f (x)g(x) = lim f (x) × lim g(x)
x→x
+
75 8 ,< =%! {+C < ε − σ +S \< +& 8 d < < " L c L N %+ \< L ! T8 < ^ Q4 =%! +G /< k5& \< ^ ="& ym85Q& < & DZ_B L % z $ & %! {+ ^ & T" P ! 25: & _+ / A/ mK! TS 2DE yHz y74 z n; P Y+ ! U& { & +t+H U& < 7 P 5 & 7 P Td %! < " = TB A/ < " < L ! & < W+H @7 V+ & %! : \< ^ L ! & Tfke =%! " ! ! < L 4 $ & sin x V+ & S ,O ! G d T%! ' && lim x→ x
x
2
x+
0 9!: ;# 6
lim ( + /x) = lim ( + u)/u = e
x→∞
lim
/x V+ i:
+
+ %&E
x→
=x−
=N = M + N −
V TX = eln X 8 & B & wFx 2DE x→
=x−
=
V+ B Tw9x 2DE + < u = x V+ i: ^&&
lim ( + x)/x = lim exp
>M
x+
x
sin u − cos x = lim = u→ x u
+ x > N +Q< i: L mH TN ≥ %! ^ & i: ^&& T > x > "
`b)-!
k5& < V]H 1 < 0 T Q: %34 fk5: = V+P 2DE ^ y, +HP @C/z %./ + =u = ex − V+ i: w>x 2DE ^&& < x = ln(u + )) lim
N;
V+ B & C ^ 2DE &
lim ( + /x) = e
2 N
V+ %&E
x + ∀M ∃N ∀x x > N ⇒ x+
x
= +∞
) lim ( + x)/x = e x→
n
x + x+
+& & qx→∞ lim
2+
S =x→y lim
/& L s&<
f (x)
>F
=
& 43 4K
1 <# = >$ 7
:*1; $
`b)-!
! ! M+N3 < . 2DE w>x =VK! & L & =x→x lim g(x) = m < lim f (x) = V+ i: x→x
! O& 8" & N U& <_Q " B U& d G d T" ! O& \< & 5& S 87& T"& " =%! N x + N f (x) = U& $ x − / f @ x = L G.P−ε ' $ < %! Lx ^&& TwDf = R − x + lim = f( ) = = x→ x −
2
< ε =
ε =
x + + mH T%! N 5& x + $ x+ '
lim
x
x→−
(− ) +
=
(−
+ + x
V f (x) = tan x − sin x U& x
V+ i: (Q ε >
ε + max{| − |, | + |})
|f (x)g(x) − m| = |f (x)g(x) − f (x)m + f (x)m − m|
=
) + + (− )
(
G d |x − x | < δ S B< δ 24 ^
G d |x − x | < δ S B< δ < |f (x) − | < ε
G d |x− x | < δ S B< δ < |g(x)− m| < ε
G d Tδ = min{δ , δ , δ } S mH =|f (x) − | <
2 N
ε ( + ||)
2 N
≤
|f (x)||g(x) − m| + |m||f (x) − |
≤
max{| − |, | + |}ε + |m|ε
<
max{| − |, | + |} +|m|
tan x − sin x sin x cos x − lim = lim x→ x→ x x x sin x − cos x = lim lim lim x→ x x→ cos x x→ x
(
(
ε + max{| − |, | + |})
ε <ε + |m|)
×
=
Ty
=
×
ex − x→ sin x
lim
x→e
=
x i: & Tf (x)
x−e e
=
ex − sin x
U&
2 N
V
T7.B $ T< B T; T%&E U& + i: S T Y+34 T%De &x TQQ]P Te7e U&z M7; / < . GQ T. Tw S < %De ' ,.C + i: ^+t.P qV+& yL TVP L U& < M TVP & U& < U.B TU& ' C D!3 TVP & U& < {+ TVP & U& < V+N TVP U& < wU& @ 8$ T5x U& ' 3 TU& ' << yL ,.Cz V+ !& G U& & 5& O& < 24 ^ =V+&
= lim
i: & Tf (x) =
ln x − x−e
= lim
y→
= lim
y→
=
sin x ex − ÷ x x x→ x e − sin x = lim ÷ lim x x→ x→ x y e − = lim ÷ = ( ) ÷ = y y→
lim
y=
@ & y = f (x) U& 2 4 FG ' x ∈ D P DZL & V+hS N 4 y = f (x) U& " %: D d L G.P−ε EF . & N U& @.P @C. ="& f (x ) && x =V+P W.
D
e
ey
lim
y→
lim ( + y)/y
y→
=%!
e
ln x − x−e
U&
2+ N
V
ln(ey + e) − ey
% "*+ ," -%" *+ ./ %0 ,1 2"/+ ," % "*+ 3 4 ,1 ' %0 5/6 7/8 y = f (x) 2+ 9" .*: ; " + <= . >$*% f " x ," <:?−ε 3: 4 @ " f (x) " 4 // lim f (x)
(ln e + ln( + y) − ) y
ln( + y) =
e
lim ln ( + y)/y
y→
< %! N 5& ln e
ln e &&
( + y)/y
$
x→x
N ^&& T"& e &&
=%! D/ @+A/ L V+N + +A/ ^ >I
?@4 37
:*1; $
<=3 2"6
mH T N
' < "& N y = f (x) S V D/ W(& U& G d T"& " / d @ x L G.P−ε ! G.P−ε ' U/ L & =%! f (x ) && x y = f (x) 5 T / y = f (x) @ x L U& B< Q< T". [5 3& @;N x = −
lim
x→−
√ < %! N f (x) = x + x+
@;N \
lim
<
2
=
)
=>=> @+A/ L ! & < < x lim
x→
√
−
x
−
√
−
x
= y
= lim
y→
i: &
− y
−
y +
2% N
( &
y
y
×
lim
y→∞
+
y
x→
lim
x+ x +
+
x→
lim
x→∞
+ x
+ x/
) lim sin (πx ) x→− ) lim
x→
) )
lim
x→
lim
x→
−y
>1
+ −
) ) )
tan x − sin x
)
cosh x −
)
sin x
sin x
+x
x +x+ ) lim x x→
tan x x
αx βx ) lim e − e x x→ √
) lim x + x→− x +
√ ) lim x − + x x→ x +
V
!
√ x + − x
lim arctanh
)
2 N
=
lim ln(cos (ln (x + x + )))
)
2 N
=
+
y→∞
x→
)
−x+
−/
y+
= lim
lim
lim
)
(x + )(x − ) = lim x→ (x + )(x − ) x+ + ? = lim = = + x→ x + √ −x− ' √ U& < x+ −x+ ^&& T && x = − L ! G.P−ε √ √ √ −x− −x− −x+ lim = lim ×√ x+ x+ x→− x→− −x+ ( − x) −
√ = lim x→− (x + )( − x + ) lim √
x
y→∞
x→−
x − lim x→ x − x −
x→−
− −
=
+ D!3 L < L ' P N
x+
?
x)/( +x)
= e × = e
^&& T && x = _& B .P g(x) = x +
=
(+
x+
x
U&
+
x→∞
%: $ < ε C S . SG F>) < |x − x | < ε < r4 x P DZL & " B< C < B< G d T"& /& f (x) = g(x) < x y = g(x) B< C < B< & x y = f (x) =x→x lim f (x) = lim g(x)
x − x +
V Ty =
G S. [5 f (− ) Q T%! && V+ 5 y = g(x) G U& & y = f (x) U& T L ! G.P−ε ' y = g(x) < y = f (x) X =S [5 _+ x y = g(x)
2# N
+ x x − < U& $ x + + x (+ x)/( +x) x−
) )
lim x→
−
x + x − x − x +
lim (x − x + )
x→
lim
x→
cos x − cos(x) x
sinh x x x→ lim
lim ( + x)/x
x→
lim
x→∞
x − x +
ln(cos x) x→ x lim
x
?@4 37
:*1; $
)
√ x+ lim √ x+ x→−
)
)
arccos( − x) √ x x→+
)
/x cos x ) lim x→ cos(x) √
) lim x cos x
= lim
y→
x→
( − y)(−y + y + ) y→ ( − y)( + y + y )( − y)( + y)
−y + y + ( + y + y )( − y)( + y) ( − y)(y + ) = lim y→ ( + y + y )( − y)( + y) y + ? = lim = = × y→ ( + y + y )( + y) ?
= lim
y→
lim
lim
x + + x
+ x + x −
C S T S5G )& & 43 . SG F>) x ≤ M P DZL & " %: X < M G d T"& B g U& %+& < f (x) = g(x) =%! && 7D/ & < B< _+ f %+&
x→
x √ √ x + − x + √ ) lim √ x→ − x − x − # $ x x lim − ) x→+∞ x − x +
) lim x − + x x→−∞
)
lim x
x→+∞
)
lim
x→∞
x +
x x
+ +
V y =
)
lim
x→
+ tan x + sin x
/ sin x
x
) lim √
+ x − ( + x) + αx − n + βx ) lim x x→ x /x a + b x + cx ) lim x→
/x i:
(x + a)(x + b) − x (a + b)x + ab = lim = lim x→∞ x→∞ (x + a)(x + b) + x (x + a)(x + b) + x
V y =
cos(xex ) − cos(xe−x ) ) lim ln(cosh x) x→ x→ ln(cos x) x $ # √ √ ) lim x+ x+ x− x
y→
y
+ y + y +
= lim y→ y +y+
√ √ √ x)( − x) · · · ( − n x) x→ ( − x)n− ) lim { n (x + a )(x + a ) · · · (x + an ) − x} lim
− y + y
+
y −y+
) lim
x→
=
+
=
( −
%!& L < L ' P N
x→+∞
2 N
&
= lim
lim
x→+∞
)
/x i:
+x+x − −x+x = x→∞
= lim +x+x − −x+x x→∞ +x+x + −x+x × +x+x + −x+x x = lim x→∞ +x+x + −x+x lim
/x x + x + ) x→∞ lim x − x + √ √ ln( + x + x) √ √ ) lim x + x) x→ ln( +
)
a+b+ a+b = lim √ = y→ + +
a + b + aby = lim y→ ( + ay)( + by) +
√
(x + a)(x + b) − x = x→∞ (x + a)(x + b) + x (x + a)(x + b) − x = lim x→∞ (x + a)(x + b) + x
m
x→
2
&
lim
−x
x +
+& L 2j& & U: @+A/ T%+& P S
x+
)
+ y − y ( − y )( − y )
= lim
ln( + x ) x→−∞ ln( + x ) −x ) x→∞ lim arcsin +x
) lim (x + ex )/x lim
lim
)
x→+
x→−
x→
+x +x
ln(tan x) − cot x x→π/ sin x − π ) lim − cos x x→π/
lim
)
lim
+ xe−/x sin
e/x
x + x + x→ x + x +
) lim
x
>J
)
√ lim x→
:*1; $
^ & q
lim
x→−
#(A $
2 N
V+ %&E " %&E & p
= + e/x
< − x < δ ⇒
∀ε ∃δ ∀x :
+ e/x
)
lim
x→
+e−/x arctan
f (x) =
+ e/x
−
−
δ
+ e/x
=
= ε
=δ = −
D!3 L @:;8 < L ' P x − |x − | − cos(x) ) lim x x→− ) lim arctan −x x→−
)
)
)
)
) )
lim
x→−
lim
+ e/x lim x |cos ( /x)|
x→+
[; ∞) d @ < %! N 5& f (x) =
x→+
sin
√
x V+
' ;N P y = f (x) + =%! =%! && f (x ) & < B< %! [; ∞) G.P−ε S 5 %+ [; ∞) G.P−ε ?+P x = . d - & $ ^ S. [5 Tx < - V+.5 [5
ln ε
+
x − |x − | − cos(x) ) lim x x→+ ) lim arctan −x x→+ lim
x→+
< %! U& ' y = f (x) + i: Tx < x < x + ε P DZL & B< $ ε De C (x ; x +ε) ⊆ %P ε T5 TS [5 x f (x) && x = x y = f (x) %! V+hS 4 =Df x→x lim f (x) = l V+ < %! l
lim x [ /x]
x→−
< x − x < δ ⇒ |f (x) − l| < ε
∀ε ∃δ ∀x :
x→−
lim
S S S
"!&> #
V+ i: %! : mH
2
2
$
e/x e/x < < e−/δ + + e/x
5 Te−/δ
= ln ε
n>m n=m n<m
`b)-!
/x <
x
an xn + · · · + a x + a bm xm + · · · + b x + b
⎧ ⎨ ∞ an /bm lim f (x) = x→∞ ⎩
<ε
− S + −δ < x < i: L δ /x < e < e−/δ ^&& T%! 54 5& y = ex
=
e/x
24 ^ T"& 4 [Q(
−
x
+xe−/x sin
U& bm < an { S +P
− < ε
G +& & T < ∀ε ∃δ ∀x : −δ < x < ⇒
x √ √ x + x sin x
=w^.x [5 x→x lim f (x) = l & 2j& − ^(! _+ x→x lim f (x) = ∞ $ < L ^+t.P + =w^.x %S
< Q.5 < & :;8 < D & L @+A/ L =S ! 4 Q.5 mK!
q
2
V+ %&E V+ %&E & p ^ &
lim x [ /x] =
x→+
2
∀ε ∃δ ∀x :
2
r4 x P DZL & " %: $ ε > S < T"& /& f (x) = g(x) < T < x − x < ε < B< _+ x→x lim f (x) G d T"& B lim g(x) S _+ x→x − =%! && 7D/ & <
< x
< x − < δ ⇒ x
i: & + Tx −
x
−
≤ [x] < x
−
<x
x
" i: %! : 5 =|x [ 2
9)
V+
−x = x
− < ε x
DZL & " %: $ ε > S f (x) = g(x) < T < x − x < ε < r4 x P lim f (x) G d T"& B lim g(x) S _+ < T"& /& x→x + x→x =%! && 7D/ & < B< _+
−
≤x
x
−
`b)-!
V
=
/x] − | < |x|
^&& =δ = ε
B$81 CD '
_+ x = x y
:*1; $
G d Tx→x lim g(x) = lim h(x) x→x =%! && d } N & < B<
8 & : < LO
" U- lim f (x) < lim f (x) %! ^ "& B && < B x→x x→x + ="&
= f (x)
lim f (x)
x→x
DZL & %P M + i: S T24 ^ =g(x) ≤ f (x) ≤ h(x) x > M P lim g(x) = lim h(x) B< _+ +∞ y = f (x) G d Tx→∞ x→∞ =%! && d } N & <
G d T
f (x) =
lim x
x→
<
<
+ + ···+
24 ^ T
|x|
x→−
<
x x
.
+ + ···+ |x|
.
|x|
=
+
=
|x|
|x|
−
x .
≤
|x|
<
|x|
.
)
)
|x|
x .
|x|
−
| sin x| x x→+ lim
)
lim ( + |x|)/x
)
x→+
"
| sin x| x x→− lim
lim ( + |x|)/x
x→−
⎧ x < S ⎨ x − x + ) f (x) = ⎩ (x + )/(x + ) ≤ x ≤ S sin (π/x) < x S ⎧ x ≤ S ⎨ ) f (x) = ⎩ e/x <x< S x ( + /x) ≤ x S √ √ ) f (x) = [x ] ) f (x) = x − [ x]
+
)
f (x) = (− )[x
]
)
f (x) = sgn(sin x)
.(|x| + )
& 24 & ≥
x→
XN . " U& L ' P %! < $ + D!3 %! . ++a U& @;&
|x|
x→
+ D!3 L @:;8 <
A'
S S
lim f (x) = lim (−x + ) = − + =
−x + x ≤ x − x >
2 N
lim f (x) = lim (x − ) = − = −
x→+
2 N
V+ i:
< |x| <
^&& < =
=
|x|
+ i:
<x<
24 ^
x P DZL & $ 1 ^&& < − ≤ sin ( /x) ≤ V < x DZL & mH T y = −x < y = x U& =−x ≤ x sin ( /x) ≤ x ^&& T%! 4 && + 4 & %! L x /< S %&E & 24 & = lim x sin ( /x) = x→+ = lim x sin ( /x) = + = lim x sin ( /x) =
^&& =
x→
≤ sin x ≤
x→−
!
lim [x] sin(πx) = lim sin(πx) = sin π =
+& B< _+ :;8 < & & A/ =VK! & ^. C & d 24
x→
2
S
<
x→+
P DZL & %P M + i: S T24 ^ =g(x) ≤ f (x) ≤ h(x) V x < −M _+ −∞ y = f (x) G d Tx→−∞ lim g(x) = lim h(x) x→−∞ =%! && d } N & < B<
−
< x−
.
|x|
=%! " %&E V8 <
= lim
x→
?# 70 @A
.( − |x|)
.( ± |x|) =
&/ Q.5 P\< & < 2DE & +A/ ^ L 8 < %! 7 < d \< < + P& @ !@ = ! T%! OX L n" & 8" ! +A/ ^ =%! <3 +& d "&
2 N
lim (e − )/x
=+ D!3 x→∞ N =ex ≤ (ex − ) ^&& < ≤ ex G d Tx > S = e ≤ /x (ex − )/x + x
e ≤ (ex − )/x < (ex )/x = e /x
=%! e && p < x→∞ lim
e
/x
=e
%
& %P ε > + i: S =g(x) ≤ f (x) ≤ h(x) V T|x − x | < ε & x P DZL
9
=$ ? E F ,
:*1; $
24
+ D!3 L < L ' P
V+ i: =V+P / || && ε q = V+ i: r4 |x − x | < δ
" x S C < %! (Q δ > ^&& < Dri(x) = 24 ^ =
) lim x |cos ( /x)|
)
|Dri(x) − | = | − l| = || ≥ ε
)
=%! . P& {+ ^ & <
x∈ /Z x∈Z
S S
8 & : < LO
" ! L _+ < %! L x y = f (x) %! ^ "& B ="& && < B $ lim f (x)
x→x
= x − [x]
U& V+ %&E
lim f (x) = lim {x − } =
x→+
x→+
lim f (x) = lim {x − } =
x→−
x→−
−
(k ∈ N)
*
y = f (x) U& 8 & LO
" ! ' y = f (x) %! ^ T"& " x = x ∈ R P DZL & 8 < [5 x L G.P δ > P DZL & " %:& $ ε > C ' < < |x − x | < δ "& " B< X x ∈ R ' G +& & =|f (x) − | ≥ ε
!
=
k + + ···+ , lim x. x x x x→+
d ="& Zj(& +A/ T\<
=%! " & fkD/ 6=9=>+
f (x)
lim x ln x
x→+
:# < BC
/: Z − {} @C.
N @.P L U& + %&E w0 %! cot (πx)
)
P ([x])
/: x =
N . f (x) = xDri(x) + %&E w ="& 4 && < B x = d < %!
f (x) =
lim ( /x) sin ( /x)
x→+∞
lim x [ /x]
x→
=%! %De { & 7.B $ ' P (x) + i: wF [P (x)] = +P lim =x→∞
!
)
x→
x=
= ,
− = lim f (x) x→+
= B< x = y = f (x) ^&&
∀ ∃ε ∀δ ∃x :
< |x − x | < δ <
|f (x) − | ≥ ε
! !
N f (x) = =
78 U& V+ %&E
= sgn(x − x + )
U& + %&E w = x = < x =
Dri(x) =
A sgn(sin(x)) U& +P w0 πZ = {nπ | n ∈ Z} @C.
N T5
π
x∈Q x∈ /Q
!
S S
=%! /: R
N @+7 %Q < =x ∈ R V+ i: Tp ^ & ="& S x w < "& S x w[Q d W+H %! ^8. %Q ' ]Q < P VP & +D" +& < ^ Tx ∈ Q V+ i: ^&& =V+P / 3& =Dri(x ) = + V+ i: =V+S ' && ε q = V+ i: r4 |x − x | < δ
" x S C < %! (Q δ > ^&& < Dri(x) = 24 ^ =
< T. 5Q; PQD j: L mH 5& %./ = d @5Q; L k /
23(!
U& 8 & : < LO
" " ! DZL & %! ^ T"& && x = x @;N y = f (x) G.P l & {f (xn )}∞ @ QD Tx & G.P {xn }∞ @ QD P n= n= ="&
|Dri(x) − | = | − | =
90
≥
=ε
:*1; 2
:*1; $
%! !+H %! L x = x @;N y = f (x) w ="& f (x ) && x f %! $ %! !+H $ L x = x @;N y = f (x) w| ="& f (x ) && x f
2
U& V+P ! PQD p ^ & = x = 24 ^ =V+S p zn = nπ+π/
y = sin ( /x)
< xn
= nπ
lim f (xn ) lim f (zn )
S + %Q! & T^&& y = f (x) U& 8 & : < LO
"
"
f (x) = sin (
"
_+ < %! L U& ^ %! ^ T"& !+H x = x @;N ="& !+H x = x $ L
/x) %+ ^8. T^&& = = L T"&
S
N L U& V+P f (x) =
y = f (x) + i: " "U: G !+H ' x = x 4 =%! !+H & 2j& ="& B x f V+hS y = f (x) $ L "U: G !+H _+ < %! L "U: G !+H G !+H %! < $ L x f S =%! [5 &/ "U: x f G !+H <_Q T"& "U: && Q< T"& B x f %! < $ T5x ="& w="D x = x
<
n /(n + ) (m, n) =
2 N
x = m/n ∈ Q x∈ /Q
S S
S C L QD {xn } V+ i: =x ∈/ Q V+ i: a " ! 2j& xn = n < %! G.P x & "& bn 24 ^ ="& " lim f (xn ) = lim
n n+
= +∞
T + S C ' & S C L QD S L + %+& & QD ^ @ L! P |( < 24 k_Q =
y = g(x) < y = f (x) U& S " < "& !+H y = f (x ) y = h(x) < "& !+H x = x Tf (x) − g(x) Tf (x) + g(x) Taf (x) U& 24 ^ Ta ∈ R S = !+H x = x f (x)g(x) < h(f (x)) Tf (x)g(x) =%! !+H x = x f (x) ÷ g(x) G d Tg(x ) =
f (x) = [
/x]
U& +P
2
!
= x = %! /: S
N . L U& +P ∗
f (x) =
%! N 5& y = f (x) + i: " 24 ^ =x ∈ Df < w" B >=0=> &x
2
sinm (xπ)
(m, n) =
<
x = m/n ∈ Q x∈ /Q
D(0 E
G d T[x ; x + ε) ⊆ Df S %: ε > S w =%! %! !+H x = x y = f (x)
S S
1
d V+! & T5 -%! j U& . 4 $ < V& ]l < L & $ V7/ B< <_Q 7 ^ & !H W(& ^ -V+P / d & k B< G !+H ! =%! w| q$ L G !+H w qw! < Lx G !+H w[Q =%! L G !+H
G d T(x − ε; x ] ⊆ Df S %: ε > S w0 =%! $ !+H x = x y = f (x) T(x − ε; x + ε) ⊆ Df S %: ε > S w> =%! !+H x = x y = f (x) G d √
x =
= lim sin(nπ) = , π = lim sin πn + = .
2
[5 x f < y = f (x) + i: " U& V+hS 4 =" x f %! !+H x = x @;N y = f (x) w[Q ="& f (x ) &&
=+G& p f (x) = x U& ! " [; +∞) & && d @ < %! N y = f (x) $ !+H x ∈ (; +∞)
N . y = f (x) mH T"& ="& %! @ !+H x = @;N < %! 9>
:*1; $
:*1; 2
2+ N
y = f (x) $
2 N
$ =+G& p f (x) = arcsin( − x) U& & && d @ < %! N y = f (x)
=+G& p f (x) = /x U& y = mH T"& R − {} & && d @ < %! N $ T
Df
=
2# N
≤
lim xDri(x) x x∈Q = lim x ∈/ Q x→ x→
lim x =
≤
2 N
U& $ =+G& p f (x) = sin x U& x T"& R − {} & && d @ < %! N y = f (x) L =%! !+H x ∈ R − {}
N . y = f (x) mH =%! ' & && < B x = x y = f (x) T:X ="& "U: x = @;N y = f (x) G !+H mH Tf () = 2j& x = f U& [5 & T5 =d %!& x = x !+H 5&
S S
x→
U& ^ T5 =%! !+H x = y = f (x) + ="& !+H x =
)
y = arcsin(x )
)
y=
y = x [ /x]
) y = tanh
x
−x
) y = ((x)) = x − [x] y=
)
y y
)
y
)
y
)
y
)
y=
)
√ x
lim f (x)
x→+
y = ex+/x
)
= =
y = sin(cos (tan x))
lim f (x)
x→−
)
= =
y = sgn(sin x) − cos πx ) y = −x
cos ( /x) cos ( /x) + = arctan x x−
π = sgn sin x x x x ∈ Q S = x ∈/ Q S cos (πx/) |x| ≤ = |x − | |x| > sin(πx) x ∈ Q S = x∈ / Q S
)
)
y=
x +x ) y = cot π x
sin x |x|
)
)
2 N
|x| ≤ S U& p f (x) = xx + |x| > S ' y = f (x) G d T|x | < S 24 ^ =+G& y = x U& Q =%! x & && x L G.P−ε @;N y = f (x) ^&& q"& R d @ < %! N =%! !+H x ^ =x = − 8 < x = G d T|x | = S _+ < %! $ @ !+H x = @;N y = f (x) 24 L T"& %! L "U: G !+H
< G !+H TL U& L ' P " " + !& ^8.
N . " U& G !+H C ) y=x
x − ≤ −x≤ x ≤ x ≤ = [; ]
T%! !+H x ∈ (; )
N . y = f (x) mH T"& @ !+H x = @;N < "& $ @ !+H x = @;N =%! %!
&x +G& p f (x) = xDri(x) U& U& ^ =w" B 0=F=> & Dri 78 U& [5 @p f =w%! < $ x %! /: x =
N . U& ^ T =%! !+H x =
N . T^&& L T%! f () = && x =
=
lim (x + )
x→
=
= f( )
lim (x )
x→
= f( )
_+ < %! @ !+H x = @;N y = f (x) T^+t.P L T"& $ L "U: G !+H lim f (x)
x→−+
= =
lim f (x)
x→−−
= =
S S
lim (x )
x→−
= f( ) lim (x + )
x→−
=
= f( )
&& x L G.P−ε ' y = f (x) G d T|x | > S @ < %! N y = x+ U& Q =%! x+ & =%! !+H x @;N y = f (x) ^&& q"& R d 99
:*1; 2
:*1; $
2 N
= ' /O : @B & 7.B $ P < an P (x) = an xn + · · ·+ a x + a " i: S TL x /< P (x) T24 ^ =w%! & an < %Q x b > ' /O mH T%! +∞ && + +∞ & + −∞ & x /< P (x) T:X L =P (b) > %P %P a < ' /O mH T%! −∞ && 5& P (x) T =P (a)P (b) < + =P (a) < T^&& =%! !+H [a; b] & ]Q < %! R & N d DZL & B< x ∈ (a; b) T )=I=> @+A/ M&; =%! 4 P (x)
)
y=
x − / |x| ≤ /x |x| >
P = ". [5 x = L U& & mK! T%! "U: x " U& G !+H +P + U: d G !+H Tf (x ) {! [5 ) f (x) = ( + x)/x ,
)
f (x) =
x
e−/x ,
⎧ ⎨ − sin x f (x) = A sin x + B ⎩ cos x
⎩
− ≤x< x= <x≤
x−
S S S
U& + %&E w0 f (x) =
− ≤x≤ <x≤
x+ −x
x ≤ −π/ −π/ < x < π/ π/ ≤ x
U& +P w> f (x) =
(x + )
(−/|x|+/x)
x = x=
@L& & y = f (x) U& S 2- )4 # "
G d T"& f (b) < f (a) ^+& C c < & !+H [a; b] @ & =f (x ) = c B< b < a ^+& x
S S
T5x %! + N %+4 [− ; ] @L& & _+ < d N @.P G d T + N < S =%+ !+H [−; ] & Q Tw P +
x
FG
./5
( ) ;K * ) "
<
< & !+H [a; b] @ & @L& & =f (x ) = B< (a; b)
./ H'
&/K
"
T"& !+H [a; b] @ & @L& & y = f (x) U& S /J DZL & " %: S & x , x ∈ [a; b] C G d =f (x ) ≤ f (x) ≤ f (x ) V x ∈ [a; b] P
|
[−π/; π/] @L&
2
& y = sin x U& " %! ]Hc85 T^&& =%! !+H < 54 k+ @ & @L& & _+ wy = arcsin x T5x d c85 < =%! !+H sin ([−π/; π/]) = [− ; ]
U& +P wF x≤− <x
U& S ∈ G d Tf (a)f (b)
y = f (x)
N . < %! 8 [a; b] @L& & y = f (x) + i: w9 y = f (x) + %&E = + f (b) < f (a) ^+& =%! !+H [a; b] @L& &
√ − −x √ f (x) = − x−
S S S
U& S /J FG TV+ DZ G "
G d Tf (x ) = < "& !+H x = x @;N y = f (x)
@L& & y = f (x) U& %fC " %: ε > = . ++a (x − ε; x + ε)
S S
Q< T%! !+Hx = _& [− ; ] @L& . & ="& L& d & .++ < V._ t.P
f (x) =
< & 8 k+ y = f (x) U& S " y = f (x ) @;N x = f − (y) G d T"& !+H x @;N =%! !+H
< Tx = @;N _& %! !+H [− ; ] @L& . & =.++ < V._ [− ; ] @L& &
)
< (Q N+N C xn < = = = Tx Tx + i: w0F ^ + _& ,e R @ & 5& T"& 2< ="& !+H
N
U& + %&E w f (x) =
√ x|x|x , ) f (x) = sin x sin . x ∗
"& !+H R & L U& + ^++5 X B < A w06
"
⎧ ⎨ x+
S S
S S 96
:*1; $
@A&G H@%4 I
! & < V+N & %D IF @C. T^&& @N & +5 TDZ+" ^ @5Q; p & %+ & %! 2DC ( ^ & ^ =V+ n; d mK! < xa @! '$ %+& U& L ( L = ^ DZAC & G P'$ %+& @N
Q< %! ]Hc85 < !+H [−; ] − [− ; ] @L& & =%+ !+H d c85
=>F G=$ 3
< & U: & U! k D "< h W(& ^ L vP & V" ] _+$ P L D/ =%! wVDx 8" & f (x + a) f (x) x→a lim @5Q; = 5Q; lim g(x) x→ g(x + a) ^ < x = a V+ i: B .P +Q ^+.P & =P . 3& %+7 L
%+& g < f f g VD %Q TW&& ! %Q & ln < exp Z L ! & T P '$
. D
f = exp ln f g = exp g. ln f = exp g
g
ln f
McC
4 y = f (x) U& <x lim f (x) = V+hS wx = a T <x x→ ="& _+ :;8 p qwx→a lim f (x) = T . & wx = a T <x '$ %+& U& @.P @C. T" u O& 7+Q & & =V+P wIFa T <x IF =%! a = V+ i: .P mH ^ L
g(x) x→ / ln(f (x))
%! : lim f (x)g(x) & mH x→ =V+ !& e . & 4 < . D!3
lim
%+& ' y = f (x) + i: " X c 4 [Q( C < k %De C S =%! '$
f (x) U& V+hS T24 ^ = lim k = c " %: x→ x k @D L < ]H N '$ %+& ' y = f (x) %+& @.P @C. =O(f ) = k V+ j & < %! ^ L =V+P W. IF . & ]H N P'$
=%H V+P IF DZAC @5Q; & mH
2
lim
x→
=
− cos x
U&
− cos x = x
TVLK&
y = x sin ( /x)
U&
x sin ( /x) xk x→
2 N
2 N
& +A/ ^ " C @+7 TW&& & y = f (g(x)) _& T%! Y+34 (Q a =%! %! a = %Q < y = f (x) L (! O& @+A/ g(x) %Q %! ^ d +Q %! + y = f (x)g(x) ,e C & ="D '$ %+& U& ^ %! ^8. 7
sin x U& T8$ %+& sin x < x U& Q < x = + '$ %+& ]Q < %! ' && 4 (sin x)x ="& " 4 U& ^ %! ^8. =%! /: x < x sin ( /x) '$ %+& < %D Tfke
x sin ( /x) sin ( /x) = lim k x x→ x→ xk− lim
=w^.x B< k!!
G d Tk = S w lim
x→
− cos x Tsin x Tx
%+& y = g(x) < y = f (x) + i: ^ =%! 5& y = h(x) < a ∈ R T"& '$
Ty = f (x) − g(x) Ty = f (x) + g(x) Ty = af (x) U& T24 y = f (x)h(x) < y = f − (x) Ty = f (g(x)) Ty = f (x)g(x) =8$ %+&
@5Q; & S L T%! N &/ P %! ^8. %Q ! G d
G d Tk > S w[Q
lim
<
V 0=0=> @+A/ j:f& C &
L O( − cos x) = T5 T%! =%! < && |( x < "& 4 & [Q(
+l '$ %+& '
=E
Tx U& "& IF DZAC T5 =8$ %+& U& L P . ="& 4 & && x = d L ' P ^&& < = + '$ %+& /x < cos x Q ln( + x)
'$ %+& ' y = sin x U& sin x L O(sin x) = T5 T%! ' @D ' && lim x→ x =%! ' && |( x < %! < @D '$ %+& ' y
H
x sin ( /x) = lim sin ( /x) xk x→
9F
@A&G H@%4 I
y = g(x)
^ =
<
:*1; $
=w^.x B< _+ ^
G d Tk < S w|
+ i: R < "& N &/ 8$ %+& 24
y = f (x)
= a ∈
)
) O(af ) = O(f )
O(f g) = O(f ) + O(g)
)
O(f ◦ g) = O(f ) . O(g)
)
O(f + g) ≥ min {O(f ), O(g)}
)
O(f (ax)) = O(f (x))
y = f (x)/g(x)
x sin ( /x) = lim x−k sin ( /x) = xk x→ x→ lim
)
O (f /g) = O(f ) − O(g)
'$ %+& T^&& =wIF ⊂ IF T^&&x "&
N &/ +l
y = x sin ( /x)
U& < y = g(x) < y = f (x) + i:
%! 5 & /< w9x @;& T DQ ="& '$ %+&
0=1=> @+A/ L w6x %./ $ < y = f (x) @D < L y = f (x) + g(x) @D @D!3 %! ^ !H -%! " ! < L y = g(x) T3& " ^"< & =%+ /& < 7 %Q + u L Qe V TO(−x) = < O(sin x) = Q w %! ^8. T^&& =O(sin x − x) =
O(g) G d Tc = S w[Q < qO(f ) = O(g) G d Tc = , ∞ S w =O(f ) < O(g) G d Tc = ∞ S w| m85Q& qc = G d TO(g) < O(f ) S w[Q < qc = , ∞ G d TO(f ) = O(g) S w =& P %+& c G d TO(f ) < O(g) S w|
8 & B& V+S + PD @N & TO( O(sin x)
O(f + g) = min {O(f ), O(g)}
−cos x
lim
x→
sin x
sin x
− cos x
= lim
x→
sin x
O(f + g) = O(f )
V TO(x)
#
=
'$ %+& ' ] +
V TO(x) = O(sin x) = Q w0 %! ^8. T^&& =O(sin x + x) =
f (x) =c = lim x→ g(x)
− cos x) = < − cos x = = lim sin x x→
8 & B & =%! −cos x
= lim
x
x→
=O
( sinx x )
− cos x sin x
=
= , ∞
^&&
=
5! < @D TL @+A/ < ,<B '. & =. D!3
< O(sin x − x) = Q w> %! ^8. T^&& =O(sin x − x + x) =
=
6; 4K
O(f ) > O(f + g)
+ D!3 y @D
2
=O(xa ) = a G d Ta > S
y = (sin x ) ln( + sin ( − cos x))
& %! && O(y) 24 ^ =
= = =
) O(
) O(sin x − x) =
) O(tan x) =
) O(ln(
) O(ex −
+ x)) =
=O(
O(sin x ) + O(ln( + sin ( − cos x))) = =
) O(sin x) =
√ n
+x− )=
) O(sinh x) =
O(sin x ) + O(ln( + x)) × O(sin ( − cos x))
=O (loga (
+ x)) =
=O(ax − 9I
− cos x) =
)=
G d Tn ∈ N S
) O(
) O(sinh x − x) =
O(sin x) × O(x ) + × O(sin( − cos x)) × × + O(sin x) × O( − cos x) +× ×=
2
2*
− cosh x) =
) O(tanh x) =
G d T
= a >
S
)=
G d Ta >
2 S 2
:*1; $
) (ax −
) (
n
@A&G H@%4 I
) (ex −
) ∼ x ln a x +x− ) ∼ n
) ( − cosh x) ∼ −
)
x
√ sin( x) ln( + x) √ x→ (arctan( x))
) ∼ x
lim
=%! 4 L 24 @D V+P %! : p ^ & = =%! +& |( @D
sinh x ∼ x
) (sinh x − x)
∼
x
√ √ O(sin( x) ln( + x)) = O(sin( x)) + O(ln( + x)) √ = O(sin x) × O( x) + O(ln( + x)) × O(x)
V 0=0=> @+A/ L N; + C &
∼ g
∼ f
) af ∼ af
)
f (g) ∼ f (g )
+ i: 2j = = a ∈ R )
f g ∼ f g
)
f /g ∼ f /g
G d T"& f '$ %+& @D θ
= O(f )
S
=f (ax)
2
=
2+
∼ aθ f (x)
( x)
lim
x→
− cos(x) = lim x→ x x
$
=
)
+ D!3
)
− cos x √ ) y = x + x
)
y = (sin x − tan x)
y = sin x − x + x ) y = sinh x
)
y = e(sin x−x) −
y = ln(cos x) ) y = +x −
) − cos x) ∼
×
) y = sin (x )
sin (x) (x) lim =
= lim x→ sin(x ) x→ x
mH T(
×
L 8$ %+& L ' P @D
#
x
× + × = + = √ √ O(arctan( x) ) = O(arctan( x)) √ = × O(arctan x) × O( x) =
& lim f (x)/g(x) @D!3 x→ P < g < f & S VD %Q 74 N 8 d& T ! "L VP L d < = ++a mH Tsin x ∼ x $
2 N
N +P
2 N
y=
)
y = ln( + x − x + x )
) y = arctan (sin (tan (arcsin x)))
'$ %+& < y = g(x) < y = f (x) S V+ /< y = f (x)/g(x) %./ | G d T"& D VP kN+/ =%! %+& < 4 [Q( T + 4 & x & D VP @;& & TW!H ^ & !H & -%! N$ =V+ !& M+/ / " n;
=
2 N
& TL .
+ & L VP L ! & G d T" ! d L S Tsin x ∼ x 8
+ i: ! y = g(x) < y = f (x) 4 =8$ %+& =f ∼ g V+ 24 ^ = lim f (x) = V+hS x→ g(x) =%! & D VP TL VP & LO
" %! ^"<
< y
sin x − x ? x−x = lim = x→ x→ x x
= g(x)
>! 9
lim
%! +Q ^+.P & =%! && ^ V+ Q ^(! '$ %+& < L VP U.B L 1=1=> @+A/
=%! S
= f (x)
/& L s&<
VP \< +S8& L mH t $ TW&& s7l 4 | ! TV+!& %+& < 4 !H & L 8$ %+& L P @5Q; L VP L L T%! =" ! D VP
) (
) sin x ∼ x
) (sin x − x) ) 91
(I ) 6 4K "
∼ −
loga ( + x) ∼
x
x ln a
− cos x) ∼
)
tan x ∼ x
)
ln( + x) ∼ x
x
- . / 0*1 J
Tf (x) =
√
:*1; $
+x
f () = f ()
=
f ()
=
f ()
2d
+ i:
=
L < TL VP \< '. &
24 ^
+ x
ln( + x) ) lim x→ sin(x)
= ( + x)−/ = x= − − ( + x)−/ = x= ( + x)−/ = x=
x=
)
+x−
+x−
∼
−
x
x
+
x
∼
+x−
−
x
∼ −
)
x
ex −
−x−
x
− ···
xn n!
∼
)
y = ln( + x)
)
y = sinh x
)
esin
lim
x→
+x − +x − − esin x tanh x x
)
ln( + sin(x)) x→ esin(x) −
)
cosh x − x→ x
lim
lim
lim
x→
ln(cosh x) ln(cos x)
) lim
+ x x + x
(I ) 6 ( S/> 4/ ? )
+G& p L
(ex − ) ∼ x (ex − ex − e − x
y = cos x
)
y = tan x ) y = n + x
x
− x) ∼
−x−
x
−x−
x
∼
x
xn − ··· − n!
∼
xn+ (n + )!
L VP L S fke T%! & 7D/ L ' P TQ: ^
G d TV+ ! < lim
+, - ./(0
lim
− cos x − cos x
+ sin x − cos x + sin(px) − cos(px) x→ ln( + xex ) +x+x − ) lim ) lim sin x x→ ln(x + x→ +x ) ln(x + ex ) x→ ln(x + e x )
Q:
xn+ (n + )!
+ D!3
x→
)
lim
) lim
Q: TL U& L ' P ! +& n = 06=1=> @+A/ s! " +Q L VP ) y = sin x
x→
+x −
sin x − x x→ tan x + sin
2 N
lim
)
P DZL & 24 ^ Tf (x) = e + i: DZL & mH =f (n) () = ^&& < f (n)(x) = ex n ∈ N V n P x
x→
)
x
ln(cos x)
V+& V+ 09=1=> @+A/ '. & T^&&
lim
)
x→
I
ex −
−x
sin x
= lim
x→
x / = x
x " 4 B V ! Q< L S Q & < 7+ @+A/ TL VP Q: -+Q UD =w%! s7l ="& Q ' @+A/ 5 Td Z %Q R<
%3 W(& & TK+ _: L ! 2N @P & =" 5B ' j: L ^+.P U& + i: X B 2G I ( @ 43 @D!3 & =V . [5 K+ s+3 fkD/ y = f (x) limit(f(x),x=c) ! L x = c @;N U& ^ =V+ ! y = f(x) U& %! < $ @D!3 & < limit(f(x),x=c,left) 2 ! L {+ & Tx = c @;N =V+ ! limit(f(x),x=c,right)
i: (I ) 6 ( S/> 4/ < B x = y = f (x) U& L n + @D M +
24 ^ T%! !+H
9J
f (x) − f () − f ()x − · · ·
f (n) () n x n!
∼
f (n+) () (n + )!
:*1; $
- . / 0*1 J
!
24 ^ +l < true !H T& !+H 24 =. =& P false + & readlib(discont): discont(f(x),x) ! & =. ! f(x) U& G !+H
N ^ : + B L n" & Z $ &
! L ∞ < & undefined ! L T"& " B< t $ =V+ =V+ ! infinity
+ B L n" & Z $ &
K+
limit(xˆ2 − 3 ∗ x + 1, x = 2) −→ −1
readlib(discont) : discont(1/(xˆ2 − 1), x = −2..2)
K+
K+ 1
limit((x + 1)/(2 ∗ x + 1), x = infinity) −→
−→ − ,
K+
limit(exp(1/x), x = 0, left) −→ 0
readlib(iscont) : iscont(1/(xˆ2 − 1), x = −0..2)
K+
K+
limit(exp(1/x), x = 0, right) −→ infinity
−→ f alse
cd
2
! &
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
readlib(iscont): iscont(f(x),x=a..b)
N+N3
6)
2E/J YA
[a; b]
@L& &
f(x)
U& G !+H M+N3 &
BCD ?E /F GD H I:" @ %/J x = x =%+ : w
" ' TP 0= =9 KL ,"
L & _+ < + < M @h j: ^ L vP ="& %54 < '_+: T2+ d P&
`b)-!
=%! ]KN x = x @;N y = f (x) V+ i: d L & B< f (x ) T^&& f (x) − f (x ) < |x − x | < δ ⇒ − f (x ) < ε x − x '.
J(K
∀ε∃δ∀x
S B< δ T (Q
P L & T^&&
G d T|x − x | < δ
< ε
= f (x)
+ i :
(f (x ) − ε)(x − x ) < f (x) − f (x ) < (f (x ) + ε)(x − x )
f (x) − f (x ) lim S =x ∈ Df T " & " B< x→x x − x ^ N < %! x y = f (x) V+hS df < f (x ) . & < + x = x y = f (x) M dx x V+P f (x ) := lim
x→x
8 <
<
f (x) = x −
f (x) − f (x ) x − x
x + i:
|f (x) − f (x )| < max {|f (x ) − ε|, |f (x ) + ε|} δ
" i: %! : T
ε δ = min δ , |f (x ) − ε| +
ε , |f (x ) + ε| +
\ ]K
5
& ^ =V+ Lld '. & M [5 & =%! +
< % ! U & y
|f (x) − f (x ) − f (x )(x − x )| < |x − x |ε
lim
x→
f (x) − f ( ) x−
= =
2
24 ^ Tx =
(x − x) − (− ) x− lim (x − ) = lim
x→ x→
&& d M < %! ]KN x = y = f (x) ^&& =f ( ) = T5 q%! 4 24 ^ Tx = < f (x) = |x| + i: f (x) − f () |x| = lim sgn(x) lim = lim x− x→ x→ x x→ x = y = f (x) mH w-$x B< ^
=%+ ]KN
2 N
S + |x − x | < δ i: L 24 ^ x = x @;N y = f (x) U& ^&& |f (x) − f (x )| < ε 2 =%! !+H ' & 3 + i: Y* 2Q H> ; 8 TO % Lld @;N S = % V+N s O L y = f (t) @74: & V+G& f (t) & t @p3Q }3 }3 p3Q %C! w'_+: [5 &&x G d T%!
2+ M:" " N,O H f (x) 2+ " I:" . :P(%Q x
y = f (x)
y
6
=
= x
KL #4 7G $ M*N
x
M*N
@L& GP s! %C! & %! && t = t @p3Q %! '$ : @L & < & x " L
& '_ : @L & P x DZL & Ok< + _& {N V+"& " w =9 x
f (x) = ax + b
;x x − x & g(x) = f (x) − ax − b %D T E < 4 && T + x & x /< w<< ; & B< 5 T"& g(x) = x − x ^&& Tg(x ) "
L @L& D %C!
lim
x→x
x
f (x) − f (x ) = f (x ) x − x
@p3Q }3 p3Q %C! T^&& =%! L & %D % @;&
U& . + i: 2456 ;
N L ! s =x ∈ Df < V V! f (x) s ^ qV+S p ]S (x , f (x )) < (x , f (x )) + x & x /< s ^ %Q =V+ lx x @;N y = f (x) U& . & c. s =
V w0=9 x < w =9 x < L T
y =
g(x) f (x) − ax − (f (x ) − ax ) = lim x→x x − x x − x f (x) − f (x ) = lim − a = f (x ) − a x→x x − x =
x
L @L& ^ 8 ++a x→x L L& ^ L ++a @
M & &&
+ w0=9 x L
lim
=
f (x ) = ax + b
x→x
=
w0=9 x
lim
x→x
lim x
v(x ) =
lim
x→x
@;N Q y = f (x) U& T5 =a = f (x ) T^&& T%! f (x) ≈ f (x ) + f (x )(x − x ) U& && kDN x = x '$ %+& ' << ; & %D 4 ;
=%!
2
& 3 % @;& " 24 & x L { & T % V+N + ' p3Q %C! =%! " +& f (x) = (x + )/(x + ) V+ D!3 ,< @p3Q d v( ) = lim
x+ x+
− = lim
=
(x + ) y = x + U& . & c. s @Q5 √ %! : Tp ^ & =V+& x = @p3Q @;N L s ^ V+ L TV+ D!3 s d {+" √ =]S ( , ) x→
x−
m =
lim √ x→
=
lim √ x→
=
lim √
x→
x→
2 N
M !P +D5 =9 8" : ^&& T%! 75 s ^ L (x , f (x )) @;N $ d& ^+$ [5 L =V+ D!3 s ^ {+" %! lx s {+" && x y = f (x) & l c. s {+"
+ = + x & x X" & T%!
x + − √ x− x + + x + + √ x− x + +
(x −
m =
x − )( x + + ) √ √
=
√
= lim = √ x→ x + + L %! 2DC p s @Q5 T^&& √ x − √ y = f (x ) + m(x − x ) = + √ =y = x + T5 x+
=
l
c. s {+" lim (lx s {+") = lim
x →x
lim
x →x
x →x
54 N <+H N
f (x ) − f (x ) = f (x ) x − x
y = f (x) U& . & c. s {+" & f (x ) T^&& =%! && x = x @;N < %! U& y = f (x) + i: (H -= ; ! X y = ax + b ; 5& & y = f (x) U& =x ∈ Df 60
@*N <# = 1
KL #4 7G $ M*N
V+ i:
⎧ ⎨
2 N
@;N Q f (x) = ln x U& V+P V+ B =V+ _& {N ; U& ' & x =
S S S y = f (x) < y = f (x) U& . < D!3 d M =+ V! . S! & D/ j: 2CfX L ! & = T
−x ( − x)( − x) ⎩ −( − x)
f ( −) = = f ( +) = = f (−) = = f (+) = = y = f (x)
x< ≤x≤ <x
f ( )
= =
ln x − ln x− ln x ln(z + ) = lim = lim z x→ x − z→ lim
x→
^&& wz = x − x ln x ≈ ln( ) + ( )(x − ) = x −
TM [5 L ! & P +&+& x = x y = f (x) U& M
f (x) − f ( ) x− x→− ( − x) − lim =− x− x→− f (x) − f ( ) lim x− x→+ ( − x)( − x) − lim =− x− x→+ f (x) − f () lim x− x→ − ( − x)( − x) − lim = x− x→ − f (x) − f () lim x− x→ + −( − x) − lim = x− x→ + lim
,
x = −
√ ) f (x) = x,
x = ,
)
f (x) = cot x,
x =
,
)
f (x) = arcsin x,
x =
,
)
f (x) =
)
f (x) =
x
,
x+ x−
π
x = , x = − ,
,
)
f (x) = x sin(x − ), x ) f (x) = , x+
) f (x) = cos x , sin x + x ) f (x) = , − x
. < . ! 2CfX ^ L =. V+! `0=9 8"
√
) f (x) = x ,
x = , x = , x =
π
,
x = .
%! < $ T M < $ M T n; d @ : V+.5 2j& . [5 M V+.5 C & L 2j& %! . w y = f (x) U& . w[Q 0=9 8" y = f (x) M U&
=(K 9!: 0
f (x) − f (x ) , x − x f (x) − f (x ) . f (x −) = lim x→x − x − x
f (x +) = lim
x→x +
M:" " 6 4 N,O H x y = f (x) " I:" :P(%Q x " >%Q 4 I:" " 4 / R :P(%Q 4 " :P(%Q 2 @ f (x) y = f (x)
3 & %! M D!3 W(& ^ L vP ' p ^ & ="& " & G & / =V+ _ nX DB V \<
#
6>
KL #4 7G $ M*N
)
(tan u) =
)
(cot u) = √ ) ( u) =
u cos u
@*N <# = 1
)
−u sin u u √ u
)
(arccotu) =
)
√ ( n u) =
−u +u
u
(sinh u) = u cosh u
)
(tanh u) =
)
(cosh u) = u sinh u
)
(arcsin u) =
)
(arccos u) =
)
(arctan u) =
)
ln
)
u
=%! C & ^. C & +A/ ^ 2DE
−u
y
−u
=
9" <= . :P(%Q y = g(x) z = f (y) 4 x = x Y* (%U-I % 4+
= g(x)
(f ◦ g) (x ) = g (x )f (g(x ))
V [5 L ! &
u −u
f (g(x)) − f (g(x )) x − x f (g(x)) − f (g(x )) g(x) − g(x ) × lim = lim x→x x→x g(x) − g(x ) x − x f (y) − f (y ) = lim × g (x ) = f (y ).g (x ) y→y y − y x→x
`b)-!
y = g(x ) &
B &
9" .y = f (x) 4 :P(%Q x = x 4 / :PJT/M* 4 " :P(%Q y = y x = f (y) <= P/Q FG Y* % 4+
y = f (x)
ex − ey ey−x − = ex lim y→x x − y y→x y−x z e − = ex × = ex ex lim z z→
−
f − (y ) =
f f − (y )
L +S M & Tf − (f (x)) = x 8 & B & A7S" & < Tx = x = f −(y ) @;N x { & ;& ^ ^+:X V 0=0=9 @+A/ L !
: Tw x 2DE & =z = y − x %! " i:
,: 2DE =au = eln(a ) = eu ln a " B %! V >=0=9 L ! & Tw Ix u
f − (f (x )).f (x ) =
u −u u = = (arccos u) = cos (arccos u) − sin(arccos u) −u
2
^. C & ! 2DE =sin x = − cos x L 2 =VK! &
2
=%! " 2DE V8
2
lim
T =0=9 L w>x %./ & B &
A7S"
(f ◦ g) (x ) = lim
d ! 2DE < . 2DE Q: ^ L & : w0=0=9 &&x w0x 2DE & =VK! & =(ex ) = ex " %&E %! =
(f ± g) (x ) = f (x ) ± g (x )
(f g) (x ) = f (x )g(x ) + g (x )f (x ) f f (x )g(x ) − g (x )f (x ) ) (x ) = g g (x )
cosh u
u ) ln u + u ± = u ± ) (uv ) = v ln u + v u uv u
(ex )
)
−u
u +u + u = − u
y = g(x) 4 y = f (x) 9" A<= .a ∈ R 4 :P(%Q
) (af ) (x ) = af (x )
u √ n n un−
)
x = x
(cos u) = −u sin u
=V+
⇒ f − (y ).f (x ) =
f − (y ) {
& Q5 ^ %! :
D Td P Q<B .P & +A/ ! ^ ="& M U! &
*"/+ v(x) 4 u(x) U6
V
) (au ) = u au ln a
(x cos x) = (x) cos x + x(cos x) = cos x − x sin x
69
)
(ua ) = au ua− ,
)
(ln u) =
u u
Z * 4K
A7/V I:" . :P(%Q )
(eu ) = u eu
)
(loga u) =
)
(sin u) = u cos u
u u ln a
@*N <# = 1
KL #4 7G $ M*N
V T =0=9 L w9x %./ & B &
y = arctan x + arctan x sin α sin x ) y = arcsin − cos α cos x x − x ) y = − x ( + x)
)
)
y = x(x − ) · · · (xn+ − n)
+ D!3 4 f (x) f (x) =
x x x x
x− x − x − x −
/x x /x x
2%
⎛ ⎝
=
+&+& y P
)
y = φ(x)ψ(x)
y = f (ex ) + ef (x)
f (x) =
2 U& +P 2
x |cos (π/x)|
x = x=
(x)(x − ex ) − ( − ex )( + x ) (x − ex )
=
S S
+
2 N
x+ x +
x+ x + (x + ) + x +
+ x+ x + ×
x+ x + x
+ x+ x + ×
%! XN x = @;N L (Q G.P P =%! ]KN x = y = f (x) Q< T M d + D!3 f (x−) < f (x+) TL L ' P
24 ^ Ty =
+ x +
a x b a x b b
x
a
V+ i:
2 N
ln y = x(ln a − ln b) + a(ln b − ln x) + b(ln x − ln a)
f (x) = |x| sin(πx) ) f (x) = − e−x +x ) f (x) = arctan ) f (x) = sin x −x x + x ) f (x) = ) f (x) = | ln |x|| x
)
+ = y
= ln a − ln b −
y
a b + x x
V +GN L mH <
=y = y
b−a a + ln b x
%D y = f (x) L L L ' P
2+ U6 . F (x, y) = c W 7/V y = f (x) :P(%Q y 4 x ? " X% 4 *+ z = F (x, y) 7/V I:" @ c 4 " 25O FG/ Y* % 4+ "
y = −
=
+ x+ x + (x + x + ) x+ x + + x+ x +
y = logφ(x) ψ(x) ) y = f (sin x) + f (cos x) x x ∈ Q S f (x) = U& +P x∈ / Q S =%! ]KN x = DZL
( + x ) (x − ex ) − (x − ex ) ( + x ) (x − ex )
⎞ + x+ x + ⎠ =
=
) &
=
V T =0=9 L w0)x %./ & B &
)
+x x − ex
2 N
√ √ ) y =x+ x+ x
Fx Fy
? z = F (x, y) 2+ >%Q ," " 7 F G= 2+ >%Q ," " 7 F 4 y G/ S U6 4 x 2 @x G/ S U6 4 y ? z = F (x, y) x
+x−x −x+x
)
y=
)
y = sinn x cos(nx)
)
y = sin(sin(sin x)))
y
)
y=
x+
√ x+ x
66
+G& M x &
y = tan(/x) ) y = a + x
)
x y= a −x ) y = + x −x
)
)
x
ex
y = ex + ee + ee
) y = (x + )(x + ) (x + ) + ln + ln ) y = ln x x x
2DE < 7B h_B 2N 3D +A/ ^ =. V+P
!
KL #4 7G $ M*N
=
O4 5# <LM*N
dy ψ (t ) dt t=t = = dx φ (t ) dt t=t
y−y t−t lim x−x t→t t−t
M Tx
=%! . P& <
2
Ty = sin t < x = sin(t) S
y =
( sin t) = (sin(t))
G d Ty =
y
2
cos t cos(t)
−
√
t<x=
−
√
y = −
t S
2 N
y
√ √ ( − √ t t) ( − t)−/ = √ = ( − √t) ( − √t)− / − t (− t− / )( − √ t)−/ = √ −/ )( − t)− / (− t √ / / t − t √ = t − t
y
) ) )
x = arcsin
)
t
+t
y = at( − cos t) , y = arccos
+t
=
++−− = − ++ −+ = f (x)
M %! 7;
xy + y x = xy x
& %D
= f () (x) = (f (x))
y (n)
= f (n) (x) = (f (n−) (x)) (y = f (x)
)
x + y = tan(x + y)
)
ln(x + y) = x + y
y = f (x)
M %! 7; 8 d &
< √ √ M = ( π, π)
x sin y − y cos x = π,
)
(x + y)x−y + (x − y)(x+y) = , M = (, )
( ) J FG/ Y* #
dy dy ψ (t ) dt t=t = = dx dx x=x φ (t ) dt t=t
= f (x) = (f (x))
y ()
8 d &
< Tx
U6
y = ψ(t) 4 x = φ(t) 7/V x ," *+ .x = φ(t) . :P(%Q t = t ψ 4 φ 9" @ " x ? y = f (x) 7/V I:" .y = ψ(t) 4Y* 4 " :P(%Q x = x
]KN y = f (x) U& + i: y = f (x) . & d M 24 ^ T"& [5 & 24 & TV+P y
( , )
)
y = f (x)
L3 4! 9MJ(K
2 N
=
TM @;N
y = b sin t + t
x = a(t − sin t),
+ xy + yx = x − y
) y sin x + x sin y =
y = cos t
x = a cos t,
Fx cos(x + y) − yxy− =− Fy cos(x + y) − xy ln x
x + y + xy − x + Fx − =− Fy (,) + xy + x − + y
& %D y T"& %De C b < a 4 + D!3 x & %D y M
= xy
+ i: =+ D!3 ( , ) @;N x & %D + < x + xy + yx = x − y =
M Tx
−
) x = sin t,
2 N
+ i: =+ D!3 + < F (x, y) = sin(x + y) − xy =
cos t cos(t)
x + − y Fx y − x =− = Fy + y − xy y − xy
x & %D y M Tsin(x + y)
24 ^
+ i: =+ D!3 x & %D y + < F (x, y) = x + y − xy =
y = −
=
2
+ y = xy
^&& T%! !+H T]KN U& P $ A7S" ^&& < limt→t x(t) = x(t ) = x
== =
n M )
dy dx x=x
6F
=
lim
x→x
f (x) − f (x ) y(t) − y(t ) = lim t→t x − x x(t) − x(t )
O4 5# <LM*N
KL #4 7G $ M*N
P ^+$ L %! : T^&& =S _
V T(ex ) = ex 8 & B &
A x+a
24 ^ Tga(x) := x + a S =V+G& M V+ & ga (x)
=
ga (x)
=
ga(n+) (x)
=
(− )n (x + a)−(n+)
=
(− )n+ (x + a)−(n+
V T(ax ) = ax ln a 8 & B &
f
G d Ty = sin x 4 π , = cos x = sin x +
y
)
y
=
g (x) −
g (x) +
π = − sin x = sin(x + π) = sin x +
(x + )
− (x + )−(n+) +
(x + )−(n+)
y (n)
= =
2# N
dy (n−) = = dx
^&& Ty = − x y
x y
− y − x
− y − x
<
− y)
y
=
(n)
x
=
− , x
=
y (n−) =
=
(− )n− (n − )!( − n)
xn
=
(− )n− (n − )!(n − )
=
(− )n− (n − )! xn
xn
(− )n− (n − )! xn−
f (x) =
2+ N
x(x + )(x + )(x + )(x + )
XX
= x(x + )(x + )(x + )(x + ) B A C D E = + + + + x x+ x+ x+ x+
T d %!& 2DC . ! < ^ :S } |( L mH + < / d %!& 2DC < T T T C < D = − TC = TB = − TA = V+S / O& < N ^ %! : =E = : & @! H . & y = f (x) {+ ^ & < T
cos t − t sin t dy = dx sin t + t cos t
^&& dy = dx
=
2 N
=+ D!3 _ O& < %! %.! & p ^ & = V+ i: T^&& =w" B &x V+
2% N
=y V+ B p ^ & =
y
, x
U& n @D M
N y & %! :
%&7; Ty = t cos t < x = t sin t 4
y =
y
dy (n−) dt dx dt
x − y − y − x (x − y )(y − x) − (yy − )(x − (y − x)
=V+P / −
=
== =
=y %&7; Tx + y = xy + + i: V+ B p ^ & =
y
y
−(n+)
G d Ty = ln x 4
−(n+)
+ (x + )
d dy = dx dx
=
(n) g (x)
− g (x) + = (− )n n! x−(n+) −
π y (n−) = sin x + (n − ) π π = sin x + n = cos x + (n − )
y (n)
g (x)
2 N
== =
(x)
2 N
(ax )(n) = ax (ln a)n
+ (n)
(ex )(n) = ex
(x + a)− = −(x + a)− ,
−(x + a)− = (x + a)− ,
== =
2
dy dt dx dt
6I
KL #4 7G $ M*N
< u = e x i: & Ty
y
( )
=e
x
cos x
O4 5# <LM*N
2 N
4 V Tv = cos x
) = (e x )(k) (cos x)(−k) k k= = (e x )() (cos x)() + (e x )() (cos x)() + (e x )( ) (cos x)() + (e x )() (cos x)( ) + (e x )() (cos x)() + (e x )() (cos x)()
=
sin t + t cos t
4
v(x) u(x)
(n)
(vu)
) y=
√ x, n =
x , n= −x
)
y=
)
y = sin x ln x, n =
ex , n= x
)
y=
)
y = x sin x, n =
)
cos(x) y= √ , n= − x
)
y
y=
ax + b cx + d
)
y= √
)
y = sin(ax) cos(ax)
) y = (x + x)e−x
)
y=
= f (x)
)
n ) n (k) (n−k) (vu) = u v k k= n ) n (k+) (n−k) u = v + u(k) v (n−k+) k k= n n ) n (k+) ((n+)−(k+)) ) n (k) ((n+)−k) = v + u u v k k k=
=
= uv (n+) +
=
n=
)
sin(x + y) + cos(x − y) − xy,
n=
)
x = a(t − sin t), y = a( − cos t), n =
)
x = sin t, y = cos t,
n=
)
x = arcsin t, y = arccos(t ),
n=
y ()
2,
Q< T B< f (n)() + %&E %+ B x
n
sin ( /x)
x = x=
n+ ) k=
n+ k
n k−
k=
n u(k) v ((n+)−k) + k
u(k) v (n+−k)
i: & Ty = x ln x 4
n=
y = xy + y x − x + y ,
f (x) =
n+ ) k=
U& n @D M TL L ' P
n ) n n (k) ((n+)−k) (k) ((n+)−k) + u v u v k− k
2
)
f (n+) ()
k=
n+ ) k=
x(x − )
xy + x y + x − y,
u(k) v (n−k)
(n+)
− x
y = x sin x
k
fkD/ n = DZL & V8 =V+ ! n & DZN ! L A7S"
G d TV+ i: %! n & V8 S =%! " 2DE
+ D!3 n @D L M TL L ' P )
=
n ) n k=
+(
n @D M TL L ' P
−( cos t − t sin t)(cos t − t sin t) (sin t + t cos t)
H5;[ ) /&
= ( )(e x )(− sin x) + ()(e x )(cos x)
=
×
cos t − t sin t sin t + t cos t (− sin t − t cos t)(sin t + t cos t)
2"/+ +/V <= . % " N" n + >%Q
)(e x )(sin x) + ( )(e x )(− cos x) +()( e x )(− sin x) + ( )(e x )(cos x) − e x sin x − e x cos x
d sin t + t cos t dt
=
S S
V Tv = ln x < u = x
) )() (ln x)(−k) (x k k= )() (ln x)() + )() (ln x)() = (x (x () () ( ) + (x ) (ln x) + (x ) (ln x)() )() (ln x)() + (x − = ( )(x ) + ()(x ) x x − +()(x) + ()() x x
=
+( )()(ln x) =
61
2
=%! . P& <
x
?#*PG QP
KL #4 7G $ M*N
'8QK" ' 4 x
< "D B f (x )
# f (x) =
)
"!6
− <x<
⇒
⎪ ⎩ <x − <x
⇒
⇒
<
⎪ ⎩
<x
−
(x ln x)
= n! ln x +
n ) k=
(n) x +
(− )n /x e , xn+
=
(x = ) ,
k
(x > )
(− )n n! (x + )(n+)/
< %! U& ' y = f (x) + i: y = f (x) U& V+hS 4 =x ∈ Df " %: $ δ %De C %! x = x f (x) ≤ V+"& " T(x − δ; x + δ) x P DZL &
y = f (x) U& V+hS 4 T& 24 & =f (x ) $ δ %De C %! x = x V+"& " T(x − δ; x + δ) x P DZL & " %: ._ z 5 & @.7 =f (x ) ≤ f (x) =V& 8& y.++
F0S
(x − )
)<"
)<" F0C
− − = x (x − ) > > = − =f
=
V7C ,G < + P& ^ . L 8 =%! L! +& @Q@ < @Q@ TL<
T;N < ^+& P ,j P+ . ^+& L Tfke = ^ ="& / d ,X S + ,D &
+a ' U& '. & Q@ ^ L ! W(& =V+ 5Q; .
^&& f (x)
+ %&E L L ' P
<!(NF ON
DZL & L T%! y = f (x) U& D .++ ' x = w V x ∈ − ; + P <x< ⇒
(n)
S S
2
⇒ x (x − ) ≤ = f ()
⎧ ⎪ ⎨ x−
(n)
n
x = x=
Tf (x) = f (x) & : < LO
" +P =f (x) = Aex A %&E C L & %! d
x− < x <
⎧ ⎪ ⎨ x<
xn− e/x
%!
× sin{(n + )arccot x}
2
)
)
U& 5 & f (x) =
" T%Q ^ =+G& p @+A/ & B & mH =%! x(x− ) = < x − x = 3&
N y = f (x) U& Q. D TO& 24 ^ = P x = < x = T%! y = f (x) U& D ._ ' x = w[Q V x ∈ (− ; ) P DZL & L f (x) = x − x
e−/x
@;N V+hS y = f (x) U& ="& 4 & && B< 24
∈ R
2_
]KN P(Q @D P L L U& +P
< %! LO
" ' f (x ) =
" " B
" ^ ;N %! ^8. 5 ^ & =%+ :
! ="D D @;N ' Q< r4 y = f (x) M S %! ^ V8 ^ L
G d T"& 4 && < " B< < "D B x = x
F < !
=
2 N
" T%Q ^ =+G& p f (x) = x U& U& 3& @;N ^&& T%! x = 5 & f (x) = @;N ' %! ^8. T"& x = p
y =
S
x = x
6J
./$' &/K
(G .I[ \W
< "& D x = x f (x) =f (x ) = G d T"& ]KN
?#*PG QP
KL #4 7G $ M*N
T"& |
G d ._ @;N ' x = x G d Tf (n)(x ) < S w[Q =%! y = f (x) U&
U& @;N ' B< ?+P & ;N ^ ="& _+ d L T%+ x < ⇒ x < ⇒ f (x) < f () x > ⇒ x > ⇒ f (x) > f ()
U& .++ @;N ' x = x G d Tf (n)(x ) > S w =%! y = f (x) f (x)
=%+ :
" ' f (x) =
" %&E ^
2
S ./$' &/K (G 2> ' \W < "& ]KN x = x @;N L G.P ' y = f (x) G.P y = f (x) %fC @N & G d Tf (x ) = V x
+ x − x + i: f (x) =
" L T^&& =f (x) = − x 24 ^ U& ^ 3& @;N TmH =x = S + %Q ^ T =%! x = /
y =
=
x<
⇒ f (x) =
− x >
−
=
x>
⇒ f (x) =
− x <
−
=
U& L N & ._ @;N ' x
8 + @;N ' x %+ %! ._ %! .++ %+
T^&& =%! f (x) < %! : C n ∈ R + i: +x+
x
+ ···+
&/K
x = x
xn− − ex (n − )!
+x+
x
+ ··· +
(G
2> '
\W
!
@;N L G.P ' y = f (x) S ./$' < T"& n @D M f (x ) = f (x ) = · · · = f (n−) (x ) =
+l @;N ' x T"& : n S G d Tf (n) (x ) = < f (n) (x) %fC @N & T"& |
24 ^ fn (x) =
%Q [Q |
=
2 N
fn (x) =
f (x) %fC f (x) %fC x > x DZL & x < x DZL & + + − + + − − −
xn− − ex = fn− (x) (n − )!
%fC %fC 8 + f (n) (x) f (n) (x) %Q @;N ' x x > x DZL & x < x DZL & %+ + + [Q fn (x) = fn (x) = · · · = fn(n−) (x) = , fn(n) (x) = −ex %! ._ − + %! .++ + − | (n) x = G.P y = fn (x) %fC " p f %+ − − x = @;N TF=9=9 @+A/ M&; T^&& =%! wx %&E ./$' &/K (G 2> ' \W & " =%+ y = f (x) U& T"& x = x < @D M y = f (x) U& S 24 ^ Tf (x ) = < f (x ) = ._ @;N ' x = x G d Tf (x ) < S w[Q 24 ^ =f (x) = xe−x + i: =%! y = f (x) U& TmH =x = ]Q < e−x − xe−x = + Tf (x) = x = L %! 2DC y = f (x) U& Q. U& .++ @;N ' x = x G d Tf (x ) > S w 24 ^ T =%! y = f (x) %Q ^ T =%! d @ ' x =
2 N
f ( ) = {−e−x + xe−x }x= = −e− <
U& L
e
−
N & ._ @;N '
x =
&/K
(G
2> '
n @D M
\W
&
U& S ./$' f (x ) = f (x ) = · · · = f (x ) = T"& x = x T"& : C n S 24 ^ Tf (n)(x ) =
T^&&
=%! y = f (x)
F)
y = f (x) (n−)
?#*PG QP
KL #4 7G $ M*N
y = f (x) .++ f (x )
< %! I & y = f (x) .++ @;N &N x S ^ = I & = M7; wD
fn (x) =
2
fn (x)
e−x
xn− xn − n! (n − )!
e−x
U& ._ ' x = G d Tn = S T^&& f () = −e− < < f () = f () = L T%! y = f (x) = U& +l @;N ' x = G d Tn = S =%! y = f (x) U& ._ @;N ' x = G d Tn = S f () = f () = f () = f () () = L T%! y = f (x) n N ! & {+ ^+.P & < f () () = −e− < < =. 3&
XX
U& @7 & @+A/ & B V+ .C L \< & I = [a; b] ⊆ Df @L& & =%! !+H [a; b] & y = f (x) d V+ M+N3 w[Q =V+P T& ^+$ S XN < !& (a; b) & y = f (x) ]KN w 4 && < B M < B< M d =V+ ( w 3&
N x =%! d %!& 3&
N y = f (x) U& N w| =V+ D!3 wx @7 N & d T D!3 f (b) < f (a) N w ._ ^ S_& T N w|x @7 d %!& =V+ fC I & y = f (x) U& .++ ^ 8$ <
L U& L ' P ) f (x) = (x − )
2
+&+&
f (x) = (x − ) √ ) f (x) = x ln x
f (x) = (x + ) e−x
)
f (x) =
)
f (x) = |x|e−|x−|
)
f (x) = x(x − ) (x − )
)
f (x) = cos x +
x − x + x + x +
#
)
)
)
< f (x) = x + i: !+H [− ; ] & y = f (x) U& %! ^"< =I = [− ; ]
" @Q@ mH ="& ]KN (− ; ) & < < L d wQ. x 3&
N < %! B 4 S ?+P f (x) = x ln T =wf (x) = T5x T = I & 3& @;N ?+P y = f (x) T+ =".
xn n!
xn− xn xn− − − e−x = (n − )! (n − )! n! xn− xn xn− xn− () − − − e−x fn (x) = n! (n − )! (n − )! (n − )!
Y:< ./$' $ 73 ) /E
=%!
+ ··· +
fn (x)
< %! U& y = f (x) + i: ^ =%! !+H [a; b] & y = f (x) < I = [a; b] ⊆ Df ="& B I & y = f (x) .++ < ._ T24 ' 8 < P b < a
N I & y = f (x) P ="& (a; b) y = f (x) 3& @;N
& y = f (x) ._ T^&& =f () = < f (−
=
2 N
I
x
2 N
n
24 ^ I = (; ] < f (x) = + i: x I & y = f (x) < %! I & y = f (x) .++ @;N ' x = M7; ._ I & y = f (x) ="& f (x ) = &&
y = f (x)
+x+
=%! − x e−x = 5 & f (x) =
" 24 ^ n! ="& p U& 3& @; x = +
_+ < f (x) = sin x + i: π y = ._ @;N ' x = 24 ^ I = [; π] π = & && I & y = f (x) ._ =%! I & f (x)
&
+ i:
)
f (x) = ex sin x
cos(x)
f (x) = xm ( − x)n ,
; n, m ∈ N
U& y = f (x) + i: Y:< ./$' P DZL & " %: $ x ∈ I S =I ⊆ Df < %! @;N ' x " S G d Tf (x) ≤ f (x ) x ∈ I y = f (x) ._ f (x ) < %! I & y = f (x) ._ & " %: $ x ∈ I S T& 2j& =V+ I & ' x " S G d Tf (x ) ≤ f (x) x ∈ I P DZL
)=
&& d .++ < && F
KL #4 7G $ M*N
RG $ S8#O T"$ 7 <CD '
PF # Q7!L R # 6 9@A
2 N
=I = [− ; ] < f (x) = |x − x + | + i: @ !+H U& < {+ L T%! !+H y = f (x) U& @Q@ TmH ="& x → |x| < x → x − x + x P L& T =%! B I & y = f (x) < f (x) = (x− )sgn(x − x+ ) V Tx − x+ = wx = < x = T5x x − x+ = x P L& x − = + Tf (x) =
%
@ & @L& & y = f (x) U& S ) ^ =f (a) = f (b) < "& ]KN (a; b) @L& & T !+H =f (c) = B< c ∈ (a; b) ' / 24
[a; b]
,< @+A/ !P +D5 w[Q >=9 8" R SO @+A/ !P +D5 w
`b)-!
V+S p %Q ! =f (x ) > f (a) B< x ∈ (a; b) ' /O w[Q =f (x ) < f (a) B< x ∈ (a; b) ' /O w =f (x ) = f (a) x ∈ (a; b) P DZL & w|
U& T L ' P ! +&+& I @L& & y = f (x) ) f (x) = x − x + ,
T%! !+H [a; b] & y = f (x) $ T ! P y = f (x) @Q@ w =I=>@+A/ & M&;x T^&& y = f (x) ._ T,< %Q =%! B [a; b] & TmH =P (a; b) L& @L& < %! S_& f (a) L [a; b] & & B< c ∈ (a; b) ' w >=9=9 @+A/ M&;x ="& w[Qx %Q +D" wx %Q =f (c) = d DZL
N . d M ^&& < %! %&E U& w|x %Q 2 =%! 4 (a; b)
)
f (x) = x +
)
f (x) =
)
f (x) = x (x − ) ,
x
,
I = [−; I=
]
− x,
;
I = [− ; ] I = [− ; ]
@D!3 \< +S8& & L < L ' P + %&E T{! L& & {! 5& M7;
G d T ≤ x ≤ < p−
S T,< @+A/ M&; 2456 ; Tf (a) = f (b) S _+ < "& ]KN (a; b) & < !+H [a; b] & 3 & c. s B< c ∈ (a; b) ;N G d & =%! P x 3 L (c, f (c)) @;N y = f (x) U& =" B [Q`>=9 8" y = f (x)
S w6
≤ xp + ( − x)p ≤
G d T ≤mx n≤ < < m, n S wF
x (a − x) ≤ m
n
m n am+n (m + n)m+n
=|a sin x + b cos x| ≤ a + b b P < a P DZL & wI x + = ≤ ≤ x P DZL & w1 x +x+
2
& f (x) U& & ,< @+A/ =+ M+N3 [; ] & x − x @;& & y = f (x) mH T%! 7.B $ y = f (x) $ = %! ^"<
._ ad
= bc
& f (x)
=
ax + b cx + d
+P wJ =.++ <
+ ^++5 X x + px + q q < p { w ) ="& " x = @;N 6 && .++ > S @;N f (x) = −x/x xx ≤ S +P w < f (x) %fC Q T .++ x = =%! 8 x = vX F0
RG $ S8#O T"$ 7 <CD '
KL #4 7G $ M*N
2 N
' f (x) = x + x − U& + %&E
2 N
< a = − DZL & f (x) = − x U& V T− ≤ x ≤ P DZL & T^ B< & Q< " 4 ,< @+A/ V8 & {7; ^ Pg / =f (x) = -%+$ Q< T%! !+H [− ; ] & y = f (x) %! ^"< = @+A/ s" mH = B< x = f (x) = − x−/ =%! A T5 = + /& ,<
f (x) = (x − )(x − x + )
= P N+N G.P < < ,< @D 2N 5& S +P w ) W @;N < P ^+& G d T"& !+H =%! [;C @;N ' /O @ & @L& & y = f (x) U& S ]-@[ 24 ^ T"& ]KN (a; b) L& @L& & < !+H [a; b] B< c ∈ (a; b) ' /
= < %! wR &x !+H y = f (x) TOk< =
f ()f ( ) = (− )() = − <
f (b) − f (b) = f (c)(b − a)
Tx ∈ [a; b] DZL & TV+ i:
b =
U& M P + %&E wJ
^ = ' /O [; ] @L& y = f (x) ]Q Tf (a) = f (b) = < a, b ∈ R S $ T"& & j3 =f (c) = B< c ∈ (a, b) T,< @+A/ && G d =%+ ^8. c + = T5
`b)-!
g(x) = (b − a)f (x) − x(f (b) − f (a))
]KN (a; b) & < !+H [a; b] & y = g(x) 24 ^ @+A/ && T]Q g(a) = g(b) = bf (a) − af (b)
= B ' (;
g (x) = (a − b)f (x) − (f (b) − f (a))
d L & B< c ∈ (a; b) T^&&
) @L&
f (x) = x + x − x −
& ,< @+A/ ! w0 =+ M+N3 [− ; ] @L& <
@L& <
& ,< @+A/ ! w> π π =+ M+N3 ;
f (x) = ln(sin x)
f (b) − f (a) = f (c)(b − a)
@+A/ s" [− ; ] @L& < f (x) = |x| U& d w9 -$ - P ,<
=%! . P& <
2
xex = +P w
f (x) = + xm (x − )n U& M @D!3 <& w6
@L& /O U& ^ M + %&E Tn, m ∈ N d = ' (; )
S TR SO @+A/ && 2456 ; ! c ∈ ' G d T"& ]KN (a; b) & < !+H [a; b] & f (x) y = f (x) . & c. s {+" B< (a; b) (b, f (b)) < (a, f (a))
N ^+& 4< s & && x = c @;N =" B `>=9 8" & ="& y =
;N P P M y = f (x) U& + i: wF =x→a+ lim f (x) = lim f (x) ^+t.P < %! (a; b) @L& L x→b− B< c ∈ (a; b) 24 ^ + %&E =f (c) =
2
" < f (x) = x + x & R SO @+A/ =V+ M+N3 [− ; ] @L& !+H [− ; ] & mH T%! 7.B $ y = f (x) $ /& R SO @+A/ s" T5 =%! ]KN (− ; ) & < "& " B< c ∈ (− ; ) & T+ ="& T =f (c) = T5 f () − f (− ) = f (c)( − (− ))
@& c = =c = ± ^&& Tf (c) = c + = / (− ; )
"!e( &!'P0U CE ! n P . + %&E wI "& (−
; ) @L& j3 < N+N d Pn (x) = n {(x − )n } n! dxn
&!'P0U CE ! n
P . + %&E w1∗ "& N+N n x
Hn (x) = (− ) e
F>
dn −x e dxn
3 )E
KL #4 7G $ M*N
RG $ S8#O T"$ 7 <CD '
2 N
=| arctan a − arctan b| ≤ |a − b| b < a P L & w6 =
b−a < ln b
b b−a < a a
G d < b < a S wF
G d < β ≤ α < α−β α−β ≤ tan α − tan β ≤ cos β cos α f (x) =
√ x
c. V+& y = x 3 & ;N B = (, ) < A = (− , − )
N ^+& 4< < & ;N d ="& L A @;N ,X " B %! : Tp ^ & && mH =%! x = & B @;N ,X < x = − &
@L& < f (x) = x U& & R SO @+A/ %! : TF=6=9 B< c ∈ (− ; ) T5 =V+ ! [− ; ] Tf (c) = + =f () − f (− ) = f (c)( − (− )) $ < x = ± ^&& =f (c) = c V+ Q 2DC p @;N mH T / (− ; ) @L& c = =( , f ( )) = ( , ) L %!
π
S wI
U& & R SO @+A/ $ +P Y+ w1 =%+ Y+34 [− ; ] @L& <
S U& d wJ S - r4 R SO @+A/ s"
[; ] @L& < f (x) =
≤x<
x
/x
≤x
x, y ∈ R P L& V+ %&E
& y = g(x) < y = f (x) U& S 2W/' DZL & T"& ]KN (a; b) L& @L& & T !+H [a; b] @ & @L& Tg(a) = g(b) < (f (x)) + (g (x)) = x ∈ (a; b) P B< c ∈ (a; b) ' 24 ^ f (b) − f (a) f (c) = g (c) g(b) − g(a)
V+ i: %! :
| sin x − sin y| ≤ |x − y|
C < a < b < f (x) = sin x V+ i: Tp ^ & [a; b] @L& < y = f (x) U& & R SO @+A/ L ="& (Q T%! N f (x) = sin x U& $ =V+ ! ]KN R & f (x) = cos x $ < %! !+H R & + /& p @ < U& & R SO @+A/ s" T]Q =%! B< c ∈ (a; b) T^&& =%!
`b)-!
h(x) = (g(b) − g(a))f (x) − (f (b) − f (a))g(x)
sin b − sin a = (cos c)(b − a)
(a; b) L& @L& & < !+H [a; b] @ & @L& & y = h(x) U&
T:X L =%:S M7; / ;& ^+:X L , : | sin b − sin a| ≤ |b − a| + < | cos c| ≤ =b = y < a = x " i: %!
=h(a) = h(b) = g(b)f (a) − g(a)f (b)
2
=%! . P& <
U& & " @+A/ # =+ M+N3 [− ; ] @ & @L& < g(x) = x − < [− ; ] & y = g(x) < y = f (x) U& %! ^"< = < g (x) = Tf (x) = x T ]KN (− ; ) & !+H "& c ∈ (− ; ) & mH =g() − g(− ) = = f( =c = = c 5 f (c) = ) − f (− )
g (c) g() − g(− ) f (x) = x
π
≤ x ≤
M+N3
[ ; e]
@L& <
[; ]
@L& < f (x)
f (x) = ln x
= arcsin x
& R SO @+A/ w =+
U& & R SO @+A/ w0 =+ M+N3 U& & R SO @+A/ w>
f (x) =
( − x )/ /x
≤x≤ <x
S S
=+ M+N3 [; ] @L& < L ! & < L ' P T1 9 2. + %&E R SO @+A/
2 N
P DZL & +P √ = x ≤ sin x π Tf (x) = x V+ i: T{Q; ^ 2DE & = y = g(x) Ty = f (x) " @+A/ L < g(x) = sin x
V
2 N
py
F9
p−
G d T < p < < y < x S w9
(x − y) ≤ x − y p ≤ pxp− (x − y) p
345 U1#5 7 M*N . / 0*1 ,
KL #4 7G $ M*N
C & =R = (−∞; +∞) < [a; +∞) T(a; +∞) T(−∞; b] %! 54 [a; b] & y = f (x) /< < /< ,e ="& 54 (a; b)
N . y = f (x)
c
d & f (x) = x − x U& P74: ! =V+ ( %! Q<_ < 54 f (x) %fC %! : T%! ]KN y = f (x) $ & Tf (x) = − x T =V+ !& −∞;
@L& & y = f (x) T^&& =%! ; +∞ & < %De
" B =%! Q<_ ; +∞ @L& & < 54 −∞; =54 < %! Q<_ x = @;N y = f (x)
√
≤
@L& < g(x) =
x
Tf (x) = x U& & " @+A/ w =+ M+N3 [ ; ] @ &
=arctan x ≤ arcsin x G d T ≤ x ≤ S + %&E w0 < f (x) = x U& & " @+A/ $ +P Y+ w> -%+ B &/ [− ; ] @ & @L& < g(x) = x
234 S 0!4 6 J(K - ./(0
*
=%! U& ' y + f (x) + i: ! %! 54 x = x @;N y = f (x) U& V+hS 4 x < x < x + P DZL " %: $ >
" x − < x < x P DZL & < f (x ) < f (x) V+"& " U& V+hS 4 T& 2j& =f (x) < f (x ) V+"& %: $ > %! Q<_ x = x @;N y = f (x) f (x ) > f (x) V+"& " x < x < x + P DZL & " =f (x) > f (x ) V+"& " x − < x < x P DZL & <
< 5N @;N w T3 @;N w[Q 9=9 8" ; @;N w| =V+&+& VP L ! ^ +( & "< & y = f (x) U& V+hS 4 ! ! 54 x = x @;N d M %! x = x @;N V+hS x = x @;N d 4 < T"& 4 T,5 +& & ="& Q<_ x = x d M 3 . & c. V+hS 5N x = x y = f (x) < " U/< 3 L x = x @;N y = f (x) U& s V+hS 3 x = x @;N y = f (x) 4 3 O& x = x @;N y = f (x) U& . & c. x = x @;N y = f (x) V+hS 4 =S U/< && ! s & ;N d L G.P ' %! ="& && d & c. s & . TG +& & ="&
K
@;N y = f (x) U& + i: !
G d Tf (x ) > S T24 ^ =%! ]KN x Tf (x) < S < %! 54 x = x @;N y = f (x) =%! Q<_ x = x @;N y = f (x) G d x =
@L& & y = f (x) U& + i: ! DZL & S T24 ^ =%! ]KN (a; b) @L& & < !+H [a; b] & y = f (x) U& G d Tf (x) > x ∈ (a; b) P
G d Tf (x) < x ∈ (a; b) P DZL & S < %! 54 ="& Q<_ [a; b] & y = f (x) U& [a; b]
QZ
[a; b]
mH =a
< cos a < < c < a < π ^&& T < c < a Q< π " i: %! : = a < √ + =cos c sin a =x = a
;N ' y = f (x) U& M %fC 8 ^ & Q & %D M+/ 8" T%! $ & VP LP = V+! TV+ " fX d G !+H %Q ! L 8 G d Tf (x ) < S L = B< =P %! ^8. 9=9 8"
46
π
TV+ ! [; a] @L& < %P f (c) a − c f (a) − f () = = = sin a − g(a) − g() g (c) cos c
∈ (; a)
TO& @+A/ (a; b) L& @L& & TW&& ! T(−∞; b) T[a; b) T(a; b] / G @L& P
@L& & y = f (x) U& + i: " ! 24 ^ ="& ]KN (a; b) @L& & < !+H F6
345 U1#5 7 M*N . / 0*1 ,
KL #4 7G $ M*N
" 4 x = x L G.P ' y = f (x) S w L G.P ' y = f (x) G d T"& %De y = f (x) < =%! 54 ; x = x " 4 x = x L G.P ' y = f (x) S w} L G.P ' y = f (x) G d T"& y = f (x) < =" B 6=9 8" & =%! Q<_ ; x = x
G d Tf (x)
G d Tf (x)
= x + x
U&
2
f (x)
!
2 N
=V+ V+! f (x) = x − U& ?+P y = f (x) < Df = R − {} " B + =f (x) = x + +
lim {f (x) − (x − )} = lim
x→∞
x→∞
x−
=
="& y = f (x) U& . { y = x + T5 f (x)
= =
x
=
x
U& + ( ! =%! 5N
N < 3
N
{7; & B & FG/ 2O/ ) >) # ! @;N < @D M y = f (x) U& S T ]Qr: %! ^8. L 2O L 8 < ' G d T"& x = x P y = f (x) G d Tf (x ) > < f (x ) > S w[Q =%! 5N < 54 x = x y = f (x) G d Tf (x ) < < f (x ) > S w =%! 3 < 54 x = x y = f (x) G d Tf (x ) = < f (x ) > S w =%! x = x 54 [;C @;N y = f (x) G d Tf (x ) > < f (x ) < S w =%! 5N < Q<_ x = x y = f (x) G d Tf (x ) < < f (x ) < S wP =%! 3 < Q<_ x = x y = f (x) G d Tf (x ) = < f (x ) < S w< =%! x = x Q<_ [;C @;N y = f (x) G d Tf (x ) > < f (x ) = S wL =%! x = x 5 .++ y = f (x) G d Tf (x ) < < f (x ) = S wn =%! x = x 5 ._ G & U& 7 : & B< _+ G Z %Q ! T" 4 x = x L G.P ' y = f (x) S w
=%! %&E x = x L G.P ' y = f (x) G d
U& . w[Q F=9 8" f (x) = xx−+ U& . w x +
mH =f (x) =
=V+ %! 2DC y = f (x) @ < Df = R " B ]Q < x(x + ) = + Tx + x = L Tx = L mH =%! %De .P f (x) = x + T
f (x) = x + x
<
P DZL & S w[Q =%! 5N [a; b] & y = f (x) ∈ (a; b) P DZL & S w =%! 3 [a; b] & y = f (x)
x ∈ (a; b)
DZL & < "& !+H [a; b] & y = f (x) S ! T%! %&E [a; b] & y = f (x) G d =f (x) = Tx ∈ (a; b) P =f (x) = c Tx ∈ [a; b] P DZL & B< c 5 Tx ∈ (a; b) P DZL & < "& !+H [a; b] & y = f (x) S < c 5 T%! ; [a; b] & y = f (x) G d =f (x) = =f (x) = cx + d Tx ∈ [a; b] P DZL & B< d
U& 5 : 6=9 8" V! f (x)
>
(x)(x − ) − ( )(x + ) x − x − = (x − ) (x − ) √ √ (x − ( + ))(x − ( − )) (x − )
FF
@$P8 $ L 5 E F 7 M*N . / 0*1 2
KL #4 7G $ M*N
^ L | < %De
=. V+! I=9 8" T^&& <
f (x)
−
! & L U& L ' P . ! + V+! TO& " n" \< L ) f (x) = x − x ,
+x −x
)
x− f (x) = , x +
f (x) =
,
)
f (x) =
)
f (x) = x − tan x,
)
f (x) = e x − x ,
)
f (x) = sin x +
x
e , +x
)
f (x) =
)
f (x) = xx ,
)
x
) f (x) = arcsin
+x
f (x) =
< %De (
; ∞)
& y = f (x) TmH V .
√
+
− + √ − − \ K' ( − ) −∞ " $ +∞
√
+∞ + √ + ( + ) x +
2 N
⎡
sin(x)
x≥ ⎢ −x ≥ ⇔ ⎢ ⎣ x≤ −x ≤ ⎡ x≥ ⎢ |x| ≤ ≤x≤ ⎢ ⇔ ⎣ ⇔ x≤− x≤ |x| ≥
x( − x ) ≥ ,
x , ( + x)( − x )
.
$ TDf = (−∞; − ] ∪ [; ] ^&& T$ @ !+H x = − < x = mH T%! N
f (x) = ( + x)/x cos(x), ) f (x) = (x − )(x − )(x − ),
)
1
f (x)
=
=#N7
f (x)
=
# M4 BC 6 J(K - ./(0
2
−x
+
−
−x
√
√
x − x − (x( − x )) √ + ⇔x =
√
+ x = ± + T^&& {+ & TU& ^ V+! & V
N mH =%! ,D/ L DC −
P L & + %&E " =arcsin x + arccos x = π/ [− ; ] f (x) = arcsin x + arccos x U& p ^ & = x ∈ (− ; ) P L & 24 ^ =V+S p
x = −
& =. 2DE M '. & +& P3 & 5& M S " ! %+4 ^ L p ^ =%! %&E p @L& & U& d T"& 4 L& '
& y = f (x) T+ =f (x) =
−
) &
=V+ V! f (x) = x( − x ) U& S < S x ∈ Df " B
) f (x) = x − x + ,
x ∈
^+& y = f (x) TmH ="& %De L&
=. V+! `F=9 8" ^&& <
cos x , cos(x)
)
√
x −∞ f (x) − f (x) + f (x) x +
U& . I=9 8"
+
(x − )
=%! (−∞;
f (x) = x( − x )/
<
(x − )(x − ) − (x − )(x − x − ) (x − )
= =
√
, " p f 2CfX ^ .P
+ ,
x −∞ − f (x) + f (x) − f (x)
=
FI
√
+
√
,
− ,
− −
−
√
√
− / − − +
− −
KL #4 7G $ M*N
@$P8 $ L 5 E F 7 M*N . / 0*1 2
2 N
P L & T^&& < f () = π/ =%! %&E (− ; ) @L&
" V8 /& =%! " 2DE V8 x ∈ (− ; ) =. N+N3 k.+N x = < x = − L & %&E cos x + sin x = ( + cos(x)) 3 =+
U& p ^ & =
=x− x < ln( +x) x > P DZL & + %&E p f (x) = ln( + x)− x+ x U& p ^ & = T24 ^ = < x V+ i: ^+t.P TV+S V Tx > $ f (x) =
−
+x
2 N
x +x
+x=
Tx > S mH =%! 54 [; +∞) & y = f (x) T^&& =%! p < .P Tf () < f (x) G d
G d T < y T < α < β S + %&E =(xα + yα )/α < (xβ + yβ )/β P(Q y < β Tα V+ i: T< ^ 2DE & = < ! < $ T
f (x) = cos x + sin x −
( + cos(x)) 24 ^ =V+S p R &
2 N
α
ln(xα + y α ) <
β
f (x)
f (x) >
xα
α
ln(xα + y α ) −
β
ln(xβ + y β )
^&& =f (x) =
xα xβ > β α +y x + yβ
xα− xα +y α
)
⇔
xα (xβ + y β ) > xβ (xα + y α )
⇔
xα y β > xβ y α y β−α > x y > ⇔ y>x x
⇔ β>α
⇔
f (y) = lim f (x) =
x→+∞
ln(y β ) − ln(y β ) = , β ln − > α β α
α
α
=
α
lim ln(xβ + y β )
lim ln(xα ) −
β
lim ln(xβ ) =
x→+∞
≤ f (x) ≤ ln
α
−
2
P DZL & + %&E " √ =%! /& x > − < x
x
V+ i: Tp ^ & = 24 ^ = < x <
="& i: T Q<_ ( ; +∞) @L& & y = f (x) U& ]Q < f (x) < ^&& 5 Tf (x) < f ( ) x > P DZL & + =%! √ √ = − < x − x + − <
V x > P DZL & T^&&
"
√ − −x x + f (x) = √ + = x x x √ √ < x x ]Q < < x 5 & < x
x→+∞
x→+∞
+ +− =
f (x)
x + cos(x) =
√ f (x) = − x + −
α
lim ln(x + y ) β
sin
x >
x→+∞
−
− sin(x) cos(x) + sin(x) =
U& & Q<_ < 54 @5Q; & +& < U& ( T G 74 8 =. 2DE =%! {!
x→+
lim f (x) =
=
cos x = sin x + ( − cos(x)) ) arccos − x = arctan x ≤ x +x ) arcsin x = +x ⎧ x ≤ − S ⎨ −π − arctan x arctan x − < x < S = ⎩ π − arctan x ≤ x S
Ty < x S < < f (x) G d T < x < y S T5 Z P%Q %! : mH =%! f (x) < G d lim f (x) < f (x) T lim f (x) V+G& p x→+∞ x→+
− sin x cos x(sin x − cos x) + sin(x)
)
xβ− xβ +y β
24 ^ 5 =%! xf (x) > 5 & −
=
+ 2DE L P3 L ' P
(x > )
ln(xβ + y β ),
− sin x cos x + cos x sin x + sin(x)
:X L =%! %&E R = (−∞; ∞) @L& & =" 2DE V8 < f () =
V+ [5 L U& T+Q ^+.P & f (x) =
=
β
= %&E P& ,< <
x
F1
x
@$P8 $ L 5 E F 7 M*N . / 0*1 2
KL #4 7G $ M*N
Tx Tx C n P < n ∈ N P DZL & TO& @+A/ M&; TmH V I @L& U/< xn < . . . ln
+ %&E
=ex > G d Tx > S w
x + x + · · · + xn ≥ n ln(x ) + ln(x ) + · · · + ln(xn ) ≥ n ≥ ln (x x · · · xn )/n
+
x
+ ··· +
xn
≥n
=
=
− /x − /x − · · · − /xn n
G d Tx = S w9
+ ln x ≤ x
G d T < x S wF
+ x ) x P DZL &
<e<
x
x P DZL & w1
< sin x < x G d T < x <
x
+
x+ +
x
> α(x − ) G d
T
wI
π
S wJ
G d T < x S w ) <x
<
√ √ √ n x − n a ≤ n x − a G d Tx > a >
< α S
w
∗
< n ∈ Z S w 0
wd < M & T5x U& & 3 L + B L @+A/ & =. ! < 2DE " < "& 3 I @L& & y = f (x) S
(Q C n P < n 5+DX C P DZL & G d T (Q n ∈ Z V x , x , · · · , xn ∈ I
=d %!& ] < n ^+:X & <
f (x ) + f (x ) + · · · + f (xn ) ≤f n
" "
< . . . Tx Tx < n > Tm, n ∈ N S + %&E w 24 ^ T"& P(Q %De C
x + x + · · · + xn n
E yS U&z '+!f L ) @34 {7; ^ 2DEx w=%! d ^+d +
C f < & <" 2
m m nm− (xm + x + · · · + xn ) ≥ (x + x + · · · + xn )
m
%&E Tx %De < N+N C n P < n
m m m− (xm ≥ (x + x + · · · + xn ) + x + · · · + xn ) n
m
, · · · , xn ∈ R < n ∈ N
=x − x
=xα −
x + x + · · · + xn /x + /x + · · · + /xn . ≥ n n
G d Tx , x
x
+
G d Tx > S w>
+ x ln x + +x ≥ +x
=
T^&&
xn
x+
=x arctan x ≥ ln(
(; +∞) @L& & y = U& T ^ 2DE & f (x) = G d T < x S 24 ^ =V+S p xn < = = = x Tx %De C DZL & ^&& =−x− < V ≥
)
=
− x
n − x +x +···+x n
(x −
G d Tx > S w0
=|x| ≥ | sin x| x P DZL & w6
x
)
=cosh x >
2 N
(x + x + · · · + xn )
=x > ln(x + =ln x >
! e & & T%! 54 x → ex U& 8 & B & < =S + ] < T^+:X Tx %De C n P < n ∈ N P DZL & + %&E xn < . . . Tx
"
∈ N
! "
P DZL & T5 =+
V xn < . . . Tx
√ n n x x · · · xn ≤ x + x + · · · + xn .
S + %&E w0
@L& & f (x) = ln x U& L T< ^ 2DE & M L T%! 3 f (x) =V+ ! (; +∞) %! I & d < I =
ex + ex + · · · + exn ≥ n e(x +x +···+xn )/n n ex + ex + · · · + exn ≥ n exp x +x +···+x n
f (x) = (f (x)) =
FJ
x
=
− x
?) #: <LK+4 $ < #4 7G P 7 M*N #4 7G I
KL #4 7G $ M*N
2 N
x
# 9!36F +N 6 J(K !36F
V+
3 +; + y = A+& a b % ^ +& < A+& P3 L d f
="& %.! U/< .C U7 & 3 V+ i: `1=9 8" T^&& =%! x && P x 3 & T%! ^ =y = ±b − x /a + =. V+! A(x) = x × & %! && 4 +; % T24 ^ T = ≤ x ≤ a V B _+ < b − x /a 24
− x
x + bx a a − x x ⇔ − = − a a √ a ⇔ x = ⇒x=a
A (x) = ⇔
b
−
x a
<' !D 9MT)3 =" ! 54 < & L +& M & =V+ h d L ! < Z . $ u ^ {Q/ = : 2CfX & L+ B Qe %! D h & T d & 24 L mH Th = "
2d
>) U7 & < U& 8" & N @5;/ '$ U& $ & & V+P =%! + ! ^ =V+ + L& < +" @D5B TU& ^ ! $ L =" e ] @D5B V V+P G$
B 5& U7 ,X V+ i: Tp ^ & `1=9 8" &x "& x && i< U& @"S $ L " V (x) = x × ( − && 4 @D5B V =w" B [Q mH = ≤ x ≤ V B ^+t.P =& P x) ^ & =V+ [; ] @L& & V (x) U& %! :
V+ D!3 V (x) p
=
8 & B & =%! ] @L& & U& ^+8 @;N
√ = ab TA() = V+S + A(a) = < A a x = DZL & %! ab && L& ^ A(x) N e
√ =P a /
V (x) = ( − x) − x( − x)
2 N
5" & < + ' O& k.+N & ! : d & C $ V+ & V+P =" _
%! 5 ^ & V (x) = T^&&
"
3 +; w
R R = l x +R
k C + TA(x)
≈
_+ < " %: $
/l =
/(x + R )
V (x) = ⇔
R
⇔
A(x) = k × × x +R x +R
=V+ A (x) =
≤ x
i: &
⇔ kR ⇔
−
x=
A(x)
H
+" @D5B w[Q A+&
− x = − x − x = x= x=
="& ] @L& U& ^ ^+8 @;N x = T+ N V ( ) < V () TV () N %! : ^&& && [; ] @L& & V (x) N e T@+ =V+
4 x = DZL & %! {58 ! V () = ="
U& %! : mH p ^ &
(x)(x + R )−/
I)
"*;L /D J
KL #4 7G $ M*N
_+ T+& ^8. @;N ^^+hH & UD S 5 =" B J=9 8" & =& P e d (&
d %C! {58 & (& ' %! vj wF & 7+ ) %C! V+ =%! {! |( < %! %C! F) %! %.+/ T%C! %C! 91) & Q& w%C! L N x G P |( . L C! $ =" |( . -& P ^ & ! L 7+
-& P N$ %C! P . + V! $ ! s P = ( , ) @;N L wI B 2j ( P3 < De 25;/ ="& ^ .
d < "< + < c : J=9 8"
d L H H < R @C/ 5" & X<( [+/ ' w1 5" = : [+/ ^ ^+G! Q7S ' =%! " & Td ^8. V ^ S_& "& & N$ Q7S ^ | D [+/ L TQ7S ^ @" <Xl W(& {D! -"
( EM . A
I
^++5 " & U& V %./ L S ^ =P & %Q 8 &
< T
P\< ^ =" ! D < L VP \< & "< !H <& h L 5+!< @ ! < P %<3 _+ " @+A/ L N; + , +HP h/ = P =%! 7 ^ !H T%! ∞ Z[ ! lim f (x) 9" : x→x g(x) ∞
√ f ( a) =
lim
f (x) g(x)
= =
lim
x→x
f (x)−f (x ) x−x x→x g(x)−g(x ) x−x
V
+& $ C < . 24 & 1 C w ="& ^8. N ^ 8$ d 2D58 . 8 d TS i< % & P+; U+.B L w0 =+ ^++5 %! s+3 ^ .
d @h/ +G& p hNQ 7e w> U7 ,X =%! V V T%! fAQ < N ^ . d % "& & N$ d @C/ -"& ^8.
f (x ) g (x )
∞ ∞
%Q
2
− gg(x) f (x) g(x) () (x) = lim = lim = lim x→x g(x) x→x x→x − f (x) f (x) f (x) g (x) f (x) g (x) × lim = lim = . lim x→x f (x) x→x g(x) x→x f (x)
%Q L w x 8 Y+ =
3 V ^ +& & ! TR 5" & w9 =+
& ! 0) ,X & Q & X<( [+/ ' w6 "& & N$
<( ^ =" ! -" 4 ^8. V ^ S_&
f (x) g (x)
^&& x→x =V . !
= lim
= √ > a
=
x x=√a
√
f (x) − f (x ) g(x) − g(x )
lim
a
5 =%! y = f (x) 5 .++ ' x = a mH = √ N / x = y = a DZL & p . √ =%! a && N ^ < "&
x→x
x
(x) /4 !4" <= . // lim fg (x) 4 1 @ " 4 4 " V %Q A7S" x→x
<
2 N
%De C < . N ^ .
=V+ ^++5 T%! a %&E && d A74 p U.B 4 U& =y = a/x ^&& Txy = a $ f (x) =
" 24 ^ =f (x) = x + a/x V+S √ x = ± a x = a + T%! − a/x = 5 & √ ^+8 @;N x = a mH T%! " i: x > $
="& 7 y
I
KL #4 7G $ M*N
ln(cos(ax)) , x→ ln(cos(bx)) x ) lim xx − ,
)
)
lim
)
ex − − x→ cos x + lim
x
−x−
x
−
xx − x x→+ ln x − x +
,
lim (tan x)tan(
x)
lim
)
x→+
x
7)5 CD V
x→π/
!z 5 & wPx . TL DC =a > < "& y, +HP \< L ,
,
( + x)/x /x ( + x)/x − e , ) lim x e x→ x→+ lim (a + x)(b + x)(c + x) − x , ) x→∞ # ) lim x + x + x +
)
ln( + x) P /( + x) = lim = x x→ xm − am P mxm− m lim n = lim = am−n n x→a x − a x→a nxn− n ax P ax ln a P ax (ln a)n P = +∞ lim n = lim = · · · = lim x→∞ x x→∞ nxn− x→∞ n! x VD %Q lim − D!3 & ln x x→ x − V+ .C L \< & T ∞ − ∞ lim
x→
lim
2 N
x→∞
−
x +x+
lim
$
×
x→
ln(ex + x) . x
x ln x − x + = lim ln x x→ (x − ) ln x ln x + x /x − x ln x P = lim = lim x→ ln x + (x − ) /x x→ x ln x + x −
x x−
P
−
= lim
6' 4 @A
U
x→
Tln x
ln =
···+
n!
f
e − , x→ sin x x − arctan x lim , x→ x /x arctan x lim , x x→ lim arccotx − , x x→ , lim x e/x −
) ) )
= f (x ) + f (x )(x − x )
)
(x )(x − x ) + O (x − x )
n
x→
P
= lim
sin x
x→
x − cos x sin x
− sin x × lim lim × lim x = x→ cos x x→ x x→
) lim
(n)
x→
x
) /: #
n
ln x
lim sin x ln x = lim
%!& L < L ' P N
3: y = f (x) 2+ 9" N" (n − ) + + 7%Q "" x = x ," <:? A<= . % " /4 f (x) 4
(n)
x→
= = ln = ^&&
x→
=%! " D × ∞ VD %Q &
& =f (x) = g(x) + O (x − x )n V+ %Q ^ =" ! _+ f (x) ≈ g(x) j . L U/
+ f (x )(x − x ) + · · ·
2+ N
lim xsin x
x→
x→
=
f (x)
ln = ln( lim xsin x ) = lim ln(xsin x ) = lim sin x ln x
< y = f (x) + i: # < S [5 x = x @;N G.P "& 5& x = x y = g(x) < y = f (x) V+hS 4 =n ∈ N f (x) − g(x) =x→x lim = P n @D & n
=
D!3 & V+ .C L \< & T G !+H +Q & mH T = lim xsin x V+ i: x→ V
y = g(x)
(x − x )
ln x + x x +
VD %Q &
" n; ,! ^ T P 7 ( U& - ! ! U& L +t+H U& & d ^ ! 7.B $ 8 & B & =DN 8" & / U& d V+ n; ,! ^ T P U& & x = x i< @;N G.P y = f (x) i< ^ & T%! ^+$ S -L {N n @D L 7.B $ ' -%! ^8. {N
ln x + x x
x→∞
− ln x
)
@ " I:%[ /0 \/ ]:+ I:" 4
lim
x→+
x , (− ln x)x
x ) lim x/ ln(e −) , x→+
I0
x − sin x , x→ x − arctan x ax − b x ) lim x x , x→ c − d
)
) ) ) ) )
lim
lim xn e−/x ,
x→
lim
x→
ln x
−
x ln x
,
lim x e/x ,
x→
lim (tan x)
x−π
x→π/ −
arctan x
lim
x→+
x
,
,
7)5 CD V
@;N
KL #4 7G $ M*N
VP @D f (x)
=
sin x
V" @D f (x) = ln
2+ N" n + /$+ " O K/ 6 " 7 #? " 7 I:" .x = 9" @Z x = x y = f (x) @Z G/! 3
U& ! @D 7+ s& w0 =
f (x) = xex
sin x x
U& Q ' s& w> =
2
U& $ @D 7+ s& # √ =+&+& x = f (x) = + x y = f (x) $ @D 2N Tp ^ & = V+ D!3 x =
U& Q ' s& w9 =
+ 2DE L < L ' P TQ ' s& '. &
f( ) =
xn ) ex = + x + + x + · · · + + O xn ! n! x x ) cos x = − + − · · · ! ! x n · · · + (− )n + O x n+ (n)! ) ( + x)m = + mx + m(m − ) x + · · · x
m(m − ) · · · (m − n + ) n x + O xn n! + x + x + · · · + xn + O xn
···+
)
)
−x
=
f ( )
ln( + x) = x −
x
+
f (x)
(sin x) − (−x) x x + − · · · ( − x + x − · · ·) x− ! ! x
x
x
=
x−
=
x + · · · − x + · · · ! x + Ox x − x + x − x −
!
+
!
− ··· − x +
!
(Q |
(x − ) +
−
(x − )
× − + (x − ) + (x − × ×
f () =
f () () = · · · = f (n) () =
f () =
f () () = · · · = f (n+) () =
f () =
f () () = · · · = f (n+ ) () =
f () () =
f () () = · · · = f (n+) () = −
− ···
sin x
)
=
+x+− x !
++
x x +− + ··· ! !
x x x + − + ··· ! ! ! x n+ · · · + (− )n +O x (n + )!
= x−
2 N
U& Q ' s& =
x=
^&&
· · · + x −
+
+
2 N
2
=
x=
f (x) = sin x U& (Q @D Q ' s& =
U& Q ' s& # sin x =+ D!3 VH @D x+ >= )=9 L w>x ,e < 9= )=9 w1x < w x ^. L = V+S + < ! =
=
+O (x − )
L & < ! d %!& 2CfX L =. ! 24 &
sin x x+
=
n
f (x) =
− / ( + x)
− ··· x + O xn · · · + (− )n− n
x=
= − − f ( ) = ( + x)−/ = x= ( + x)−/ = f () ( ) = x= − − f ( ) ( ) = ( + x)−/ =
x
=
( + x)/
n+
2
@;& & U& ! @D 7+ s& # =
+ x = ( + x )/
x−
I>
KL #4 7G $ M*N
P8#0
2
U& Q ' s& L ! &
lim
x→
cos x − e x
=
= # −
−
x
lim
=
x −
x
x
−
+
x
+
x→
V Te < cos x
+
x→ x
=
+
=
x
−x /
lim
−
#
x
+ O x
+ O x
x
=
+ +
x
−
x
+
− ···
− − n! −(n − ··· •
•
•
+
=
+ O(x )
x
x
−
+
x
··· ) x
•
lim
x→
x
+x+
x
× x− =
lim
x→
x
x
−
x
) lim
x→
) )
lim
x→
x
−
sin x
x
+
x
sin(sin x) − x x
+ O x
lim
+ x −
=+&+& f (x) = x
× $
+ O x
− x( + x) =
−=
x→
x ex −
n
+ O(x
n
)
x→
x
+ x
−x
−
f (x) =
f (x) = sin(sin x)
)
−x
) )
U& ! @D Q ' s& w> =+&+&
+ 2DE L DN DC L ' P x ≈
−
R
VP @D Q ' s& w
U& VP_+! @D Q ' s& w0 =+&+&
#
− (cos x)sin x x
lim
)
2 N
+ O x
)
n
! #
+ D!3 L < L ' P
+ O(x
− ···
(− )n (n − )! · · · + n− x (n − )!
lim
=
n
•
V Tex < sin x U& Q ' s& L ! & ex sin x − x( + x) = x→ x #
x
•
$
−
=
(
( /)( / − ) x + (x ) /)( / − )( / − ) (x ) + · · ·
(R + x) R +x −x − ≈ −x +x
ln ln( + x/
)
≈
x
x
+Q = ! < @D!3 7+ s& L =V d L %./ fkD/ %! L +A/
+ i: @;N y = f (x) U& V+hS 24 ^ T%! ]KN x = x @;N d + < %! ]H + x = x TV+ [5 df |x = f (x )dx 24 &
S (I ) 6 ( S/> 4/ ? ) " # ' y = f (x) U& (n − ) @D h_B 2N " B< _+ f (n) (x ) < "& B x = x L G.P G d T"&
+ N7!/ x = x
y = f (x)
#
dx = x = x − x
f (x) −
%! +a < 5& df ^&&
f () + f ()x +
···+
df : (x, x ) → f (x )(x − x )
I9
(n − )!
f
(n−)
f ()x + · · · $ n−
()x
∼
n!
f n ()xn
- . / 0*1
Tx
KL #4 7G $ M*N
< f (x) = cos x V+ i: ! x @;N f k @D s& y = gk (x) S 24 ^
G d T"&
U& . & c. s S 2456 ; d < . V! x = x @;N y = f (x) V+! y = f (x) & DN N ' & TV+ % c. s & 54 _+ df |x T5 =f (x) ≈ f (x ) + df |x = ++a Δx @L & x L +a GP T%! U& & =" B [Q` )=9 8" &
=
V+!
g (x)
=
g (x)
=
g (x) =
−
x
g (x)
=
g (x) =
−
x
≤ k ≤
,
&
gk
<
f
, +
x
,
U& ` )=9 8" =V .
U& k @D 7+ s& P " L G.P ' d < : x = x @;N y = f (x) + V+! x = x ) f (x) = x sin x,
x = ,
k = .
)
f (x) = x − x + ,
x = ,
k = .
)
f (x) = x − sin x,
x = ,
k = .
)
f (x) =
x− x+
x = ,
k = .
,
+, - ./(0
@D ;& w + !P +D5 w[Q i< U& ' O& ]KN y
= g(x)
= f (x)
S
24 ^ T"&
)
) d(af ) = adf,
)
d(f g) = gdf + f dg,
)
d(f (g)) = f (g)dg.
d(f ± g) = df ± dg, f ) d (gdf − f dg), = g g
= V+.5 L 8" & +
@D M y = f (x) U& S & < dn f . & d n @D + T"& L ! & =dn f = f (n)(x)dxn V+ [5 L 24 %" ! 24 & 7+ @+A/ T ^ n
%3 W(& & TK+ _: L ! 2N @P & =" 5B ' j: L ^+.P i: X B FG ^ Y* ; A =V . [5 K+ s+3 fkD/ y = f (x) U& +
! diff(f(x),x) ! L U& ^ M @D!3 & =V+ ! L f (x) U& n M @D!3 & =V+ ! diff(f(x),x$n) . sN: TV+ ! Diff L diff & t $ P( 24 D!3 < " P 4 +GN =%:]H + B L n" & Z $ &
' y = f (x) S ) /: &4U C G f (n) (x ) < "& " n @D M x = x L G.P
G d T"& B f (x) =
f (x ) + df |x + +
@;N y
n!
df
x
+ ···
df n |x + O ((x − x )n )
U& k @D_ 7+ s& g(x) t $ = g(x) U& . L %! 2DC dk f G d T"& x = x = f (x)
K+
y
K+
" B = g (x ) dx TG +& & =x = x @;N x %Q T%! %! s ' y = g(x) Tk = %Q
= = = < %! .! ' y = g(x) Tk =
diff(xˆ2 − 3 ∗ x + 1, x) −→ 2x − 3 diff(sin(1 − 2 ∗ x), x$3) −→ 8 cos(1 − 2x)
K+
Diff(sin(1 − 2 ∗ x), x$3) −→
∂3 sin(1 − 2x) ∂x3
I6
=Δg
x
KL #4 7G $ M*N
- . / 0*1
& y = f (x) U& .++ @D!3 & & 24 &
! minimize(f(x),{x},{x=a..b}) ! L [a; b] @L& & y = x − x U& .++ < ._ T . & =V+ L DC {+ & [− ; ] @L&
U& S 25O FG Y*
" :5 . 8" & F (x, y) = c @;& '. & ! L x { & y n @D M @D!3 & T"& & =V+ ! implicitdiff(F(x,y)=c,y,x$n) %D y ! M 24 ^ Tx + y = S T . & %! && x & K+ x(x2 + y2 ) y = f (x)
K+
maximize(xˆ2 − 3x, {x}, {x = −1..1}) −→ 4
K+
minimize(xˆ2 − 3x, {x}, {x = −1..1}) −→ −2
implicitdiff(xˆ2 + yˆ2 = 1, y, x$3) −→ −3
s& @D!3 & FG ^ ) /: 9$G ! ! L x = a @;N f (x) i< U& n @D 7+ s& T . & =V+ ! taylor(f(x),x=a,n+1) L %! 2DC x = @;N /x U& < @D 7+
U& S ( ) J FG Y* H 8" & y = V (t) < x = U (t) s&< '. & L x { & y n @D M @D!3 & T"& " :5 implicitdiff({x=U(t),y=V(x)},{y,t},y,x$ n) ! Ty = t − < x = sin(t) S T . & =V+ ! & %! && x & %D y ! M 24 ^ y = f (x)
K+
taylor(1/x, x = 1, 3) −→ 1 − (x − 1) + (x − 1)2 + O(x3 )
%! 5 ^ & K+ O
(x − x )n
. " B
implicitdiff({x = sin(t), y = tˆ2 − 1}, {y, t}, y, x$3)
K+ sin t cos t + t cos −→
O (x − x )n−
cd
y5
t + sin t
cos t
._ @D!3 & "
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
FG ./$'
! L [a; b] @L& & y = f (x)
maximize(f(x),{x},{x=a..b})
=V+ !
IF
!" #$ "$
P L & B< C &E C =F (x) = F (x) + C =x ∈ (a; b) Tg(x) = F (x)−F (x) V+ i: (a; b) & _+ g(x) TF (x) < F (x) ]KN +Q& 24 ^ x ∈ (a; b) P DZL & i: M&; T
%! Q@ ^ j: ^ L vP
x ∈ (a; b)
`b)-!
g (x)
=
F (x) − F (x)
=
f (x) − f (x) =
5 & d T " & i< y = f (x) U & Sz =yF (x) = f (x) %: y = F (x) @ p z & & < {QB +& @ p ' Lld Q@ ^ d <& 5& j: 8 / =%! y+ 2O5 = . $
=%! %&E (a; b) & y = f (x) mH
2
5!4
U& & +Q< U& ' y = f (x) S U- @+Q< U& . @C. G d T"& (a; b) @L& & y = f (x) ={F (x) + C | C ∈ R} L %! 2DC (a; b) & y = f (x)
=(a; b) ⊆ Df < y = f (x) + i: FG (a; b) y = f (x) 4 y = F (x) U& =F (x) = f (x) x ∈ (a; b) P L & V+hS
U& & +Q< U& ' y = F (x) S &&) U& @.P @C. 24 ^ T"& (a; b) @L& & y = f (x) & {F (x) + C | C ∈ R} & (a; b) @L& & y = f (x) @+Q< V+ 5 =V+P F (x) + C .
& f (x) =
x
<
(−∞; ) ∪ (; ∞)
F (x) =
/x + /x
x> x<
x> x<
) @L&
2
& f (x) =
−x
U& &
2 N =%! R = (−∞; +∞) & /x U& & +Q< U& ' F (x) = ln x 2 N 2 N
2+ N
S S
5 ^ & T%! + N %+4 U& P M =%:S P _+ d ^+& N @.P T+G& < M S =+ / N Q< +S < N [x] Q
@C. & f (x) = ln |x| U& +Q< U& Q T P
F (x) − F (x) =
−x
=%! (; +∞) @L& x − x + U& & +Q< U& ' F (x) = ln x +x+ =%! R & f (x) = x − x +x + $ T +Q< U& ?+P R & f (x) = [x] U&
O& + (a; b) @L& & $K8
" ! ,e C & TL =%! _Q F (x) =
−x f (x) = cos x U& & +Q< U& ' F (x) = − sin x
(a < x < b)
&! '( !
+Q< U& ' F (x) = =%! (− ;
f (x) dx = F (x) + C
%
S S
< y = F (x) < y =
G d T"& (a; b) @L& & II
F (x)
S
y = f (x)
U& & +Q< U&
<#:Q#:*8 QP '
W 8 "#:*8 '
) ) )
-
)
cos xdx = sin x + C, -
f (x) dx
π x = k , k ∈ Z
x csc xdx = ln tan + C, (x = kπ, k ∈ Z) sec xdx = tan x + C, x = k
-
π
, k∈Z
)
csc xdx = − cot x + C,
)
x = kπ , k ∈ Z
-
)
x dx + C, ) = arctan a a x +a aπ a = , x = k , k∈Z x − a dx + C, ln ) = a x + a x −a
) )
)
)
-
)
x dx + C, = arcsin a a −x a = , −a < x < a
- x x + a dx = x +a
a + ln x + x + a + C, - x ) x − a dx = x −a
+
)
a
-
arcsin
a
n dx √ = n x n−
+ C,
-
x
x + C,
dx = ln x + C,
(x = )
[x]dx = ∅,
−x
-
dx = arcsin x + C,
(− < x < ).
%
- E- 4K
xa+ + C, − = a ∈ R a+ dx = ln |x| + C, x = ) x x a> ) ax dx = a + C, ln a ) ex dx = ex + C, )
a = , |a| ≤ |x|
√ + C, n x−n
-
V T+GN &
a − ln x + x − a + C, |a| ≤ |x| - x ) a − x dx = a −x x
x dx =
L .P & !@ =" n; M Q@ D/ W(& M: Ok.5 < %(! +GQG T%! M: +GN
+ 2O5 L . Q@ ^ L %! L +.X 24 +Q ^+.P & T(y = f (x)) %! 8 & Tfke "& ,3 %! ^8. d ^ : TB B< U& ?+P Q< T%! +Q< U& y = sin x/x U& V+ =V+!". " sin x/x && d M N =%! M & %SL& \< & +GQG Q@ ,G & UB CfX < ! 7D/ 2CfX L T5 H Q: L ,<B ' nX & ^ =V
dx = ln x + x − a + C, x −a |a| < |x|
-
%Q! &
9! DO!D(7 ON
(a = , x = ±a) = ln x + x + a + C
dx x +a
(a < x < b)
! "! I0(!
-
"
u L T"& ^8. @C. ^ S_& (a; b) S =V+P . = f (x) dx V+ < d %! ^"< =V+ ω = f (x) dx 2DC
G d T"& y = f (x) & +Q< U& ' y = F (x) S
=" && ω & F (x) +
-
-
π x sec xdx = ln tan + + C,
)
! "!
-
)
=(a; b) ⊆ Df < y = f (x) V+S - E- " (a; b) @L& & y = f (x) U& @+Q< U& @.P @C. . & < + (a; b) y = f (x)
sin xdx = − cos x + C,
<x
I1
xa dx =
<#:Q#:*8 QP '
W 8 "#:*8 '
√ √ x+ + x− √ √ √ √ dx x+ − x− x+ + x− √ √ x+ + x− dx (x + ) − (x − ) - x + + x − dx (x + ) + (x − ) + C
= = = =
G d x = − S
)
)
2 N
- x dx = x −x+ − dx x+ x+ dx = (x − x + ) dx − x+ x x = − + x − ln |x + | + C
-
G d x = kπ + π/ S -
-
tan xdx
= =
sin x dx cos x − cos x sin x
-
=
tan x − x + C
x P L & − cos(x) dx
-
sin xdx
= =
x−
sin(x) + C
G d kπ − π/ < x < kπ + π/ S -
-
= = = = =
-
= =
cos x
+C
x P L &
-
x dx + cos x dx = cos x √ dx sgn cos x cos x x √ sin +C sgn cos
x dx = − sech− + C, a a x a −x < |x| < |a| , a =
-
x dx = − csch− + C, a a x x +a x = , a =
f (x) dx = F (x) + C
4
G d T"& 4 [Q( C a <
2+ N
-
g(x) dx = G(x) + C
)
(f (x) + g(x)) dx = F (x) + G(x) + C af (x) dx = aF (x) + C -
)
f (ax + b) dx =
a
F (ax + b) + C
2DC %! %.! " B TW&& S U/< =%! " C. ' 7 8" T,< A+B := 24 & d U.74 T"& C. < B < A ' A74 =V+ [5 {a + b | a ∈ A , b ∈ B} [5 αA := {αa | a ∈ A} 24 & C. ' C C u L T,G " +4 =S ^ =S u C d s < " H @7 =L! ! 4 < /& +B
2# N 2% N
V T ]Q r: {Q; & B &
G d x = S
dx − sin x dx = dx + sin x + sin x − sin x − sin x dx − sin x − sin x dx cos x − sin x dx sec xdx + cos x dx − (ln | cos x|) dx + − cos x − ln | cos x| −
-
-
T
dx
=
x dx = sec− + C, a a x x −a |x| > |a| , a =
)
)
(sec x − ) dx sec xdx − dx
=
-
-
x
+ x − x
dx
= =
-
xdx +
2 N
-
-
dx −
dx x
x + x − ln |x| + C
G d x = S
2 N
- - dx = x + x + + dx x+ x x x dx dx + = x dx + xdx + x x x x = + + ln |x| − +C x
2* N
G d x > S
√
IJ
dx x+
−
√ = x−
2 N
W 8 "#:*8 '
#X* #X5 >$ 7 4 <#:Q#:*8 '
! V( ! V4 ;# 6 3 9! DO!D(7 -
f du =
f (x) du(x)
L p
]KN 5& u(x) T =%! 5& u(x) <
f (x) dx = F (x) + C
-
=
-
%
-
,G =%! (Q <
f (x)u (x) dx
= −
24 ^ T"& ]KN V+ B %! :
f (u) du = F (u) + C
`b)-!
-
=f (u) du = u(x)f (u(x)) dx _+ <
,G & _
2
-
du = tan xdx -
=
ex sin( − ex ) dx
=
ln | sec x| + C
)
− ex V+ i: S ^&& Texdx = −du/
2 N
=
−
cos( − ex ) + C
x G d u = tan x V+ i: =
√
S
)
tanh xdx
)
-
x
) )
2 N
)
^&&
)
2+ N
)
) )
du = sin x cos xdx = sin(x)
1)
x+
dx,
sin x sin(x) dx, -
u du = u/ + C
(tan x)/ + C =
G d u = sin x V+ i: S
-
)
(sin x + cos x) dx,
)
cos u + C
,
-
)
sin u du − sin udu =
=
- √ tan x dx cos x
+ <
2_ N
dx √ √ x+ x+
-
)
+C
=
< du = dx/ cos
2 N
udu =
Tdu = −exdx G d u = -
-
=
)
)
u
cos x + C
+ D!3 L QG L ' P
= ln |x + x + | + C
-
tan xdx ln | sec x|
(x + )/ (x + )/ − +C / / (x + ) x + − (x + )x +
=
du = ln |u| + C u
G d u = ln | sec x| V+ i: S
cos(x) +
x x + dx = (x + − ) x + dx - (x + )/ − (x + )/ dx = =
V+ i: S + < du = (x + ) dx G d
x + dx + x +
G d x > − S
{F (u)} = u (x)F (u) = u (x)f (x) 2
sin(x) cos(x) dx = (sin(x + x) + sin(x − x)) dx = = (sin(x) − sin x) dx
&& )
S
2, N
x P L &
-
)
- -
− x dx,
)
−x
)
-
dx,
sin xdx,
- -
) )
e dx,
− sin x dx,
x + x + dx, x+
-
(tan x + cot x) dx,
- √ x− √ dx, x ) ( − x) dx,
dx , x −
x x
-
+C
) )
√ x(x − x + ) dx, sin x − cos(x) dx,
-
xdx √ . x+ dx , x +
x + dx, x+
√ -
a
dx −x
x − √ ax
, dx,
sin xdx, dx sin x cos x
,
#X* #X5 >$ 7 4 <#:Q#:*8 '
24 ^ Tu
=
a tan x b
I
= = = =
W 8 "#:*8 '
V+ i: S
^&& < du =
-
dx ) , x + - arcsin x ) dx, −x ex dx ) , ex − sin(ln |x|) dx,
) x + sin(x) ) dx, cos (x) ) tanh xdx,
) )
)
-
-
-
) ) )
)
sin(x) dx
ex du = eu + C
=
ex
arcsin x + x dx, −x
) )
-
dx cos x +
dx + ex
= dv/
< du
=
= -
=
V+ i: S ^&& < du = ( −
= x + /x
2* N /x ) dx
(x − ) dx (x + x + ) arcsin(x + /x)
= du/(u + ) I
= = =
1
V+ i: S , +
( − /x ) dx (x + /x) + ) arcsin(x + /x) du) dx (u + ) arcsin u
=
< dv
/ = v/
dv/ dv = (v/) − ( /) v − v − + C = ln u − + C = ln v+ u ex +C = ln x e +
I
du du = u(u − ) u −u du (u − /) − ( /)
G d u −
V 24 ^ Tu dx,
|
=
√ sin x cos x dx,
- ) x+
2% N
-
-
-
dx + ex
,
V+ i: S < dx = (u − ) du ^&&
G d u = + ex V+ i: S ^&& < dx = du/(u − ) + =x = ln |u −
=
x.x dx,
2# N
√ x
u
-
-
+
+C
= u−
ex dx
, −e x √ ) tan√( x) dx, x dx , ) sinh x - ) x − x dx,
G d u =
x
− u + u − ln |u| + C √ √ ( + x) − ( + x) √ √ +( + x) − ln | + x| + C
=
ln(x) dx , x ln(x)
-
)
=
dx , − sin x + cos x ) x − arctan(x) dx, x + - x − dx dx, ) , ) x (a + b) + (a − b)x ln(x + x + ) ) dx, x + dx , ) ( + x ) ln(x + +x ) ) tan (x) sec (x) dx.
x
+x + (u − ) √ dx = (u − ) du + x u (u − u + )(u − ) du = u - = u − u + − du u
-
arctan(x/) dx, x +
-
)
Tx = (u −
x+ dx, x −
-
)
ax + b dx, cx + d
esin
^&& <
= esin
dx,
xe -
−x
a du b cos x
a sin x + b cos x dx dx • b cos x (a /b ) tan x + du arctan u + C = ab ab u + a arctan tan x + C ab b
x dx, + x
)
-
dx
+ D!3 L QG L ' P -
2, N
G d Tv
= arctan u
V+ i: , ^&&
dv = ln |v| + C v ln | arctan u| + C ln arctan x + +C x
W 8 "#:*8 '
+ Tdv -
+ -
DZZ= 4 DZZ= >$ 7 4 <#:Q#:*8 '
2 N
< u = ln x + i: ^&& =v = − /x < du = dx/x
= dx/x
udv = uv − vdu − dx − ln x − = x x x ln x + x− dx = − x ln x = − − +C x x
-
ln x dx x
=
Tdv = x dx
x arctan xdx =
-
x
x
dx x +
arctan x − - x arctan x − x − + x + x −
=
arctan x −
x
+
x
DZX: 3 DZX: ;# 6 3 9! DO!D(7
2 N
< u = arctan x + i: ^&& v = x / < du = dx/(
=
D!3 & {! +a ++a ( %! ^ %+5/< c! ^+.P & q%+ ! TZ ,G ' QG L P 5Q; & SB ;& T5& (& D!3 &/ 4j(& +a ++a & ' P VLH < DZ_B & DZ_B \< L / %! LO d L D/ = P =V+"& " fX '+8
U& < v = v(x) < u = u(x) + i: =%! B udv ^+5 ,G < P (a; b) & ]KN
+x )
< %!B _+
u dv = uv −
-
= =
du = dt -
t sin t − sin t
Tdv
t sin tdt
−t cos t + sin t + C
=
−(arcsin x) cos(arcsin x) + x + C −x +x+C −(arcsin x)
=
I
=
-
e
x
sin(x) −
(x − )ex + C
# (cos(x))
e
+x
i: &
dt
=
x arctan x −
=
x arctan x −
ln |t| + C
=
x arctan x −
ln | + x | + C
x
10
+x )
udv = uv − vdu dx = x arctan x − x +x -
arctan xdx
2 N
=
-
+ i: TG & x + C < du = − sin(x) dx
=
< dt = xdx V t =
= cos(x) e
xex − ex + C
-
arctan xdx
=
+ Tdv = dx <- u = arctan x + i: ^&& v = dx = x + C _+ < du = dx/(
sin(x) dx - (sin(x)) e x − e x ( cos(x)) dx e x sin(x) − e x cos(x) dx
+ Tdv -= e x < u ^&& =v = e x dx =
=
udv uv − vdu x xe − ex dx
=
x
=
− cos tdt
-
=
x
2# N
e
2
-
+ Tdv =-e x dx < u = sin(x) + i: ^&& v = e x dx = e x + C < du = cos(x) dx =
`b)-!
< u = x V+
i: ^&& v = ex dx = ex + C < du = dx + xe dx
=
=
I
= ex
-
−t cos t −
v du
^+:X L %! : ^&& < udv = d(uv) − vdu V 2 =V+G& ,G < ^
cos tdt
=
24 ^
d(uv) = udv + vdu
+ Tdv = sin tdt < u = t V+ i: S ^&& v = − cos t <
x arcsin x dx −x
vdu
8 < Q@ 2< & B &
+C
2+ N
x arcsin x dx −x
-
-
dx
< x = sin t 24 ^ Tt = arcsin x + i: ^&& =dx = cos tdt -
%
t
<#PG 345 . <#:Q#:*8 ''
−
=
e
−x
Re
W 8 "#:*8 '
-
( + i)x + (i − )
−
× cos(x) + i sin(x) = −
e−x
arcsin xdx,
)
x sin xdx,
)
-
)
x cos(x) dx,
-
)
−x
dx,
-
)
x ln xdx, -
) )
e -
√
x
x
dx,
cos xdx,
(x+ )arctan xdx, -
) ln(ln x) dx, x √ arcsin ( x) √
) dx, −x sin x ) dx, ex ) xex sin xdx, ) )
sin x ln(tan x) dx, x
cos( ) dx, x
-
x dx , x − - − dx, ) x
)
) )
=
-
I+ x cos x dx,
-
P (x) Q(x)
x
)
ln xdx,
) )
sin(ln x) dx,
−x +x
x ln -
dx,
x arctan xdx, cos (ln x) dx,
- ) a + x dx,
) ) ) ) )
arcsin -
I @Q5 & T+
e x ( sin(x) − cos(x)) −
x
( sin(x) − cos(x)) + C
sin x
e x ( sin(x) − cos(x)) + C
= dx
a −x
2% N
+ i: −xdx ^&& =v = x < du =
2* N
√ x dx,
ln(sin x)
a −x - I = a − x dx −x = x a − x − x dx a −x a −x +a dx = x a −x − a −x - dx = x a −x − a − x dx − a a −x x = x a − x − I − a arcsin a ^&& < I + I = x a − x − a arcsin x + a x x a +C I= a −x − arcsin a
-
sin(x) − e x cos(x)
− e x sin(x) dx
I= e
+ Tdv
-
ln x √ dx, ) x ) ln x+ +x dx,
)
I=
x ex dx,
QG @D!3 & s7 ( C Z L . −x xe cos(x) dx ,G ,e C & . ! V+ .C L \< &
dx,
-
x dx dx, (x + )
xe
-
=
tan x ln(cos x) dx,
= x
e x ee dx.
9!NF 234 - 9! DO!D(7 %!
e
^&& =V+!
x dx, ex
-
)
(e )(− sin(x) dx)
−( x + ) sin(x) + C
-
)
=
(x − ) cos(x)
+ D!3 L QG L ' P )
$ x
=
%%
= =
: & U& L +GQG W(& ^
" S < j: fkD/ = P 7.B $ Q(x) < P (x)
=
1>
-
dx
cos(x) dx = Re xe e Re xe( i−)x dx ( i−)x Re x de i −
− − i ( i−)x ( i−)x Re − e dx xe
− ( i−)x ( i−)x Re ( + i) xe − e dx
− ( i−)x ( i−)x Re ( + i) xe − e i − − −x e Re ( + i)x + ( + i) e xi
−x
−x
xi
<#PG 345 . <#:Q#:*8 ''
W 8 "#:*8 '
U& 5 < 7.B $ ' . & 5& ^+$ P
< L 8 & ! U& =. _ !
"& L 7 : A =a = < a, b, A ∈ R d T w[Q k
,: L %! : T d %!& Q@ & cos u =
+ cos(u)
^ L 25: & Q@ %! ^8. =V+ ! =" ! ,:
(Q { & (k − ) @D 7.B $ V+S p X α (Q %&E C < P (x)
2 W
-
Ax + B dx (ax + bx + c)k
L Ta =
2
=
A x−
+
=
-
dx x−
= ln |t| +
+
A (ax + b) + Ax + B = a
-
dt + t
-
^&& Tu = ax
− x+ (x − )(x − )(x − )
A ax + b a (ax + bx + c)k Ab +B + a (ax + bx + c)k
=
-
ax + b (ax + bx +
c)k
,< ,G
du uk
dx =
@;& & T< ,G ax + bx + c =
2 N
x
Ab +B a
+ bx + c V+ i:
-
ds s
=s = x + < t = x − %! " i:
x U& ,G (x − )(x − )(x − ) =+ D!3 V+ V+N |( & 24 & =
+
2 W
Ax + B (ax + bx + c)k
ln |x + | + C
x x = (x − )(x − )(x − ) x − x +
du uk
V+ mK!
B x +
dx = x +
-
@! U& L +GQG & B< 7 \< < TΔ = b − ac < < a = V+ V+N ax + b & Ax + B &
ln |s| + C
= ln |x − | +
=
A A = (ax + b)k a
Ax + B (ax + bx + c)k
x + x − S , =x + = A(x + ) + B(x − ) 24 ^ & =A = V
! U& L +GQG & ^&& TV+ ! u = ax + b +a ++a
L _/- % & ( $' FG/ I ( EE-
=+ D!3 V+N & L+ T%! |( L . 24 @B $ = =%! (x − )(x + ) && x + x − T
d
A (ax + b)k -
ax + bx + c
x + U& ,G x + x −
∈ R
_/- % & ( $' FG/ I ( EE-
$ / && < < ^ ^+:X L +GN & mK! < +H α C < P (x) { T< vX < 7.B " D!3 & QG % T^&& =V+ dx =%! ,G
Ta, b, c, A, B
P ^+$ L +GQG %! : ^&& = &
P (x) (ax + bx + c)k− dx +α ax + bx + c
=
=
(ax + b) Ax + B T w (ax + bx + c)k =Δ = b − ac <
=ax + b -
x−
19
=
a
(ax + b) +
ac − b
dx = (ax + bx + c)k =
=
-
tan u
a
ac − b
V+ i: < B ^&&
ac − b
( + tan u) du
{ a (ac − b )( + tan u)}k k− k− / −k a (ac − b ) ( + tan u)−k du k− k−
a
(ac − b )(−
-
k)/
(cos u)
(k−)
du
<#PG 345 . <#:Q#:*8 ''
W 8 "#:*8 '
! P L C. & d %!& U& mK! V+ _
V+ i: p ^ & = A x−
B C + (x − ) (x − ) D E + + (x − ) (x − )
=
(x + ) (x − )
+
x − x + = A (x − )(x − )(x − ) x−
+
B C + x− x−
^&&
+
= A(x − )(x − ) + B(x − )
x
+C(x − ) (x − ) + D(x − ) (x − ) + E(x − )
+B(x − )(x − ) + C(x − )(x − )
Tx = < x = − Tx = − Tx = Tx = / & < = E T = −B V
%!& {+ & Tx = < x = Tx = i: & + = = C < = −B T = A V
⎧ ⎨
A − B + C − D + E =
A − B + C − D + E = ⇒ ⎩ A − B + C − D + E = ⎧ ⎨ A + C − D = − A + C − D = − ⇒ ⎩ A + C − D = − ^&& =D = − < C = - TA = − + dx & %! && dx (x − ) (x − )
-
- #
=
=
= = =
+
x−
x−
ln |x − | − ln |x − | +
x− (x + ) (x − )
x− A = x+ (x + ) (x − )
ln |x − | + C
U& ,G
2 N
=+
; C 8 & B & = +
B C + x− (x + )
=x − = A(x + )(x − + B(x − ) + C(x + ) + T− = −B V x = < x = Tx = − i: & TB = / + =− = −A − B + C < = C ^&& =A = C − B + = − / < C = /
-
+C
2+ N
+
V+ T|( x +
(x − ) =s = x − < t = x − %! " i: x =+ D!3 U& ,G (x − )(x + ) V+ i: p ^ & = x A = x− (x − )(x + )
x+
D!3
+ ln |x − |
−
x dx = (x − )(x − )(x − ) - − / / dx + + + = x− x− x− dx dx dx = dx + − + x− x− x− =
− − + + x− x− (x − ) $ − + + dx (x − ) (x − ) dx dx dx − − + x− x− (x − ) dx dx − + (x − ) (x − ) dt ds dt ds ds − − − + + t s t s s s− − ln |t| + + ln |s| + + +C t s − − ln |x − | +
x + = A(x − )(x − )
−
Bx + C x +
& =x = A(x + ) + (Bx + C)(x − ) + = A V
x− dx = (x + ) (x − ) - − /
/ /
dx + + = x+ x− (x + ) dx dx dx = − + +
x+ (x + ) x − dt dt ds + = − +
t t s − + ln |s| + C = − ln |t| +
t
= −
ln |x + | −
(x +
)
+
ln |x − | + C
=s = x − < t = x + %! " i:
D!3 U& ,G (x − ) (x − ) =V+
2 N
16
<#PG 345 . <#:Q#:*8 ''
W 8 "#:*8 '
^&& Tx = tan u V+
-
u
=
+
sin(u)
u
+
I
+
-
+ tan u x = + x /
cos (u) =
− sin (u) −
=
D!3
=
ln |x − | −
ln |x − | −
=%! " ! t = x
(x
=x
x(x + )(x + )
U& ,G
dx x(x + )(x + )
√
Ci + D
x +
=
z(z + )(z + )
=
A B + z z+
2* N
+ +a ++a L T< ,G
U& ,G
2# N
=
−
i<x
^&&
i: & < (Ai + B)(− + ) = − +
=
= i
−
-
I
xdx x (x + )(x + ) dx z(z + )(z + )
+
TB = + = Ci + D = − < Ai + B = T^&& ^&& =C = < D = − TA = x dx (x + )(x + ) dx dx − = x + x + √ V < ,G x = tan u i:
=
I
= = =
C D + z + (z + )
=
+
A(z + )(z + ) + Bz(z + )
arctan x −
( + tan u) du tan u +
du √ u + C arctan x − √ arctan(√x) + C arctan x −
arctan x −
2% N
=+ D!3 U& ,G (x + ) i: %! : ^&& =%+ '+8 & L+ =
+Cz(z + )(z + ) + Dz(z + )
1F
&
√
√ -
C & T%! U& ' " _+ 4 ,G V+ i: mK! T; =
-
√
-
=
dx +
= (Ax + B)(x + ) + (Cx + D)(x + ) √
=+
x |( < 24 & p ^ & = + =z = x V+ i: mK! < V+ -
dx x + x +C ln |x + | + arctan x +
V
(x − ) (x + )
arctan x + x x(x − ) + +C (x + )
(x) −
x Cx + D Ax + B + = (x + )(x + ) x + x +
+x =
=+
V+ i: p ^ & =
x
x + )
x
x (x + )(x + )
D!3
+C
^&& =
I =
tan u
=
dx (x + )
xdx (x − )(x + ) dx x− − dx x + x +
^&& Tx − =
sin(u)
= =
V Ttan u = x/ 8 & B &
sin(u) =
-
-
( + tan u) du dx = (x + ) ( tan u + ) du = = (cos u) du ( + tan u) - + cos(u) = du = ( + cos(u) + cos (u)) du = du + cos(u) du + cos (u) du + cos(u) u sin(u) = + + du
+
<#PG 345 . <#:Q#:*8 ''
= x −+ −
−
x +
(x + )
+
W 8 "#:*8 '
(x + )
+
%!& z = < z = − Tz = − Tz = i: & = A + < = D T = −B T = A V
(x + )
(x + )
& =V+G& ,G 74 P L %! LO dx V+ i: p ^ & T24 ^ In = (x + )n V TDZ_B & DZ_B \< L ! -
In
=
(x + )n
= = =
-
-
x+
< In+ = n − n
In +
n(x
x + )n
-
-
x +
2, N
x + x +
=+ D!3
U& ,G 8 & B & =
= x + x +
− x √ = (x − ) − ( x) √ √ = (x − x + )(x + x + )
^&&
V+
dx = arctan x + C x + dx x = = I + (x + ) (x + ) x = arctan x + +C (x + ) dx x = = I + (x + ) (x + ) arctan x + x x = +C + (x + ) (x + ) dx x = = I + (x + ) (x + ) x x = arctan x + + (x + ) (x + ) x + +C (x + ) dx x = = I + (x + ) (x + ) arctan x + x x = + (x + )
(x + ) x x + + +C (x + ) (x + )
I
dx = x(x + )(x + ) dz dz − + = z z+
dz dz + z + (z + ) − = ln |z| − ln |z + | + ln |z + | + +C z+ +C = ln |x| − ln |x + | + ln |x + | − x +
nx dx (x + )n+ x (x + − ) dx + n n (x + ) (x + )n+ n dx n dx x + − (x + )n (x + )n (x + )n+ x + nIn − nIn+ (x + )n
=
=
I
I
I
I
-
dx (x + )n
-
x + x +
-
+
− x +
x
(x +
)
√
x + x +
x − √
√
x +
−
√
x
√
x − x +
√
V s = x < x − = t i: & 24 ^ √ √ - xdx x + x + x + dx = dx −
x + = x− -
= =
x +
√
dx √ − +
√
dt
t + −
=
√ -
√
√ -
x + xdx (x ) +
ds
s +
arctan t − arctan s + C √ √ arctan x − − arctan(x √
)+C
2_ N
=+ D!3 x U& ,G (x + ) V+P s& x + { & 24 & =
x x dx = − x + I − I (x + ) + I − I + I x
= =
^&&
=
x +
x ((x + ) − ) = (x + ) (x + ) (x + ) − (x + ) = (x + )
arctan(x) − x (x + ) x x − + +C (x + ) (x + )
+ +
1I
(x (x
+ ) − (x + ) + ) − (x + ) +
<#PG 345 . <#:Q#:*8 ''
W 8 "#:*8 '
V+ T(x x + (x − x + )
− x + ) = x −
2 N
8 & B & <
,G T0=6=6 L w0x \< '. & dx =+ D!3 (x + x + ) V+ i: p ^ & =
x− x − + (x − x + ) x −x+ x− x − − + (x − x + ) x −x+ −
= =
−
x −x+
-
="& ( −
^&&
-
x + dx = x − I + ln |x − x + | − I (x − x + ) x− dx d
=I = dx < I = (x − x + ) x −x+ √
√
(x −
=
P (x) x− = +α (x − x + ) x −x+
-
+α(x + x + )
< ! < x && { / & T^&& V TO& ⎧ A − B + α = ⎪ ⎪ ⎪ ⎨ A + B − C + α =
dx x −x+
=E
V+ i: V+ mH T%! (Q E $
D = / TC = − / TB = − / TA = − / ^&& + TN ^ < +Q< i: & B & =α = / < V+S
= (Ax + B)(x − x + )
< ! < x && { / & T^&& V TO&
=B
−A − B + α = A − C − α = B + C + α = −
⎧ B+ ⎪ ⎨A = − ⇒ C = − B+ ⎪ ⎩ B− α=
V+ i: V+ mH T%! (Q B $
=α = −/ TC = − / TB = TA = −/ ^&& V I +Q< i: & B & T^&&
=
− x − dx − x −x+ x −x+ x + − x − x + − I
-
(x +
x + dx (x − x + )
)
+C
,G
2 N
& 24 T%+ |( @B L . 24 @B $ = V+ V+N d |( x + = (x − x + )
x +
= (x − x + ) x +
= x + ln x − x + + x − x + √ √ arctan (x − ) + C −
arctan
=+ D!3
V . <
-
− x − x − x + x dx = (x + x + ) (x + x + ) dx + x +x+ − x − x − x + x = (x + x + ) √ √ +
=
=
-
=
I
⎧ A = − / + E ⎪ ⎪ ⎪ ⎨ B = − / + E ⇒ C = − / + E ⎪ ⎪ ⎪ ⎩ D = / + E α = /
B − D + α = ⎪ ⎪ ⎪ ⎩ C − D − E + α = −E + D + α =
−(x − )(Ax + Bx + C) + α(x − x + )
#
(Ax + Bx + Cx + D)(x + x + )
+C
="& ( − ) = @D 7.B $ ' P (x)
& =P (x) = Ax + Bx + C V+ i: T^&& V+S + T " i: @;& ^+:X L +GN x−
@D 7.B $ ' P (x)
V+ i: T^&&
−(x + )(Ax + Bx + Cx + Dx + E)
T^&& =V+ ! 0=6=6 w0x \< L & I < V+ i: -
dx x +x+
V T " i: @;& ^+:X L +GN &
)
) =
-
P (x) = Ax + Bx + Cx + Dx + E.
S P %Q! &
I = arctan
P (x) dx = +α (x + x + ) (x + x + )
x − x
x − x
+ x − (x − x + )
+ x − T ! P & +! Kp & TmK!
V+ V+N x
x − x
+
− x + &
+ x − =
= (x − )(x − x + ) + − x.
11
<#PG 345 <#4 A1 #$ #*1 >$ 7 ,'
) )
-
x + x +
dx,
dx , (x + x + )
) )
-
W 8 "#:*8 '
+ D!3 L QG L ' P
dx , x(x + )
-
x dx . (x + x + )
234 9!3 >0!# !(0 ;# 6
*% 9!NF
)
V+G& ,G P (x)/Q(x) U& L V+P(& + i: V+ i: ="& P (x) @B L S_& Q(x) @B d Q & < @B < ' @B C & Q(x) @_ ="& Q(x) = (R (x))n (R (x))n · · · (Rm (x))n 8" & U& +GQG 8!S< ! \< '. & D G U& ' L +GQG & P (x)/Q(x) ^"< ="& R (x)R (x) · · · Rm (x) d |( . ="& ! +& U& ^+$ L +GQG %! =%! ! L @+A/ & \< ^ ,4
)
)
)
P (x) dx Q (x)
-
)
)
!
dx
-
)
)
− x − x x − x + x − x +
-
-
)
(x) = R (x)R (x) · · · Rm (x)
2
dx x + x + x + x +
-
)
) Q (x) = (R (x))n − (R (x))n − · · · (Rm (x))nm −
+ D!3 L ,G
-
)
-
)
,
(x + )(x + ) dx, (x + )(x + )
-
deg(P (x)) < deg(Q (x))
-
)
7.B $ T G d = De < Y+34 C P ni T"& B< X Q (x) < Q (x) TP (x) TP (x)
)
(x + )(x + x + )
)
Q(x) = (R (x))n (R (x))n · · · (Rm (x))nm
deg(P (x)) < deg(Q (x))
-
)
@B C L &A74 24 & Q(x) @_ < P 8" & Q & < @B < '
)
-
)
deg(P (x)) < deg(Q(x))
) Q
-
)
& 7.B $ Q(x) < P (x) + i:
-
-
)
( $' FG/ (G 2Q&@ !
P (x) P (x) dx = + Q(x) Q (x)
-
)
m
-
dx , (x − )(x + )(x + ) x + x −
dx, (x − )(x + )(x − ) x −x+ dx, (x − x + ) x + x +
dx, (x − ) (x + ) dx , (x − x + )(x + x + )
dx
)
)
,
xdx , (x + )(x + ) x + x
dx,
x − x +
dx , (x + )(x + )
)
x − dx, x − x
)
x + x + dx, x(x + )
)
dx
x +
)
,
dx , (x + ) xdx x +x +
) ,
)
x + dx, x(x − )
)
x − x + x +
)
dx,
dx , x(x + )
)
dx , x (x + )
)
dx , (x − )
)
-
x − x +
dx, x − x + dx , x(x + )
x
x − dx
, x + x dx
, x + x − dx , x(x + )
x + dx, x(x − ) x − x +
dx,
x dx , (x − ) dx , x + x x dx , (x + x + )
1J
dx,
Strogradsky½
<#PG 345 <#4 A1 #$ #*1 >$ 7 ,'
W 8 "#:*8 '
= -
/
TC
=
TB
=
/ TA = / + + =E = /
8" & " U& |( 8 & p =
x + dx = (x + )(x + ) x+ x+ = + dx (x + )(x + ) (x + )
x − x + x − x +
i: T8!S< ! @+A/ & B & _+ < . _ V+
'+8 \< '. & T%! %.! ,G @D!3 & V+
x+ + =− (x + ) (x + )(x + ) -
-
ln(x
=+ D!3
-
x + (x + ) V . TmH
− x − x
arctan(x) + C x − x + dx ,G
2 N
-
=
=
x −x+
-
O& < ! < x && { =V+! V+S + < / &&
-
⎧ ⎪ ⎨A = B= ⇒ ⎪ ⎩C = D=
-
+
dx + x −x+ x −x+ √ √
x +
arctan
(x −
x + dx ,G (x + )(x + )
)
+C
2 N
@+A/ < " U& |( @_ & B & = V+ i: T8!S< !
+x (x − x + )(Ex + F x + G)
−x − x − + x (x − x + )
A(x − x + ) − (Ax + B)(x − )
dx =
x +
=+ D!3
−(x − x + x)(Ax + Bx + Cx + D)
x − x + dx = x (x − x + )
− x − x
(x − x + )
x(x − x + ) = (Ax + Bx + C)x (x − x + )
-
Cx + D dx x −x+
+
< & T^ :S } |( < ^+:X L +GN L mH
⎧ A=− ⎪ ⎪ ⎪ ⎪ B = − ⎪ ⎪ ⎪ ⎨C = ⇒ D=− ⎪ ⎪ ⎪ E= ⎪ ⎪ ⎪ ⎪ ⎩F = − G = −
=
⎧ C= ⎪ ⎨ −A + D − C = − ⎪ ⎩ −B − D + C = − A+B+D =
Ax + Bx + Cx + D x (x − x + ) Ex + F x + G + dx x(x − x + )
⎧ −D = ⎪ ⎪ ⎪ ⎪ F −E−A= ⎪ ⎪ ⎪ ⎨E = A + B − C + F − G = ⎪ ⎪ ⎪ D − C = − ⎪ ⎪ ⎪ ⎪ ⎩ C − D + G = −B + E − F + G =
+
O& < ! < x && { =V+! V+S + < / &&
x − x + dx = x (x − x + ) =
Ax + B x −x+
+(Cx + D)(x − x + )
+ )+
x (x − x + )
dx =
< & T^ :S } |( < ^+:X L +GN L mH
@+A/ < " U& |( @_ & B & = V+ i: T8!S< ! -
− x − x
(x − x + )
x + dx = (x + )(x − x + ) ln |x + | x+ − = (x + ) +
= (x − x + )
x + dx = (x + )(x + ) Ax + B Cx + Dx + E = + dx x + (x + )(x + )
< & T^ :S } |( < ^+:X L +GN L mH x +
= (x + )(−Ax − Bx + A) +(x + )(Cx + Dx + E)
O& < ! < x && { =V+! V+S + < / &&
+
⎧ C= ⎪ ⎪ ⎪ ⎨D −A = E + C − A − B = ⎪ ⎪ ⎪ ⎩ D − B + A = E + A =
−x − dx x(x − x + )
J)
?$ =7 [ . <7\= R 345 . <#:Q#:*8 2'
√ -
=
(x + ) + dx =
√ -
=
√ - (t) + dx
'+8 \< '. & T%! %.! ,G @D!3 & V+
+ t dt
−x − x − =− + x x(x − x + ) x −x+
ln t + +t +C
√ t
=
W 8 "#:*8 '
+t + √ x+ x+ = + √ x+ x + +C + ln + + x+ = x + x + √ √ + ln (x + ) + x + x + + C
V Tu + -
=t
mK! < u = x i: & -
V . TmH -
− ln |x| + ln(x − x + ) x (x − x + ) √ √ − arctan (x − ) + C
= −
2 N
\< & L QG L ' P ! + D!3 8!S< ! x dx dx ) ) ,
du/ x dx = x + x + u + u + du = (u + ) + dt = = ln t + t + + C t + ln x + + x + x + + C =
)
-
x
+ x + dx,
- ) x + x +
)
dx, )
dx
x
+ x +
x
+
-
-
cos x dx + sin x − cos x dx
-
(x + ) (x + )
dx , (x + ) (x + )
x + x + x + dx, x (x + x + )
1%
? ) "
dx ax + bx + c
V+ .C − ' x { T,8 L |a| L +S : & w =V+ =V+ U& ,8 L 4 2DC w0 ,8 L 2DC T = b − ac < a %fC & & w> < (x + α) − β T(x + α) + β 24 ! L 8 & ,G Tx + α = βt i: & =" P β − (x + α) =0=6 ,<B fkD/ S D L : W" L 8 & " :5 - x +
-
)
dx. x (x + )
-
7 8" & QG @D!3 & - L 24 & ax + bx + c dx <
x + dx,
,
8" & ,G @D!3 & 7.B $ ' Pn (x) d
x −
<# :6 + Z
, x ln x + ln x + ) ex + ex − e x dx, )
,
,
dx ) x x + x − dx, ) , x + x − dx ) , ) dx . x − x − x + x
) sin x cos x + sin x − dx, -
x (x + )
- 96Y: +P 234 - 9! DO!D(7
-
)
-
)
"
-
-
)
+ D!3 L QG L ' P
x − x + dx = x (x − x + ) x + x +
? ) "
-
Pn (x) dx ax + bx + c V+ i: =%! n @B
dx x +
- x −
dx, ,
V Tx +
-
Pn (x) dx = Qn− (x) ax + bx + c ax + bx + c
x
J
dx,
-
+ x +
dx dx, x − = t i: &
dx
2
=
-
− x dx, dx −x
.
"
√ - x + x + dx
?$ =7 [ . <7\= R 345 . <#:Q#:*8 2'
W 8 "#:*8 '
-
8 < x + x + =
A(x
+λ
{ & (n − ) @B 7.B $ ' Qn− (x)
^+:X L mK! =%! , C _+ λ < "& , { T< ^+:X / 3 & < V+S M %.! ,G ! =V
+x+ )
+(Ax + B)(x + ) + λ
vX < < { / && & = A + < T = A + B T = A V TO& < =λ = / < B = / TA = / T+ =B + λ ^&& -
x + x + dx x +x+
=
+
V x + -
-
=+ D!3
x +x+
-
dx
x +x+
t i: &T %! %.! ,G
=
= √
dx √ (x + ) + ( )
)
) ) )
-
x dx x −x+
dx
x dx dx x + x− x + dx x + x
x −x+ dx − x − x
) ) ) )
-
dx −x
−x
x
−x
=
(Ax + Bx + Cx + D)( − x ) −x(Ax + Bx + Cx + Dx + E) + λ
vX < < { / && & TA − C = T−B = T−A = V TO& < + =D + λ = < C − E = TB − D = < E = −/ TD = TC = −/ TB = TA = − / ^&& =λ = -
x dx x −x+
x dx =− −x
(x + x + ) −x +C -
x + x + x +x+
x + x + dx x +x+
=
2 N
,G V+ i: =
(Ax + B) x + x + +λ
x + x −
dx x +x+
V TO& < ^+:X L +GN & x + x + =A x +x+ x +x+ x + +(Ax + B) x +x+
x dx x + x + − x + x
−x
8 <
-
−x
λ
+
! "
x + x
V+ i: =
+(Ax + Bx + Cx + Dx + E)
x + x + = (x + ) x + x + x +x+ + ln x + + x + x + + C
-
"
= (Ax + Bx + Cx + D) −x
x
dx
+ D!3 L QG L ' P
2
= (Ax +Bx +Cx +Dx+E) −x
=+ D!3
-
,G
V TO& < ^+:X L +S M &
V . TmH -
x dx −x
+λ
√ √ ( t) + ( ) dx = = ln t + t + + C t + √ = ln + + C x+ + x+ = ln x + + x + x + + C =
x dx −x
-
√
dx x +x+ -
x+
dx ax + bx + c
dx
J0
λ + x +x+
?$ =7 [ . <7\= R 345 . <#:Q#:*8 2'
W 8 "#:*8 '
8" & ,G @D!3 & 2DC |( < 24
+ (x + ) − x = (Ax + B) −x −x λ +(Ax + Bx + C) + −x −x
8" & 4 TV+ ax + bx + c ,G =& P 9=I=6 n< ,G
< A − C = T−B = − T−A = − + < C = − / TB = / TA = − / ^&& =B + λ = + =λ = / -
= −
)
) )
x − x + −x + x − x + +
-
(x + ) x +
dx,
(x − ) x +
dx,
)
x
-
-
dx,
=
-
dx (x + ) x +
= =
dx.
< B +D = T A+ C = TB = TA = + D = TC = / TB = TA = / ^&& =C + λ = + =λ = − <
dx (αx + β)n ax + bx + c
-
2
t
−tdt
=
− t +
"
−dt/t ( /t) ( /t − ) + −t dt t − t +
=+ D!3 -
-
t
− t +
A(t − )
t
− x dx ,G (x + )
− x dx = (x + )
dx
t
− t +
+
t
2 N
V 24 ^ =
=
-
(x + )( − x ) dx −x −x − x + x + dx −x
V+ i: TmH
− t +
-
+ =
-
A t − t + +λ
−t
x + dx = x dx x + x +− = x + x = (x + ) x + − ln x + x + + C x
V+ i: -
(Ax + Bx + C)(x + )
+x(Ax + Bx + Cx + D) + λ
? ) # "
&
(Ax + Bx + Cx + D) x + dx +λ x +
x + = (Ax + Bx + C) x + x λ +(Ax + Bx + Cx+ D) + x + x +
x
" n; ,G +D" QG 4 =V+ ! =& P 9=I=6%./ = /t i:
=+ D!3 V 24 ^ =
+
(x + ) x + dx,
(x + x + ) x + x −
V x +
x + dx =
"
(x + ) x −
"
V+ i: TmH x
-
2
,G
- x + x x + dx = dx x x +
−x
x + x + dx,
(x + )
x + dx
dx
arcsin x + C
)
8" & ,G @D!3 &αx + β = /t +a ++a L
-
-
+ D!3 L QG L ' P
)
− x dx = (x + ) = −
? ) " "
P (x) ax + bx + c dx
λ − t +
J>
− x dx (x + )
=
(Ax + Bx + C) −x dx + λ −x
AR 4 345 . <#:Q#:*8 I'
W 8 "#:*8 '
D!3 L QG L ' P -
dx
-
)
-
)
+P
=
−
(x + )dx (x − x + ) x −
.
=
−
x −
)
,
dx (x − ) x + x +
,
)
-
dx
x + x
(x + )
, -
, (x + ) −x (x − )dx ) , x + x + x
2
+ i: 24 ^
+
a
2R
x,
-
H%
pi qi
+
t
. mH
+
(x + )
= −
x+
/t i:
+C
&
u/
−
=
< ad = bc
−
−dt/t
−t
−t
V+ i:
+ =
u/ x −
x + x x
+ u/ + C / − − /
x
2 N
( /t) ( /t) − t dt
(t ) tdt dx =− x x − −t ( − u) ( − du) √ = − u u−/ (u − ) du = = u−/ (u − u + )du - u/ − u/ + u−/ du = =
J9
−
+
−
-
} A ^ 8$ n TV+ ! ax + b = z n cx + d =%! = = = < q Tq
dx (t − ) +
− t + + C
dx x x −
? )
p /q p /q ax + b ax + b , , · · · dx cx + d cx + d
+a ++a L T P Y+34 C L P
ln t −
24 ^ Tu =
2
− t +
− t +
=
= maVm + (m − )bVm− + (m − )cVm−
t
√
V x =
ax + bx + c =
8" & QG D!3 &
t
+ +C x+ (x + ) √ −x+ x + x + − ln (x + ) x+ -
(b − ac)V
+>P 3 234 - 9! DO!D(7
−
dx
√ -
− t +
dx = (x + ) x + √ = − ln − x +
=
7.B $ < αm %&E C T m P L & Vm = B< X Pm− (x) (m − ) @D =Pm− (x) ax + bx + c + αm V m P L & xm−
t
−
b V V = ax + bx + c − a a V = (ax − b) ax + bx + c a
x
−
dx
−
=
[Qx
P
= − t + − t − t +
t
dx , (x + ) x x − m =Vm := x dx ax + bx + c
-
−tdx
,
(x − )
-
)
(x − )(x + ) x +
dx
-
)
-
dx , (x + ) x + x +
-
)
+
dx , (x + ) x + x +
)
)
=−A + λ = < A = − ^&& =−t = A(t − ) + λ < A = λ = − / mH
"
/ x
+C
+ x −
+C
)P8#0 <)= $ . <#:Q#:*8 J'
W 8 "#:*8 '
2
&& ax + b TL ,G cx + d i: < n = ^&& =q = < q = T%! x − + =x − = z V+
m+
V+ i: G d T"& Y+34 C S w| n ,G T4 =%! p |( k d Ta + bxn = tk =& P U& '
- √ x − dx √ x −
m+
+ p S w V+ i: G d T"& Y+34 C n T4 =%! p |( k d Ta + bxn = xn tk =& P U& ' ,G
2
=q
-
x/ − x/ + x/ + C = Y+34 C ' p = − L ,G } |( $ mH =%! d W+H wx 5 =%! V+ i: T%! k = && m = − < n = / ^&& < dx = t dt < x = t − + T + x = t
2 N
− dx = x− + x/ dx √ x( + x) dt − (t + ) .t dt = = t t(t + ) - − = − t t+ (t + ) =
ln |t| − ln |t +
=
√ ln |x| − ln( x + ) + √ x+
T%+ Y+34 p
|+
t+
z z dz = z
2 N
ax + b +x = L ,G cx + d −x +x = = z V+ i: < n = ^&& −x zdz − <x= z + < dx = (z + ) z +
<
zdz + x dx (+z ) = z −x −x − zz − + - = − dz = z − arctan z + C z + ⎞ ⎛ +x + x ⎠+C − arctan ⎝ = −x −x
)
+C
-
√ √ x+ x √ √ dx, x − x x
+C
)
2 N
)
)
z dz
-
)
-
z + C = (x − )/ + C
+ D!3 L QG L ' P
L ,G − / + m+ = w|x %Q T5 =%! Y+34 = n / k = && p |( 8 & B & mH =%! d W+H √ < x = (t − ) + = + x = t V+ i: T%! ^&& < dx = t (t − ) =
=
^&&
√ x − x dx = x/ − x / dx = x/ − x / + x/ dx
-
= =
C ' p = L ,G ^&& =%! d W+H w[Qx %Q 5 =%! %De Y+34 -
-
-
+
dx
+ x
) ,
)
dx
, ) (x − ) (x + ) dx , ) (x + ) (x − ) x dx √ , x−
)
-
-
x+ x−
dx (x − )
−x +x
dx
x − √
x+
(x + ) −
√
√ / + x √ + x/ dx dx = x−/ x = (t − )− (t )/ t (t − ) dt = (t − )t dt = t − t + C
,
x − + √ dx.
−
x+
' N7!/ 9 ': # - 9! DO!D(7
-
,
dx , ( − x) −x √
-
dx,
I%
< P S C p < n Tm V+ i: - ? ) 8 I ,G T24 ^ =I = xm (a+bxn )p dx %! D!3 &/ L %Q $ L n & a+bx G d T"& %De Y+34 C p S w[Q =V+P ,.5 M&; < + ! p V+ i: G d T"& Y+34 C p S w T4 =%! n < m < } |( k d Tx = tk =& P U& ' ,G
+ √x/ − ( + √x)/ + C = m+ = − < p = − L ,G n m+ + p = − T + Y+34 C =%! Y+34
2 N
n
J6
W 8 "#:*8 '
#Q$ <L#X* #X5 V'
|( 8 & B & mH =%! d W+H wx %Q T5 + = + x = x t V+ i: T%! 0 && p ^&& < dx = − t (t − )−/ dt < x = (t − )−/
V+ .C L \< ! L 8 & V+ i: G d T < a S w √ ax + bx + c = ±x a ± t
-
V+ i: G d T < c S w0
x
√ ax + bx + c = ±xt ± c
G d T"& ax
=
+ bx + c = @Q5 @ ' Tα S w> . ax + bx + c = (x − α)t V+ i:
2
-
=
+ -
− + (t + )
dt
+C x + + x + x +
2 N
dx p f ,G x x +x+ V+ i: V+ ^&& c = > S Tx + x + = (xt + ) + x + x + = tx + =x(t − ) = − t ^&& < x + = xt + t =dx = t − t + dt < x = −t + + (t − )
^&& =t = -
dx
-
x
t − ( x +x+
− )
dt (tt −t+ −)
= − t − t + x x +x+ t t − t − dt = ln |t − | + C = t − = ln x + x + − − x − ln |x| + C -
−/
(t − ) dt = −
√ √ x( − x) dx,
=%+ &/
−t
t
+
+ x = x
t
(t − )−/ dt
−
t
+C
+ x x
-
)
- √ sin x dx +P
!O# 9M! V( ! V4
2 N
dx ,G ( x − − x ) T%! x − − x @Q5 @ ' x = S + = x − − x = (x − )t V+ i: ^&&
p f
t t −
dx √ √ , x ( + x ) √ √ - - + x + x √ √ dx, ) dx, ) x x dx ) x + x dx, ) , x +x √ dx ) x + x dx, ) , x + x dx x dx
) dx, ) , ( + x ) + x dx dx √ ) , ) , x +x x +x dx dx ) √ ) , , √ x ( + x )/ x + x x dx dx ) , ) , +x + x - ) x + dx, ) x − x dx, ( +x ) - dx
) , ) x − x dx. x + x - √ ) tan x dx )
+C ln |t + | + t+ ln x + + x + x +
=
(t − )/
+ D!3 L QG L ' P
t + t+ dt (t+) t − + t − (t+)
= + x + x + - t + t + = dt = t+ (t + )(t + )
x− ( + x )−/
=t =
< x + = t − xt Tx + x + = (t − x) + + =dx = t + t + dt < x = t − ^&& (t + ) (t + ) -
+ x
x + x + = t − x
dx
-
=
= −
p f L ,G # V+ i: mH Ta = > S
-
dx
8" & QG D!3 & ? T%! S 5& y = P (x) P x, ax JF
2
U%
) #
+ bx + c dx
]%PG $ ]%1 <@85 . <#:Q#:*8 '
-
um ( − u )k du =
= -
sin
k+
W 8 "#:*8 '
^&& = − x = (x − )t T(x − )( − x) = (x − ) t + =dx = −tdt < x = t +
x cosn x dx
(t + )
(sin x)k cosn x sin x dx
=
-
( − cos x)k cosn x d(cos x) − ( − u )k un du
= =
=V+G& ,G 4 U& L %! :
2
L ,G + < u = cos x V+ i: ^&& =%! m = =
u
=
−
u
+C =
cos x −
-
=
=%! m
=
−
u
sin x −
+
u
-
cos x + C )
2 N
)
− =
)
2 N
(u + u − u (u − )
− ln |u − | u− ln |u + + + u+ ) u + + ln +C u −
)
−x d
x−
#
+
-
dx , x − x + x +
-
dx −x −
,
- ) x + x − dx,
)
-
)
x + x + ) , x + x + x + x+ x +x+ ) +x+ x +x+
< n = − L ,G + < u = sin x V+ i: ^&&
(u −
dx
-
sin x sin x dx = cos x dx cos x cos x u du sin x cos x dx = du = (cos x) ( − u ) u du = − (u − ) (u + ) - = − + + (u − ) (u − ) u− − + − du (u + ) (u + ) u+ =
-
dx , ) (x + ) +x−x
, (x − x ) (x + x + ) ) dx, x + ) dx , x+x -
) x x − x + dx,
+C
sin x + sin x + C
=
D!3 L QG L ' P
sin x cos x dx = sin x(cos x) cos x dx = u ( − u ) du = u (u − u + )du u
x − − x x−
=t =
-
=
^&& =%! m = < n = L ,G + < u = sin x V+ i:
-
dx dx = ((x − )t) ( x − − x ) −t dx t + (t +) = = − dt t {( tt ++ − )t} = − − + t + C
t x− −x − +C =
−x x−
-
sin x cos x dx = sin x cos x sin x dx = ( − u )u (−du) = u (u − )du
t +
-
-
−x+x +x−x
dx,
dx , ( + x + x)
x−
dx.
9=74 - 9! DO!D(7
%
[$ NF # [$ 0 _ %Q $
-
sinm x cosn x dx L +GQG Q@
=V+P / !& S 4W G &> 2Q 7[ n m G I @ V+ i: T"& : m S < u = sin x V+ i: T"& : n + < u = cos x
+
-
|+C
m
k+
-
sin x cos x dx = sinm x(cos x)k cos x dx = sinm x( − sin x)k d(sin x)
JI
]%PG $ ]%1 <@85 . <#:Q#:*8 '
W 8 "#:*8 ' 2B5
` I NA8 &4+ ^
m+n
=V+ ! u = tan x +a ++a L %Q ^
2
< n = − Tm = %Q ^ -
sin x dx = cos x u
=
-
+C =
sin x cos x
dx = cos x
cos x sin x
=
-
sin x cos x
×
2 N dx cos x
=
-
-
< n = − Tm = − %Q ^
45W G 2B5 -
2 N
+ <
-
cos x sin x dx = =
=%! tan x =
,: <
-
=
,: < u = tan x +a ++a L ,< +a ++a L < < V+ !
=
tann x dx
−
=V+ ! cot V tan x U& -
"
p ,G
cotm x dx
cos x u = cot x
-
m = −n @
-
2
x=
sin x
J1
-
x−
m
@
-
(cos x sin x) sin x dx − cos(x)
cos(x)dx −
sin (x)
sin(x) − sin (x) + C ^&& < m = < n = %Q ^
+C
2 N
- − cos(x) dx sin x dx = (sin x) dx = - cos (x) − cos(x) + dx = + cos(x) = − cos(x) + dx =
tan x − tan x + x + C
=
-
=
n
dx - sin (x) − sin (x) cos(x) dx − cos(x) dx − sin (x) d(sin(x)) x−
−
tan x dx = tan x dx − cos x dx − tan x dx = tan x cos x - = u du − dx − cos x u −u+x+C = u du − du + dx =
sin(x)
=
& 6
2
- 45W G NA8
` I
D/ & T<_Q 24 < . ! L Q: L V+ B + cos(x) − cos(x) cos x = , sin x = , sin(x) . sin x cos x = < m = < n = %Q ^ ^&&
√ √ tan x tan x dx = dx sin x cos x sin x × cos x cos x √ √ du √ = u + C = tan x + C = u
%Q ^
−
+
(u − ) (u + ) (u + ) + + + u (u − ) (u + ) u + ln |u − | − |u + | + C u − u − u − ln + +C u + u (u − )
=
^&&
tan x + tan x − cot x + C
m + n = −
−
u + u + ( + u ) du = du = u u u + u − + C = u ++ du = u u =
sin xdx
=
sin x cos x −d(cos x) du = =− ( − cos x) cos x u (u − ) - # = − + + u u (u − ) $
u du
×
cos x
-
dx -
-
2 N
< n = − L ,G + < u = cos x V+ i: ^&&
sin x cos x
tan x + C
= −
-
^&& < m + n = −
-
dx
4W G
!
< m + n = − < n = − Tm = − %Q ^ -
=%! m
@
x − sin(x) + sin(x) + C
5^)^ < 345 . <#:Q#:*8 '
) )
)
-
dx sin x cos x tan x dx
√
)
) ) )
)
tan x dx,
-
)
,
)
dx sin x cos x
)
,
x sin x dx,
- tan -
x
)
+ tan
x
W 8 "#:*8 '
-
V tan x U&
dx √ , tan x
-
cot x dx,
tan x dx =
cot x dx,
=
√ sin x cos x dx,
=
= = -
dx, =
sin x √ dx. cos x
=
4\'\ 9 234 - 9! DO!D(7 8" & QG D!3 T%! S 5& P (x, y) d T
=
%
-
? )
P sin x, cos x dx x
sin x =
u +
,
−u cos x = , u +
2
V = 0=6 '. & -
dx =
du u +
-
-
= = = =
, = =
P (− sin x, cos x) = P (sin x, cos x)
− ln | cos x| + C
tan x − ln | cos x| + C
-
2 N
dx − -sin x dx − cot x dx cot x sin x u (−du) − du − sin x dx + dx − u du − - sin x − u du − udu + dx
= −
cot x
u
+
u
+x+C
cot x +
cot x + x + C
D!3 L P ,G L ' P
2 N
-
dx
)
u u + u − u +
,G S
u
tan x −
= −
-
)
sin x
-
)
-
)
sin x dx, cos x
)
cos x dx,
)
sin x cos x dx, -
? )
)
n" & N @;& JJ
) )
-
)
,
sin x cos x dx,
) P (sin x, cos x)dx
−
cot x dx =
=
sin x du dx = − sin x u + udu (u + ) (u + ) - + − du (u − ) u + − − arctan u + C u− − −x+C tan(x/) −
-
=
du dx u + = u −u + sin x + cos x + u + + u + du = = ln |u + | + C u+ x = ln tan + +C
V = 0=6 '. &
-
u
.C L 24 & cot x U&
]GB & 24 ^ =u = tan V+ i: V+! U& ' L QG & L u
tan x tan x dx − tan x dx cos x dx − tan x dx tan x cos x u du − tan x tan x dx u du − tan x dx − cos x u du − udu + tan x dx
-
cot (x)dx,
-
2 N
-
)
sin x dx, cos x
)
dx √ , tan x
)
-
+
cos x dx, sin x cos x dx, sin x dx,
-
dx
-
, sin x cos x cos x sin x
dx,
dx , sin x cos x cos x sin x
dx,
E$0* <$ . 4 5^)^ 345 . <#:Q#:*8 '
W 8 "#:*8 '
3 4\'\ 234 - 9! DO!D(7
%
B#/( 9# ! L Q: L T G
? )
"
! & 24 ^ =u = tan x V+ i: T"& /& V+! U& ' ,G & L ]GB L u sin x = u +
sin (m − n)x + sin (m + n)x cos (m − n)x − cos (m + n)x sin(mx) sin(nx) = cos(mx) cos(nx) = cos (m − n)x + cos (m + n)x
-
-
-
sin( x) cos(x)dx = = sin(x) dx +
−
=
cos(x) −
-
sin(
cos(
sin(x) + sin(
sin( -
= =
x) + C
2 N
(sin(−x) − cos(x)) dx sin(x) dx − cos(x) dx
cos(x) − sin(x) + C V ,: ^+! '. &
-
-
−
2 N
-
+ cos(x) dx cos x cos (x) dx = cos x = cos x dx + cos x cos(x) dx = sin x + (cos(x) + cos( x)) dx = sin x + cos(x) dx + cos( x) dx =
sin x +
) )
D!3 L QG L ' P ) sin(x) cos(x)dx,
)
-
)
sin( x) + C
)
-
x dx. ) sin x sin(x) sin(x)dx,) cos x sin
) ))
)
dx , cos x + sin x +
)
dx
)
sin
-
)
sin( x) sin x dx,
-
x + cos x
sin x dx
)
+
)
sin x dx , − sin x
-
-
-
,
√ d( u) √ ( u) +
2 N
dx = sin x + sin x cos x − cos x du u + = u + uu+ − u+ u + du du √ = = u + u − (u + ) − ( ) √ u + − √ = √ ln +C u+ + √ tan x + − √ √ = +C ln tan x + +
dx , sin x + cos x
)
sin(x) +
=
D!3 L QG L ' P
-
du u +
V >= 0=6 '. &
x) sin( x) dx =
=
√ -
arctan(√u) + C
dx
x) dx
V ,: ^+< '. & -
=
x)
du u + u + u +
=
sin x + du = u + √
2
-
dx
, dx =
2
V >= 0=6 '. &
sin(mx) cos(nx) =
V ,: ^+Q< '. &
, cos x = u +
+ sin x
,
dx
(sin x + cos x) dx , ( + cos x) sin x
,
cos x dx , + cos x
-
+ tan x , − tan x
-
)
, sin x + cos x
) )
+
dx , + cos x
-
)
,
dx
-
-
dx cos x +
,
dx
, sin x + cos x sin x cos x dx, sin x + cos x dx , ( sin x + cos x) sin x dx
. sin x + cos x
U <@Q#:*8 <#4 <QQ\L $ 5^)^ E_ 5 . / 0*1 '
√
cosh t − sinh t cosh t − t + C √ ( + sinh t)/ − sinh t( + sinh − t+C / √ + (x + )
= =
=
√
− −
(x + ) x√+ arcsinh
+
(x + )
- x + dx,
# 4\'\ B] 4 - ./(0
8" & ,G @D!3 & ? ) T%! 5& P (x, y) P (x, ax + bx + c)dx U& L mH ax + bx + c < @B 2DC 8 & & 24 ! L 8 &
/
)
)
dx , (x − x + )
-
dx ( −x ) x +
+>P
3
234
,
dx , (x − ) x − x + dx ) . ( +x ) −x
)
9! DO!D(7
-
%%
8" & QG & ? ) . . ' P (x) P (x) sin(ax) dx P (x) cos(ax) dx V+ i: T%! n @D L 7.B$
V x + -
i: &
2
x x +x+
√
-
dx =
- √ =
sinh t −
=
sinh t i: &
/ 0 0 1 x x+
√
2 N
+
/ √ √ 0 √ 0 cosh tdt 1 × sinh t +
1
=+ D!3 V+ i: =
=
(x + x + ) cos(x) dx = =
= tan t
tan t+
mH = P n @D 7.B$ R(x) < Q(x) d
sin(ax) { Td ^+:X L +GN < < ^ i: L / && VP & vX < cos(ax) { _+ < vX < =V+P
-
P x, (cx + d) − a dx,
dx dx = (x + ) (x + ) + (x + ) x + x + dt ( + tan t) dt cos t = = sin t (tan t) (tan t) + cos t cos t d(sin t) − cos tdt +C = = = sin t sin t sin t − − x + x + = +C = +C √ tan t x+
I = Q(x) cos(ax) + R(x) sin(ax) + C
(x + x+ ) cos(x) dx ,G
x, a + (cx + d) dx,
V x +
P (x) sin(ax) P (x) cos(ax)
-
P
L 2< TS D Tcx + d = a tanh t cx + d = a sin t w Tcx + d = a sinh t cx + d = a tan t w0 =cx + d = a cosh t cx + d = a sec t w> < e7e U& ' & Td ]GB L mH < =V+! QQ]P
- - (x + x + ) dx, ) x − x − dx, -
-
)
+
x dx , x +
- - ) x − x + dx, ) x − dx,
)
dx, x, a − (cx + d)
-
)
-
P
-
)
+C
)
%
S 9=O!D(7 9!3 9OOYM
t)/
D!3 L QG L ' P )
W 8 "#:*8 '
=
(A x + A x + A ) cos(x) +(B x + B x + B ) sin(x) + C
=
)
√
√ √
sinh t −
cosh tdt -
sinh t cosh tdt − cosh dt + cosh(t) dt cosh td(sinh t) −
* U 5 DZZ= 4 DZZ= "# ,'
W 8 "#:*8 '
" QG L ' P )
) ) ) ) )
-
(x − ) cos(x) dx
)
(x + x + ) cos x dx
)
-
+
x cos x dx
(x + x + ) cos(x) = (A x + A ) cos(x) −(A x + A x + A ) sin(x) +(B x + B x + B ) cos(x)
(x + x − x + ) sin(x) dx
+(−A x + (B − A )x + B − A ) sin(x)
+ B = (A + B ) = A + B = −A = (B − A ) = B − A = TB = / TA = " + G ! ^ L
T^&& =B = / < A = / TB = / TA = / V
(x + ) cos(x − ) dx (x − ) sin x cos(x) dx
(" S 4 DZX: 3 DZX: !"
-
*%
"& U& < y = v(x) < y = u(x) S -
-
!
v (x) = vn (x) =
(x + ) cos(x)
2 N
V+ i: =
x sin x dx = (A x + A x + A x + A ) cos x
V T< ^ ^+:X L +GN &
v (x)dx,
x sin x = (A x + A x + A ) sin x +(A x + A x + A x + A ) cos x
vn− (x)dx
+(B x + B x + B ) cos x
24 ^ -
+(B x + B x + B x + B ) sin x + C
V+ [5 <
·········
(x + x + ) cos(x) dx =
+ (x + x + ) sin(x) + C =+ D!3 x sin x dx ,G
" DZB & DZ_B @+A/ L H H @ ! & L @+A/ <: P& d @+ _+ < +A/ ^ =. 2DE ="&
v(x)dx,
(B x + (A + B )x + A + B ) cos(x)
=
(x + x − ) sin x dx
v (x) =
(B x + B ) sin(x)
=
x sin x cos(x) dx
-
V T< ^ ^+:X L +GN &
−(B x + B x + B x + B ) sin x
u(x)v(x)dx = u(x)v (x) − u (x)v (x)
=
+u (x)v (x) − · · · + (− )n− u(n−) (x)vn (x) +(− )n u(n) (x)vn (x) dx
(−B x + (A − B )x +(A − B )x + (A − B )) sin x +(−A x + (A + B )x +(A − B )x + (A − B )) cos x
@D 7.B $ ' y
= P (x)
S
U- !
G d T"& n
P (x)eax dx = P (x) P (x) P (n) (x) − + · · · + (− )n n+ = eax +C a a a -
+ A + B = A + B = =
−B = A − B = A − B = A = A − B = A + B = TA = TA = " + G ! ^ L
< B = TB = TB = − TA = − TA = + =B =
-
P (x) cos(ax)dx =
)0
x sin x dx = (x − ) sin x + x( − x ) cos x + C
HN.4 >$ 7 2'
W 8 "#:*8 '
D!3 L QG L ' P )
) ) )
x e
√ x
)
dx,
-
)
xex sin x dx, ( + x ) cos dx, -
x e−x dx,
) )
-
!
(x − x + ) sin x dx,
-
8 & B & V In =
-
-
eax cos (bx)dx,
P (x) sin(ax)dx = # $ cos(ax) P x) P () (x) = − P (x) − + − ··· a a a # $ P () (x) P () (x) sin(ax) P (x) − + − ··· + C + a a a
x ex cos x dx, xex sin x dx.
GK-3 ;# 6 -
=
+
tann x dx
1%
; A "
-
tann x dx i: & Td(tan x) = ( +tan x)dx
# x ex dx = ex
-
tann− x(tan x + ) dx −
= =
< I =
-
dx = x
2
tan x −
tan
"
-
tan x + I
tan x −
=
=
tan
=
x−
Tu =
(x −
#
x −
# x −
x
x +
+
$
2 N
x = =
tan x + I x + tan x − I
tan
=
) + x + C )>
-
2 N x
$
+C
x + x) sin(x)
2 N
V
u eu du
√ x i: & < 0= -
tan x − I
tan x( tan x − tan x +
+C
eu u − u + u − u + + C
x ln x − ln x + ln x − ln x + + C
=
V = I=6 '. &
cos(x)
(ln x) dx = =
x( tan x + ) − ln | cos x| + C
tan x dx = I =
$
x − +
Tu = ln x i: & < 0= F=6 ,: ^+Q< '. &
=
-
=
tan x dx = I = tan x − I = tan x − tan x − I
V
+ (x − x + ) cos(x) + C
tan x dx = − ln | cos x| + C
V = I=6 '. &
=
sin(x) x cos(x)dx = +
I =
-
-
tann− x dx
tann− x − In−
n−
x −
x
!
V 0= F=6 ,: ^+< '. &
tann− x tan x dx
=
2
0= F=6 ,: ^+Q< '. &
In
#
$ P ”(x) P () (x) P (x) − + − ··· a a # $ cos(ax) P () (x) P () (x) P (x) − + + − ··· + C a a a sin(ax) a
F=6 ,: ^+! '. &
2 N
√ sin x dx = u sin uudx u sin udu
− cos u(u − u + u) + sin u(u − u + ) + C √ √ − x (x − x + ) cos x √ +C + (x − x + ) sin x
V
W 8 "#:*8 '
HN.4 >$ 7 2'
= − sinn− x cos x +
(n − ) sinn− x cos x dx
= − sinn− x cos x +(n − ) sinn− x( − sin x)dx
a>
V+ i:
I
=
I
=
m
In−
=
=
dx = x + C
=
-
n
sin x dx =
' a
,G G.
sin x dx = − cos x + C
sinm x cosn x dx
V+ i:
Im,n
=
; A ! "
In+ =
= (m − ) sin
x cos x( − sin x) n
,n
-
n
− (m + n)Im,n
^&& <
V P dP dx
− sinm− x cosn+ x m+n m− I + m + n m− ,n
= sinm+ x cosn− x i:
na
w =6 x
& & 2j&
= (m + ) cos x sinm x cosn− x
−(n − ) sinm+ x cosn− x
n − n
a
In
x dx +C = arctan a a x +a "
V u = x +
+
arctan
,G In V+ i:
-
(x +
)
sinn x dx
; A "
+C
24 ^ ="&
m
= (m + ) sin x cosn x -
−(n − ) sinm x( − cos x) cosn− x
In
= (m + n) sinm x cosn x
= =
−(n − ) sinm x cosn− x
)9
u I dx = I = + (x + x + ) a (u + a ) a u u = + + I a (u + a ) a a u + a a u u I = + + a (u + a ) a (u + a ) a u u = + a (u + a ) a (u + a ) u + . arctan + C a a a x+ x + = + (x + x + ) (x + x + ) √ √
−(n − ) sin x sinm+ x cosn− x = (m + ) sinm x cosn x
x + (x + a )n
< a = i: & TO& 3& & B &
x cos x − (m + n) sin x cos x m
n
sinm− x cosn+ x = (m − )Im−
=
x
√
+
Im,n
-
V n = L &
−(n + ) sinm x cosn x m−
(x + a )n
+
-
= (m − ) sinm− x cosn+ x − (n + ) sinm x cosn x
<
∈ N
−nx dx (x + a )n+ x (x + a ) − a + n dx n (x + a ) (x + a )n+ dx x + n n (x + a ) (x + a )n dx −na (x + a )n+ x + nIn − na In+ (x + a )n x − (x + a )n
-
dP = (m − ) cos x sinm− x cosn+ x dx −(n + ) sin x sinm− x cosn x
= (m − ) sin
45; NA8 &4+
8 i: & 24 ^ ="& sinm x cosn x dx V P = sinm− x cosn+ x
m−
= dx
V
In
-
; A "
dx (x + a )n
=
DZ_B & DZ_B \< L ! & < dv
+
-
dx
(x¾ + a-¾ )n
i: & 24 ^ =In
= − sinn− x cos x + (n − )In− − (n − )In
− n− sinn− x cos x + In = n n
-
sinn− x sin x dx − sinn− xd(cos x)
-
sinn x dx
- . / 0*1 I'
W 8 "#:*8 '
V O& Q: L ! & -
dx
+
"
sinm+ x cosn− x = (m + n)Im,n − (n − )Im,n−
= I−,−
sin x cos x − − >=6 = sin− x cos− x + I − − ,− − >=6 = sin− x cos− x − sin− x cos− x + I + ,− −
=
^&& < Im,n
sin− x cos− x
sin− x cos− x + I ,− − sin− x cos− x − sin− x cos− x
− + sin x cos x + ()I, sin x + C − − − sin x cos x sin x cos x cos x
=
h SL& ,: ' T P cosn x dx,
)
) ) )
cscn x dx, -
xn dx x +a a
n
x (ln x) dx,
) ) ) )
sinm+ x cosn− x
m+n
+
−
9=6 =
=
+P
w0=6 x
=6x Q: L 8 @ ! & TIm,n Q@ & ^&& %Q $ L 8 & Tn < m L < A ^ ! < w0=6 x < w V+! L -
# "
-
n− I m+n m,n−
I,
=
I,
=
I,
=
I,
=
dx = x + C -
sin x dx = − cos x + C cos x dx = sin x + C
sin x cos x dx =
O& n< Q: L ! &
sin x + C
" "
V
secn x dx, -
-
xn eax dx, -
( )
dx , (x − a )n n ax
x e
()
sin x cos x dx = I, = =
−
%3 W(& & TK+ _: L ! 2N @P & =" 5B ' j: L ^+.P
K+
int(x/(x2 − 3 ∗ x + 1), x) −−−−→
a2
sin x cos x +
sin x cos x +
I
,
I ,
I ,
sin x cos x + sin x cos x − + sin x cos x + I,
H%
−
sin x cos x +
m
' a
sin x cos x +
-
n
sin x cos x +
=
int(x ∗ sin(a ∗ x), x) −−−−→
sin x cos x +
−
=
@D!3 ! 7 24 E- ; A ,G U& f(x) d T%! int(f(x),x) ,G T" ! Int L int & S =%! +GQG +a x < =" P( D!3 < " ^. 8" & ,G =V+ ! value ! L %! : d @D!3 & . & K+ sin(ax) − ax cos(ax)
−
()
+, - ./(0
sin x cos x +
=
cos(bx) dx.
−
−
sin x cos x
x+C
sinm x cosn x dx
; A "
L T 2B5 S-= I 2Q 7[ 4-NA8 &4+ %:S + TF= I=6 %./ w0x < w x Q:
sinm+ x cosn+ x m + n + I = + I w>=6 x m,n
Im,n
m+ ,n m+ m+ sinm+ x cosn+ x m + n + =− + Im,n+ m+ m+
w9=6 x
D Im ,n & Im,n Q: ^ L ! & = n < m d
)6
W 8 "#:*8 '
- . / 0*1 I'
=V+! & DZ_B ! 7 24
-
u du
√ √ 3 5 1 2 5 ln x − 3x + 1 − arctanh (2x − 3) 2 5 5 K+ Int(u ∗ tan(u2 ), u) −−−−→ u tan u2 du
& < .
DZHK G DZHK ? )
8" & ,G DZ_B
K+ 1 value(Int(u ∗ tan(u2), u)) −−−−→ − cos u2 2
d '. & T%! student[intpart](I(x),u(x)) DZ_B & DZ_B @C/ L mK! < u=u(x) " i: I(x)-,G '. & . & =" ! u dv = uv − v du ! K+ k
! 7 24
8" & ,G +a ++a d T%! student[changevar](R(x,u),I(x),u) +a ++a V+P x +a { & %! QG I(x) x { & u d %! ;& R(x,u) TV+P d { & ,G & %! B +a u < V . +& ! '. & T . & =V+& d
student[intpart](Int(x ∗ In(x), x), ln(x)) −−−−→ ln(x)x(k+1) x(k+1) − dx k+1 x(k + 1) u =
i: & DZ_B & DZ_B \< L xk ln(x) dx ,G =" ! dv = xk dx < ln(x) cd
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
E- )& b b
student[changevar](u=sin(x),Int((sin(x)) ∧ K+ . 3cos(x), x), u) −−−−→ u3 du u = sin x +a ++a L sin (x) cos(x) dx ,G
)F
! #$ "$ -
b
=F 8" &x V+P f (x) dx . & < + b a a V+& V+ ^&& qw" B -
b
f (x) dx = lim I P, ξ |P |→
a
& #P G d T + 4 & |P | /< " B =. P + %+& &
9!Y,O!D(7
*
[ 5 [a; b] @L & & % ! 5 & y = f (x) + i : 3 Ty = f (x) U& . & <3 @+ % =S =V+ D!3 V+P x = b s < x = a s TP x & N + / [ 5 fk 5 : " " L 8 fk % L p & & mH =V y% z =V+ ( T[a; b] @L& &
>! V! ' L p
!
N L 54 QD
P : a = x < x < · · · < xn− < xn = b
$> > & %./ n & [a; b] @L& TL: ^+$ P =%!
^+5 ,G [5 =F 8"
^+hH < O& L B< 24 ,G ' N 24 ξ +
N {! ( & ^ =L {N V+G& X ξi ∈ Ii S %! ^"< =]H P ,G O& {N I P, ξ G d T" e f (ξi ) T" / f (ξi ) V+G& X ξi ∈ Ii S < T& " N+/ & =& P ,G ^+hH {N I P, ξ G d V
@L& L L: P
= {xi }ni=
Mi
=
mi
=
V+ i:
!
< %! [a; b]
sup f (x) xi− ≤ x ≤ xi
inf f (x) xi− ≤ x ≤ xi
@L& ,X =i = , , · · · , n Ii = [xi− ; xi ] V+N T24 ^ =V+P Δxi = xi − xi− . & i < V+P #P . & < + P n 24 & < |P | . & P
MV!g
>!V! /
|P | := max
Δx , Δx , · · · , Δxn
>!V!
(Q C ξ = ξ , ξ , · · · , ξn S =V+ [5 V+ [5 24 ^ Tξi ∈ Ii i P DZL & "& & +p
(! "! h01 C ^ =I(P, ξ) := ) f (ξ )Δx =V+ ξ " iK" < P L: n
i
i
i=
& y = f (x) U& V+hS 4 ! < %! [a; b] @L& P DZL& %! I && d n L P = {xi }i= L: P DZL& " %: δ > Tε > ξ = {ξi }ni= +
N L ( P DZL& < |P | < δ [a; b] f I %Q ^ =I P, ξ − I < ε V+"& "
! "!
>! ! "!
)I
\](! "!
W "#:*8 ,
<#\-Q#:*8 ,
-
b
& =%! && < B f (x) dx V+ i: w a L: P L & B< δ > T (Q ε > P L +
N L ( P < |P | < δ & [a, b] L P = {xi }ni= G 2DC & =|I(P, ξ) − | < ε V P & ξ = {ξi }ni= −
$ ξ
ε
ε
< I(P, ξ) − <
ε < f (ξi ) < Mi + (b − a)
Mi −
CJ h01 H h01
w =F x
' Tε > L& TMi [5 & B & B<
∈ [xi− ; xi ]
@L& & y = f (x) U& N .+ < H! {+ &
G d T"& !+H f S " Bx ="& Ii = [xi− ; xi ] w="& .++ .P .+ < ._ .P H! & [a; b] L: & %D f U& < 24 & T{+
ε (b − a)
I(P ) :=
i=
) ) ε Mi Δxi − Δxi < f (ξi )Δxi (b − a) n
<
n
i=
n )
ε Mi Δxi + (b − a)
i=
i= n )
Δxi
V TH! %+4 & B & T^&& < ε
I(P ) −
< I(P, ξ) < I(P ) +
−
ε
< I(P, ξ) − I(P ) <
T& 24 & = =
2
-
b
f (x) dx =
lim I(P ) =
|P |→
f (x) dx = lim I(P ) =
|P |→
a
^&&
|P |→
-
mi
=
Mi
=
-
I(P ) =
=
i= n ) i=
=
Mi Δxi = xi −
n )
i=
n ) i=
n ) i=
(Δxi ) ≤
n )
i=
n )
Δxi
-
b
b
f (x) dx ≤
f (x) dx. a
a
b
f (x) dx 8 & : < LO
" ! - b - b B f (x) dx < f (x) dx %! ^ "& B
<
a
a
=" 8 ,G ! P N 24 ^ ="& && .b
V+ i: =
a
f (x) dx =
V+S i: w[Q A7S" T^&& =%! d } N
.b
a
f (x) dx
¯ ) = lim I(P ) = lim I(P |P |→
|P |→
L & B< δ > T (Q ε > P L & TmH V |P | < δ [a; b] L P L: P < I(P ) − < ε
,
< − I(P ) < ε
L: & ξ = {ξi }ni= +
N L ( P L & V T|P | < ε P = {xi }ni= i< I(P ) <
n )
mi Δxi ≤ I(P, ξ) =
i=
n )
Mi Δxi = I(P )
i=
+ <
−ε = I(P ) − < I(P, ξ) ≤ I(P ) − < ε
(xi − xi− ) − x
|P |→
B< ,G ! ^ ^+& GG
D
xi (xi − xi− )
xi− xi =
f (x) dx := lim I(P )
a
+ n )
b a
-
b
f
inf x xi− < x < xi = xi− sup x xi− < x < xi = xi
-
T"& ]KQG [a; b] & f S %! ^"< =V+ [5
G d
S 2DE
+P =f (x) = x + i: 1 ! ="& / && d ,G N < %! ]KQG [; ] & L: P : = x < x < · · · < xn = V+ i: = 24 ^ =%! [; ] &
H ! "! < CJ ! "!
<
f (x) dx := lim I(P )
w0=F x
b a
b
=−ε < I(P ) − < ε V w0=F x < w =F x & B & T -
-
a
mi Δxi
i=
{+ & b a L y = f (x)
ε
ε
n )
I(P ) ≤ I P, ξ ≤ I(P ).
f (x) dx ≤
+ <
I(P ) :=
L (Q ( P L & %! ^"< =V+ [5 V Tξ = {ξi }ni= + C
a
i=
<
Mi Δxi
i=
+ n )
n )
lim
|P |→
i=
)1
n ) i=
f (ξi )Δxi
+ =|I(P, ξ) − |
< ε
^&& <
=%! && < B
<#\-Q#:*8 ,
W "#:*8 ,
V T%! 54 I(P ) − I(P ) = =
<
n )
P& < δ
(Mi − mi )Δxi
(f (xi ) − f (xi− ))Δxi
i= n )
δ
=
(f (xi ) − f (xi− ))
=
= f (x)
≤
" i: %! : mH =%! .
U& S
" !
=%! ]KQG G d
88 @ !+H L& ^ & T%! !+H [a; b] & f $ A7S" B< δ > ' Tε > P L & T+ =%! =|f (x) − f (y)| < ε G d T|x − y| < δ < x, y ∈ [a; b] S |P | < δ & [a; b] & L: P = {xi }ni= V+ i: , C T[xi− ; x ] & f G !+H +Q & T24 ^ =%! < mi = f (zi ) S & T B< yi , zi ∈ [xi− , xi ] + =Mi = f (yi ) I(P ) − I(P ) = n ) i= n ) i=
n )
(Mi − mi )Δxi
i=
n )
n ) i=
xi− xi − #
−
n )
−
=
n− ) i=
xi −
xi− (xi − xi− ) xi
n ) i=
Dri(x) dx
=
Dri(x) dx
=
ε ) Δxi = ε b−a
lim
|P |→
lim
|P |→
n ) i= n ) i=
=%+ ]KQG [;
d @.P mH =%! ^ Qe e " + ^ S 2DE _+Q d L 7 V8 - ]KQG
@L& & y = f (x) U& + i: # ! ]KQG [a; b] & f 8 & : < LO
" =%!
@ & P L& L ' ε > P DZL& %! ^ "&
x∈Q x ∈ Q
=%+ ]KQG [, ] @L& & & (Q L: ' P V+ i: Tp ^ & = /O < S C ' /O Ii = [xi− ; xi ] @L& =%! [, ] =mi = < Mi = ^&& T B< S C ' +
-
& 6=I=> N U& ' y = f (x) S U- !
G d T"& [a; b] & y = f (x) S _+ < T"& [a; b] @L& =%! ]KQG
xi− xi
Dri(x) =
ε Δxi b−a
=%! . P& <
$
'P. + %&E 2 N
(f (yi ) − f (zi− ))Δxi
< "& [a; b] & y = f (x) U& S ! =%! ]KQG G d T"& !+H @;N P 5 _&
[a; b]
mi Δxi =
-
i=
2
S 2DE T^&& =I(P ) ≤ I(P ) .P T:X L ]KQG [; ] & f (x) = x ^&& < I(P ) = I(P ) = / ="& / && d ,G < %!
n
=
n )
i=
δ(f (b) − f (a))
T"& !+H [a; b] & y
( − ) =
i=
2
≤
=
i=
= ε/(f (b) − f (a) + )
=
I(P )
i=
i=
=
n )
=
]
Δxi = ( − ) =
Δxi =
@L& & y = Dri(x) T^&&
^ %! d L +t+H O& [5 %! ^"< T5x ]KQG @Q@ U/< =G& 5Q; L Y;! $ u & +Q ^+.P & < %! 8+8 +& w,G B< x V P j: < . U: d k / T/ ' < +A/ =%S V+P L& d & k wLH ! QG & @Q@ & .<+ . V+ & " C& ^ =V+ v;5 w,G ^ : T5x +GQG < 8 [a; b] @L& & y
U& S ! ! =%! ]KQG G d T"&
= f (x)
=%! < 54 [a; b] @L& & f + i: A7S" P = {xi }ni= + i: w=%! & TQ<_ %Q 2DEx f $ T|P | < δ S T24 ^ =%! [a; b] & L: )J
W "#:*8 ,
<#\-Q#:*8 ,
L n" & P L& = I
=
−
+ i:
;
,···,n
(Ii
i=
m
P L & T /i ∈ Ii n< & T24 ^ ^+t.P =i > n P L & /i ∈ In+
,X)
=
≤
n ≥
/ε Tm
m(n − )
m
+
+
n )
≥ ε/( n+ )
n
+
m
n
−
/(k −
))
i: &
- /(n+) n - /n )
=
=
f (x) dx
lim
n→∞
−
n+
ε >
|f (x) − f ()| =
=
= = x = f (x )
P L& G d Tx = S √ V T|x − | < δ = ε f (x) =
=%+
x = S x = S ]KQG [; ]
x ∈ QS x ∈ QS
x <δ =ε
2 N
@L& P & f (x) = [x] Y+34 DZ_B U& +P =%! ]KQG TP < & +G !+H 24 ^ TI = [a; b] V+ i: = 5 TI @L& Y+34
N L DC I & y = f (x)
>
S S P 24 ^ i P L&
(n − n )ε
;i +
= ε & %! @+A/ && T+ =(n − n ) × (n − n )ε =%! ]KQG I & y = f (x) U& )= =F f (x) = [x] . _+ ; Q@ ^ =%! ]KQG [a; b] & F= =F @+ && ]Q < %! 8
U& +P w> ,e f (x) =
@L& &
T%! ]KQG [; ] @L& & f (x) = x U& + %&E w> =+ D!3 d ,G N mK!
(n − n )ε
&& P L& ^ ,X . < I ∩ Z ⊆ In ∪ · · · ∪ In G d
U& + %&E w0
[sin ( /x)]
x
_& B .P y = f (x) $ T )= =F @+A/ && T+ =%+ ]KQG [; ] & + < %! !+H x =
Ii := i −
& f (x) = x − U& + %&E I= =F L ! & w & d ,G N mK! T%! ]KQG [; ] @L& =+ D!3 9= =F L !
f (x) =
P <
< "& (Q ε
!
x
n→∞
I ∩ Z = {n , n + , · · · , n }
n dx n→∞ /(n+) n + i= n ) lim n→∞ (n + )(n + ) i= lim
= f (x)
≤
(Ii
n→∞
& y
k −
k=
f (x) dx = lim =
n )
k=
-
+P 24 ^ =%+ x y = f (x) 24 ^ Tx = V+ i: = B< {xn }∞ n= S C L QD L T%! !+H Q w-$x %! G.P x &
mn(n + )
,X) < ε < ε V Tm ≥ n i=
@+A/ s" T5 =
,]KQG [; ]
n→∞
lim f (xn ) = lim
+ ··· + m m +
<
/(n − ) − /n m
1 !
x ∈ QS x ∈ QS
x
f (x) =
···
+
=i = n+ )
L . P Ii ,X . TIi ⊆ [a; b] " %: $ Ii 2 ="& [a; b] & f G !+H
N . " Ii < "
,
In+
In
m
;
m /n − /(n + ) − ; + = n m n
/n − /(n + ) = ; − n m
ε
−
=
I
≤ f (x) ≤
.
n n+
< x ≤ n S x = S
< %! ]KQG [; ] @L& & Tn ∈ N /n 8" &
N f U& %! ^"< = =
)
f (x) dx =
/
n+
W "#:*8
! ,
-
=+ D!3 V 9= =F ,: ^+Q< '. & =
< %! ]KQG [; π] &
-
]KQG (Q @ & @L& P & L U& +P w6 %! x∈ / Q S f (x) = /n x = m/n ∈ Q, (m, n) = S
f (x) dx =
−
=
lim
−
n→∞ lim
n
n
− +i
f
i=
n )
n
))
n
n→∞ lim
=
(x + ) dx
− (−
n→∞
=
W "#:*8 ,
i= n )
i
− +
n
n→∞ lim
+
i=
=
@L& & f (x)
+
%! ]KQG [;
f (x) =
i=
U& +P T
2 N
U& & ]KQG i: & =+ D!3 L y = f (x) ,G T[; ] V 9= =F ,: ^+< '. & = -
f (x) dx = =
= =
− n
lim
n→∞
lim
n→∞
lim
n→∞
i=
n− )
n
i=
n
i n
− n
+i
f
n− )
= lim
n→∞
n(n − )(n − )
n =
-
)
x dx,
)
x dx,
)
-
- -
i=
(x − ) dx, (x − x + ) dx.
-
n−
(− )
f (x) dx
&&
-
f (x) dx
< a
[5 G d Ta = b S T
-
a
*
!
-
b
n=
(− )n+ /n i: &
/(n + ) < x ≤ /n S x = S
w1
@L& &
[a; b]
y = f (x)
U& S
!
G d T"& ]KQG
b−a ) lim f n→∞ n n
b
=
i=
a
b−a lim n→∞ n
n− ) i=
b−a a+i n
b−a f a+i n
a
f (x) dx := − f (x) dx b - b = f (x) dx = V+ a
3∞
=
4
< %! ]KQG [; ] @L& & =%! π / −
L @+A/ T"& " ^+.A ,G B< 4 ^ 2DE =P h ,G @D!3 & ! \< = @C & ^. C & +A/
f (x) dx
V+ [5 Tb
wI
i: T j: H TmH ^ L &&) ! = B " n; QG . %! ^ &
-
^ !D(7
/n = π / 8 i: & /(n + ) < x ≤ /n S x = S
=%! ' L S_& 5+DX C ' a + i: wJ U& +P −n −n −n a <x≤a S a f (x) = x = S
i
T " QG B< i: & ! ! + D!3 9= =F '.8& d L ' P N
L U& +P wF x = S x = S
i=
U& +P Tln =
&&
T%! C. @D!3 +A/ ^ & ^ .C Zj 2CfX +.8 & L+ d :5 & DQ
=w" B 6=>=F &x ,G
)
3∞
x dx
] @L& & /x − [ /x]
/n f (x) = - && f (x) dx
f (x) = n− )
i
= x
-
n
n )
n
)
n(n + )
n→∞ lim n + lim n→∞ n n + =
=
− (−
+ %&E w9 =%! 4 && d ,G f (x) = sin x
2
U& & ]KQG i: & ! − L y = f (x) ,G T[− ; ] @L& & f (x) = x +
W "#:*8 ,
W "#:*8
= M
n )
C < y = g(x) < y = f (x) U& L & ! V Tα < wa < b < c x c Tb Ta (Q
Δxi = M (b − a)
i=
=m(b−a) ≤
2
-
b
a
-
f (x) dx S 2DE & 24 &
-
f (x) dx, m ≤ ≤ M
a
a
B< c C T"& !+H g S -
-
b
)
a
a
T"&
f (x)g(x) dx = f (b)
a
b
g(x) dx c
2
L& d & y = g(x) < ]KQG [a; b] & y = f (x) S < a ≤ c ≤ b B< c C G d T"& 8 -
-
b
f (x)g(x) dx = g(a) a
-
c
b
f (x) dx + g(b) a
f (x) dx c
& f V+ i: T3& %+7 L " ! <& w x A7S" / {+ & m < M S T24 ^ =%! [a; b] x P L & G d T"& [a; b] & g U& N e < && mH =mf (x) ≤ f (x)g(x) ≤ M f (x) n ≤ g(x) ≤ M V >=0=F @+A/ L wFx %./ -
-
b
f (x) dx ≤
m a
m ^+& μ :=
f (x)g(x) dx ≤ M a
.
b a
-
b
f (x) dx +
&
f
-
g(x) dx, a
c
f (x) dx, b
.++ ._ {+ &
m(b − a) ≤
m
<
S w6
G d
M
b
f (x) dx ≤ M (b − a)
G d T-f (x) ≤ g(x) - x ∈ [a; b] P L & S wF b
a
g(x) dx a
& _+ f g G d T"& ]KQG [a; b] & g < f S wI =%! ]KQG
[a; b]
! < V+ 2DE w6x < w0x 8 A7S" V8 S %! ^"< =VK! & ^. C &
! w x V8 L mK! < V+ 2DE + %Q & w0x [a; b] & g < f V+ i: =S 2DE _+ − %Q TV+
δ > C T^&& =%! (Q ε > < ]KQG |P | < δ & [a; b] L P L: P L & " %: $ δ > T& 24 & =I f (P ) − I f (P ) < ε/ V |P | < δ & [a; b] L P L: P L & " %: $ L: P L & T24 ^ =I g (P ) − I g (P ) < ε/ V V |P | < δ := min{δ , δ } & [a; b] L P
I f +g (P ) − I f +g (P ) = sup f (x) + g(x) a ≤ x ≤ b
− inf f (x) + g(x) a ≤ x ≤ b
≤ sup f (x) a ≤ x ≤ b + sup g(x) a ≤ x ≤ b
− inf f (x) a ≤ x ≤ b − inf g(x) a ≤ x ≤ b = I f (P ) − I f (P ) + I g (P ) − I g (P ) ε ε + =ε ≤
b
f (x) dx a
. b f (x)g(x) dx ÷ a f (x) dx C ^&&
= / M < G !+H L T !+H U& & + N @+A/ && w0x B< $ c ∈ [a; b] V+S + [a; b] & g =μ = g(c) < %! | ^ @74 L V8 ^ 2DE w>x =+S / 3& _+Q d
b
f (x) dx ≤
f (x) dx a
b
-
b
a
[a; b]
b
f (x) dx ±
b b ) f (x) dx ≤ |f (x)| dx. a a
c
V TQ<_ f %Q -
-
c
-
b
a
f (x) dx =
2
f (x)g(x) dx = g(a)
-
a
k+ < %De L& d & g < ]KQG [a; b] & g < f S < a ≤ c ≤ b B< c C G d T"& Q<_ b
b
-
b
-
f (x) dx, a
a
a
-
b
(f (x) ± g(x)) dx =
f (x) dx, a ≤ c ≤ b
f (x)g(x) dx = g(c) a
2
-
)
b
f (x)g(x) dx =
αf (x) dx = α a
2
b
-
b
)
E- )4 < y = f (x) S ! < ._ {+ & m < M T]KQG [a; b] & y = g(x)
G d TP %fC ++a [a; b] & f < "& [a; b] & g .++ B< C
-
! ,
& L: P -
=" 2DE w0x {+ ^ & < S " B %! : w6x 2DE &
G d T"& [a; b]
b
f (x) dx ≤ I(P ) = a
0
n ) i=
Mi Δxi ≤
n ) i=
M Δxi
W "#:*8
! ,
W "#:*8 ,
x > P L & +P
x < ln(x + ) < x x+ /(x + ) V+ i: >=0=F L w0x
Tf (x) =
-
b
M
inf
=
sup -
x
dt t+
t+
t+
L w9x < a ≤ c ≤ b B< c C T^&& =V+ !
-
-
b
a
-
-
b
-
)
-
x
)
cos x dx +
)
dx
-
−x
-
π
-
b
-
π/
)
=
≤
-
π
)
)
f (a) + f (b)
≤
=
-
π
-
-
sin x dx
[x] dx
e−x dx
)
-
π
+x
−
dx ≤
2 N
- / =
-
=
+
e−x cos x dx
=
+
e−x cos x dx
>
-
-
sin x dx =
N V =0=F @+A/ L w>x - /
[x] dx
/
-
[x] dx
dx
/
/
dx
− + − − + − =
2 N
[x] dx
dx +
π
[x] dx +
dx +
- /
sin x dx
+ T
[x] dx +
- /
π
+c
- /
a
)
≤x≤
-
+
f (x) dx ≤ (b − a)f (b)
π
√
%./ & B & =+ D!3
b
-
=
sin x = +x
+ ( L QG L ' P %fC π/
+x
sin x dx = +x
G d T"& 3 < 54 f S _+ < (b − a)
| −
=
Tg(x) = /( + x ) Tf (x) = sin x + i: >=0=F @+A/ L ,< %./ M&; T^&& =b = π < a = < ≤ c ≤ π %P c '
f (a) + f (b)
a
+
√
2_
f (x) dx ≤ (b − a)
min
≤x≤
+x
+
=
| −
V 0=0=F @+A/ L wFx %.: L ! & T+
-
b
max
=
< 54 [a; b] @L& & y = f (x) U& S + %&E
G d T"& 5N -
2
[ sin x] dx
2,
=%! . P& <
+ x V+ i: ! 24 ^ =b = < a = −
M
/ b 0 b b 0 1 f (x)g(x) dx ≤ f (x) dx g (x) dx a a a
(b − a)f (a) ≤
=
=
& g < f S + %&E w_" ` 8 +& < x
G d T"& ]KQG [a; b]
c
2
m
f (x) dx
a
Tf (x)
b
f (x) dx −
a
dx
x + dx x + - ) ex dx
sin x dx x π/ - x dx ) + x
-
c
f (x)g(x) dx = g(a)
+ D!3 L QG L ' P DN N )
f (x) dx a
-
π
f (x) dx =
= (g(a) − g(b))
& L QG L ' P N ! + D!3 ,G @" S Z < [5 L ! )
b
- ac
a
x
f (x) dx a
f (x)g(x) dx − g(b)
= = λ dt < m ≤ λ ≤ M %P λ ]Q < V8 ^&& = /x + ≤ λ ≤ < ln(x + ) = λx 5 =" + p
c
f (x)(g(x) − g(b)) dx = (g(a) − g(b))
< t ≤ x = x+ < t ≤ x =
=
f (x)(g(x) − g(b)) dx ,G w>x V8
a
%./ = V T24 ^ =b = x < a = Tg(x) =
m
-
2 N
W "#:*8 ,
Z*% O ` W58 CD ,
|F (y) − F (c)|
= = =
- y - c f (x) dx − f (x) dx a -ay - a f (x) dx + f (x) dx a c - y f (x) dx
G d ) )
c
≤ =
)
M |y − c| ≤ M δ Mε <ε M+
)
=%! !+H c F + < & T^&& ="& !+H c ∈ (a; b) f V+ i: , y ∈ [a; b] S B< δ > ' T (Q ε > L S T24 ^ =|f (y) − f (x)| < ε G d T|y − c| < δ <
G d Tc < y < c + δ F (y) − F (c) = − f (c) y−c F (y) − F (c) − (y − c)f (c) = y−c y = f (x) dx − (y − c)f (c) y − c c - y y = f (x) dx − f (c) dx y − c c c y = f (x) − f (c) dx y − c c - y ≤ f (x) − f (c) dx y−c c - y ε dx < y−c c =
y−c
< y < c
%Q & 24 & =%! .
@+Q< U& ' F (x) S H5;[ c /- !
G d T[a; b] ⊆ (α; β) < "& (α; β) @L& & f (x) U& -
f (x) dx = F (b) − F (a)
a
<
n→∞
π/
- lim
n→∞
sinn x dx = xn dx = +x
- lim
→+
-
bε
lim
ε→+
dx
x +
aε
=
f (x) dx = f () ln x
b a
=+ 2DE >=0=F @+A/ L w x %./ w J =+ 2DE >=0=F @+A/ L w>x %./ w0) .Px =+ 2DE >=0=F @+A/ L w9x %./ w0 " i: S + ! 8 ^ L
G d Tf − := (|f | − f )/ < f + := (|f | + f )/ w=|f | = f + + f − < f = f + − f − =+ 2DE >=0=F @+A/ L wFx %./ w00 .Px =+ 2DE >=0=F @+A/ L wIx %./ w0> _+ f G d T"& ]KQG f S +P & wf g = (f + g) − f − g / mK! < %P
X( $L _ ^4 7 @A
b F (x) a
. & O& < %! %.! 2DC =P W.
=%! [a; b] @L& & L: P = {xi }ni= + i: A7S" TR SO @+A/ && i = , · · · n P L & T24 ^ < xi− < ti < xi B< ti C F (xi ) − F (xi− ) = F (ti )(xi − xi− )
*
< ^+5 ,G ^+&
D TW(& ^ L vP =%! ^+5 ,G /J FG ^ Y* & J &/K
b
a
b F (x)
lim
(y − c)ε = ε
P& < S 2DE c − δ 2
+ %&E L < ' P
-
P L& < %! !+H [a; b] @L& & y =F (x) = T%!
(a; b)
&
-
!
= f (x) x
U& + i:
f (t) dt a
x ∈ [a; b]
@+Q< U& ' F (x) 24 ^ =F (x) = f (x) x ∈ (a; b) P L& 5
f (x)
T%! ]KQG f $ =ε > < c ∈ [a; b] V+S A7S" B< S & M C ^&& < "& mH V+ i: =|f (x)| ≤ M x ∈ [a; b] P L & Ty ∈ [a; b] < |y − c| < δ S T24 ^ =δ = ε/(M + ) 9
Z*% O ` W58 CD ,
x
W "#:*8 ,
V . TmH
& %D b(x) < a(x) Tf (x, t) U& S ! 24 ^ T"& ]KN d dx
-
b(x)
f (x, t) dt
n ) F (xi ) − F (xi− )
F (b) − F (a) =
i=
= b (x) f (x, b(x))
a(x)
−a (x) f (x, a(x)) +
-
n )
= b(x)
i=
∂ f (x, t) dt ∂x
a(x)
n )
=
F (ti )(xi − xi− ) f (ti )Δxi
i=
∂ f (x, t)
∂x =%! t &
%&E i: & < x & %D f (x, t) M
2
V 9=>=F '. & d dx
-
= =
!
G d Tξ = {ti }ni= " i: S T^&& F (b) − F (a) = L(P, ξ)
+S & T =I(P ) ≤ F (b) − F (a) ≤ I(P ) + V+S + T|P | → & ^+:X L
x
F (b) − F (a)
sin(xt) dt = x
x sin(xx
-
x x
)+
t cos(tx) dx x
2 N
a
2 -
T
cos x dx = sin x + C -
- x √ d ln(x + t) dt = √ ln x + x dx /x x - √x − dt − ln x + + x x /x x + t
√ x √ ln (x + x) ln x + x √ + = + ln(x + t) x x /x √ ln x + x + ln x + = + √ − x x x
=
V T
2 N
V , +HP @C/ < 9=>=F '. & P =
-
-
V T
=
dx
dx
/
e−x dx = −e−x + C
e−x dx
-
x sin x lim x→ x lim sin x = x→ x
−x
−x
=
−e−x
=
−
2 N
−e
.x
(arctan t) dt lim x→ x x +
P
=
=
lim
x→
=
arcsin( ) − arcsin
/
π
lim
x→
(arctan x) = x
6
−
π
=
x cos x dx
e
2 N
& B &
=
π
2 N
& B &
V
=
π x sin x + cos x
=
(− ) − ( ) = −
π
−
arcsin x
x cos x dx = x sin x + cos x + C -
(arctan x) + x x +
√x x +
+ e =
= arcsin(x) + C
-
T
2 N
& B &
=
V , +HP @C/ < 9=>=F '. &
V
π/ sin x π − sin = sin
=
-
!
cos x dx
=%! . P& <
2
& B &
π/
√
√ sin( t) dt lim x→ x
f (x) dx
t cos(xt) dt
-
b
=
V , +HP @C/ < 9=>=F '. &
. x
lim I(P )
|P |→
-
x
) − sin(xx) +
x sin(x ) − sin(x
=
W "#:*8 ,
Z*% O ` W58 CD ,
n+n n ∞ ) − ln + +k n
& < [;
· · · + ln =
lim
n→∞
k=
- = =
− n
lim
n→∞
=
- x x ln( + x) − -
−
x+ dx
x+
D!3 L QG L ' P N
) )
−/
-
sinh
sinh
dx
)
−x dx +x
dx x + x+ − -
) arctan x dx
)
) )
| − x| dx
-
)
−
) ) ) ) )
n→∞
n→∞
√
-
x dx
n→∞
=
=
dx x + / π
)
+ ···+ n
+
n n
+
k=
k n
2# N
Tf (x) = xp Tp > i: & V 9= =F
+ p + · · · + np = np+ p p n p lim + + ··· + n→∞ n n n n n p ) k lim n→∞ n n k= p n − ) − lim +k n n→∞ n k= - xp dx p
lim
sin x dx π/ √
$
n − ) n + ( + k − n ) k=
dx = ln | + x| = ln +x
a = < b =
- π/ -
n
lim
+
+
=
n )
lim
=
+ + n
n
-
! !
- √
lim
=
=
dx cos x +
=
-
dx x +x - b - x d ) sin x t dt ) d sin t dt dx a dx a - x x dt d d ) ln(x + t ) dt ) dx x dx x x + t arctan(xt) dt ) d dx t .x
+ + ···+ n+ n+n #
n+ n→∞
=
) = /e ^&&
/(x + )
dx
= = exp( ln −
2+ N
i: & V 9= =F L !
=
= ln − x − ln( + x) = ln −
)
@L& & f (x)
ln( + x) dx
= ln −
- /
]
+ D!3 L < L ' P N
.x (arctan t) dt cos t dt lim ) lim x x→ x→ x x + . x t - x e dt sin t dt lim . x t
) lim t x→ x→ x e dt . sin x √ √ n tan t dt n! lim . tan x √ ) n→∞ lim n x→ sin t dt + ···+ n − lim + n→∞ n n n n n n lim + + ···+ n→∞ n + n + n +n
=
lim
n→∞
n
xp+ p+
= ln x
=
p+
n (n + )(n + ) · · · (n + n)
2% N
N
=+ D!3 V+ i: p ^ & =
an :=
Ty
n
n (n + )(n + ) · · · (n + n)
G !+H +Q & 24 ^ =
< V
:= lim an n→∞
lim an = lim ln(an ) n→∞ n→∞
(ln(n + ) + ln(n + ) + · · · lim n→∞ n
ln = =
=
=
F
ln
+ ln(n + n)) − ln n
lim ln(n + ) + ln(n + ) + · · · n→∞ n · · · + ln(n + n) − n ln n
n + n+ lim ln + ln + ··· n→∞ n n n
W "#:*8 7 #X* #X5 ,
W "#:*8 ,
G(g(t)) < F (t) ^&&
= G(g(t)) = f (g(t)) g (t) + B< C C T^&& = && M (a; b) & L =F (t) = G(g(t)) + C (Q t ∈ [a; b] P L &
V t = a L & :X
)
f (g(t)) g (t) dt = .α G(g(a)) = G(α) = α f (u) du a
=%! . P& < C = ^&&
2
2
V+ p f Tt = ln x i: & x t
^&& = ln x
-
dx x
= =
^&& = √
-
−
√
−x
=
=
π/ −π/
t+
dx =
π/
−π/
=
−π/
= tan (x/)
arctan
arctan
lim
exp
i: & x t
n
t
=
π
√
√
√
)
n→∞
)
n→∞
lim
π
+ ···
n
+
+
+ ···+
n + n
n
2#
h h .f a + ···f a + n n n n - a+h ln f (x) dx a
n
+
+ .
√
···
n
+
n n
+ 2DE L < L ' P
√+ · · · +
√
n
=
+ + ··· n − π + = n − (n − ) n
+ n −
^ !D(7 6 ! V( ! V4
-
b
β
f (x) dx =
f g(x) g (t) dt
α
M + L @C/ &&
= sin t
+
*
%! !+H [a; b] & y = f (x) + i: ! M < g([α; β]) = [a; b] & %! 5& y = g(x) < 24 ^ =(α; β) & !+H -
2 N
$
n n
lim
√ - π/ - arcsin x t × cos t sin t dt dx = x( − x) sin t( − sin t) π/ - π/ π = = t dt = t
n
a
√
h
+
2 N π/
+ sin
N +P ,e C & mK! %! exp ((π − )/)
n→∞
2 N
" p f Tt = arcsin( x) i: & = xt π/ < dx = sin t cos t dt Tx
- - dt dx dt +t = = −t cos x + t + +t + √ √ √
=
=
π + √
^&& π/
+
n
n→∞
( cos t) ( cos t) dt
π/ sin(t) =
n
( + cos(t)) dt
V+ p f Tt -
ln
√
-
=
π
lim n f a +
sin t i: & √ − < dx = cos t dt −π/ π/
=
x t
ln
t
n
&& L
t dt
lim
n→∞
ln
V+ p f Tx
dx x
n→∞
sin
]KQG < %De [a; a + h] @L& & y = f (x) + i: +P 24 ^ T%!
!
< dt = ln
lim
(n − )π · · · + sin n #
.b
F (a) =
-
)
f (g(x)) = f (g(x))g (x) -
t
A7S"
=F (t) = f (g(x))g (x) dx V+ [5 < t ∈ [a; b] V+S a =F (t) = f-(g(t)) g (t) t ∈ (a; b) P L & T24 ^ x =G(x) := f (t) dt x ∈ [α; β] P L & V+ i: , α i: , =G (x) = f (x) [α; β] P L & T24 ^ 24 ^ Tx = g(t) V+
-
g(t)
G(g(t)) =
f (u) du α
I
W "#:*8 ,
=
π/
cos θ dθ (sin θ + cos θ)
- π/
=
I
cos(π/ − θ) d (π/ − θ) (sin(π/ − θ) + cos(π/ − θ))
= -
2+ N
" p f Tt = π/ − x i: & ^&& < xt π/ π/ Tdt = − dx
a cos θdθ (a sin θ + a cos θ)
=
π/
W "#:*8 7 #X* #X5 ,
π/
=
π/
=
^&& -
I
=
π/
=
π/
-
I
dθ sin θ + cos θ
= =
V Tt = tan (θ/) i: & mH - I
=
=
= =
I
) )
e
cos bx dx = #π
= = =
=
Re #
=
Re
= =
=
e
a + bi
e
= eax Re(ebix ) dx $
dx
(a+bi)x
π
$
a − bi (a+bi) π Re (e − ) a +b
Re (a − bi)(e πa cos(πb) a +b − + e πa sin(πb)i) e
aπ
a +b
=
π
(a+bi)x
π/
+ sin x
π/
cos x + sin x
=
2, N
ax
dx +
dx
dx cos x + sin x π/ π dx = x =
-
π
cos x + sin x
2# N
s7 ( C L TL ,G N @D!3 & V+ ! -
dt
=I = π/ ^&& < T dx = − dt " p f Tt = π − x i: & π ^&& < xt π
−t + t +
dt √ ( ) − (t − ) √ √ √ − (t − ln + (t − √ ln √ +
=
π/
dt
+t t −t +t + +t - dt
-
-
π/
cos x + sin x cos x + sin x
=
cos t + sin t sin x
cos x
π/
-
sin t
π/
=
sin θ + cos θ dθ (sin θ + cos θ)
dx cos x + sin x sin t (− dt) sin t + cos t
-
=
sin θ dθ (sin θ + cos θ)
cos x
π/
π
x sin x dx + cos x
- (π − t) sin t (− dt) + (− cos t) π - π (π − t) sin t dt + cos t - π π sin t dt t sin t π − dt - + cos t - + cos t π π d(cos t) x sin x −π − dx + cos t + cos x
π −π arctan(cos t) − I
−π ×
−π
+π×
π
π
−I = −I =I = π / I = π / ^&& - π =%! 4 sin m x cos n+ x dx + %&E 8 & T"& I " ,G V+ i: = I = −I S 2DE %! : I = =
2% N
- I
=
sin
m
(π − x) cos
-ππ =
a(cos(πb) − ) + b sin(πb)
I =
1
(sin
m
x)(− cos
n+
n+
(π − x)d(π − x)
x) dx = −I
V x = a sin θ i: & a
a dx (x + a − x )
2* N
dx
W "#:*8 7 DZZ= 4 DZZ= ',
W "#:*8 ,
+P T"& 4 [Q( C b < a + i: w0I
-
π/
dx
(a sin x + b cos x)
D!3 L QG L ' P N
π(a + b ) a b
=
-
dx (x + ) x + - a ) x a − x dx
)
)
^ !D(7 6 DZX: 3 DZX:
%*
@L& " L& @L& ' & v(x) < u(x) S ! 24 ^ T"& !+H M [a; b] -
b u(x)dv(x) = u(x)v(x) −
b
a
a
-
& V8
u dv = uv −
v du
v(x)du(x)
= ln x
A7S"
V+ i: 1 ! + < v = x < du = dx/x ^&&
ln x dx
=
-
<
= =
^&& Tdv
= cos x dx - I
= =
π/ x sin x −
π/ π + cos x = −
)
2 N
< u = ex + i: + < v = sin x < du = ex dx
= sin x dx
< u = ex i: & k ^&& < v = − cos x
$
- x x −e cos x − −e cos x dx
=
e sin( ) −
=
e sin( ) + e cos( ) −
TI = e(sin( I=
e
)
a−x dx a+x
π
-
)
(x sin x) dx
π/
dx − sin x
π/
a
-
)
+ 2DE L < L ' P
-
f (sin x, cos x) dx =
π
-
-
π/
-
π
xf (sin x) dx =
b
f (x) dx = (b − a) a
-
-
π
-
=
- x e sin x − ex sin x dx
-
f (cos x, sin x) dx
π
-
f (sin x) dx f (a + (b − a)x) dx
π/
f (sin x) dx =
f (cos x) dx −π/
-
t
π/
f (x)g(t − x) dx =
t
f (t − x)g(x) dx
+P 24 ^ T &E C q < p + i: w00
# I
)
sin x dx
ex cos x dx
T du = ex dx V Tdv
)
dx
π/
π
)
2 N
V+ i: + < v = sin x < du =
u = x
π/
dx x
ln − x = ln −
= cos x dx
x cos x dx
x
=
^&& Tdv
x ln x −
x
dx
dx dx
) ) x+ a −x x( + x ) - π - dx x sin x ) ) dx cos x + sin x − x + - π dx ) ( + cos x)( + cos x) - π/ - π sin(x) dx ) ) cos(mx) sin(nx) dx cos x + sin x −π π
=%!
= dx
a
-
a
8 & B &
-
ex −
sinh x dx
)
b
2
Tdv
)
ln
ln
+
- ) x − x dx
-
-
!
= =
) + cos( )) −
(sin( ) + cos( )) −
+
( − xp )/q dx =
-%! s7l
−I
-
-
-
-
( − xq )/p dx
- − dx = = − @D!3
x − − x
w0>
+P T < b < a + i: w09
π
π dx = a + b cos x a −b
+P T < b < a + i: w06
π
dx aπ = (a + b cos x) (a − b )/
+P T"& 4 [Q( C b < a + i: w0F
-
π/
J
dx a sin x + b cos x
=
π ab
W "#:*8 ,
W "#:*8 7 DZZ= 4 DZZ= ',
(n − n −
= a
== =
)
(n − n −
= a
)
n
a
n + n
a
n +
| ! p ,: T ! <
-
b
<
u
a − x dx
N =
I
I
···a
-
]SB L mH < =S
ln x dx =
I =
-
e
-
ln x dx
= =
= b a −b −
−x
b
x b = b a − b − I + a arcsin a
b
b a a −b + arcsin
π/
cos
n
x dx =
a −x
In
= =
π/
b a
= (n − )
2% N π
= (n − )
= a In− −
n
-
−
te
t
dt
tdet
te
t
−
-
t
e dt
2+ N
In
n :X L =In = a n + -
I
= =
In−
cosn− x( − cos x) dx
In
0)
=
a
n ≥ P L& ^&&
a
(a − x ) dx a x = a x−
x sin x dx
π/
-
π/
-
(a − x )n dx = - a - a = a (a − x )n− dx − x (a − x )n− dx - a udv = a In− − a a (a − x )n (a − x )n dx + = a In− − (x) −n −n
−(n − ) sin x cosn− x dx cos
t e
t
a
n−
× × × · · · × (n) a n+ × × × · · · × (n + ) ="& In && $ %.! ,G V+ i: Tp ^ & In Tdv = (a − x )n− x dx < u = x i: & 24 ^ & %! &&
π/
-
t det
a
-
(n − )(n − ) · · · × (n)(n − ) · · · ×
et dt
(a − x )n dx =
π/ n− x sin x cos −
t
n 5+DX C P DZL& V+ %&E V+P -
cosn− x cos x dx
-
-
-
%! In $ %.! ,G V+ i: p ^ & = ]Q T dv = cos x dx < u = cosn− x < -
−
= e − et = − e
dx
V TI { & Q5
n 5+DX C P DZL& + %&E -
= −e +
L mH I = b a − b − I + a arcsin (b/a) +
I=
t e t
= −e +
dx a −x
a +a −x dx a −x - b = b a −b − a − x dx + a
^
= e− b
t et dt
t det
= e−
a − x dx
b = x a −x −
-
e
V ^ :S DZ_B & DZ_B & ! &
2# N
≤ b ≤ a
e
a −x
b
x t
+ <
+ i: =+ D!3 = a − x V+ i: p ^ & = + < v = x Tdu = − dx ^&& Tdv = dx
-
2 N
T dx = et dt ^&& =x = et V t = ln x i: &
In−
n n +
In−
a +
<#:8Q >$ 7 ,,
W "#:*8 ,
c) ln ab = b ln a
=In
d) ln (a/b) = ln a − ln b.
2
< < e < B< e C +P e
@L& & y = ln x U& G !+H L .Px =ln e = w=+ ! [; ]
I
=
2
=logb a = (logc a)/(logc b) +P
f (x) =
x
=
2g
=
T]KQG 5& f (x) + i: w00 V+ -[5 n ≥ P L & <
f (x) dx
^&& +
= (n − )In− − (n − )In
n − n I (n−) n − n − I = ··· n (n − ) (n− ) n − n − · · · × I n (n − ) × - π/ (n − )(n − ) · · · × × (n)(n − ) · · · × × (n − )(n − ) · · · × π (n)(n − ) · · · ×
=
n
wax & Z logb a := (ln a)/(ln b) [5 & f =+ %&E logb x & wex -
In
n− n In−
=
=
=%! . P& <
x
fn (x) =
fn− (x) dx
n P L &- +P T24 ^ x
fn (x) =
(n − )!
!
(x − t)n− f (t) dt
)
n, m ∈ N P L & + %&E w0> -
( − x)n xm dx =
)
m!n! (m + n + )!
)
w=+ ! f (x) = xm & 00 ^. L .Px
)
9! D7O ;# 6
**
)
! !
@L& & %! +. y = f (x) + i: [x; x + dx] '$ @5;/ + =%! " UL [a; b] s! [a; b] @L& S mH =%! df = f (x) dx DN %+:g V+ V+N %./ n & xn− < . . . Tx Tx
-
)
)
i=
)
b
f (x) dx a
)
2
@ < L 4 + V D!3 T < a < b P y 3 ,
! !
)
x dx
√ x dx
)
-
-
π
ex sin x dx
xm ( − x)n dx
)
π
x sinn x dx
-
)
arctan
ln x dx
sinn x sin(nx) dx
-
-
)
-
e
(arccos x) dx
n
π
-
-
)
x ln( + x ) dx
& & P && kN+/ [a; b] |P |→
n+
arctan
)
dx
-
)
i=
f (xi )Δxi =
cos
-
)
lim
x
π/
)
[a; b]
-
x e
)
x cos x dx
-
@L& %+:g T24 ^ n )
@L& %+:g T. ^ L +S L mH = f (xi )Δxi n )
π/
-
P : a = x < x < · · · < xn− < xn = b
& %! && kDN
dx
π/
x dx
π/
-
π
-
cosn x cos nx dx
π
-
cosn x dx π
-
√ x− dx
sin x
e−ax cos
n
x dx
π/
cosn x sinm x dx
b
(x − a)m (b − x)n dx a
-
a
xm
-
a
ax − x
(a + x )(
dx
n+)/
dx
24 & ln : (; +∞) → R 5+DX V GQ U& w0 . & k:4 T24 ^ =V+ [5 ln x := x dx/x %De C b < a S +P [5 ^ L !
G d T"&
(x − b) + y = a
=+
@L& P x 3 & ] @ j %! ^"< =
L 5;/ < L 4 VB V =%! [b − a; b + a] =%! [x; x+Δx] @L& && P x 3 & d j V+&
a) ln
0
=
b) ln(ab) = ln a + ln b
W "#:*8 ,
<#:8Q >$ 7 ,,
`0=F 8" &x =%! v = xw && d
N %C! mH T%! dK = V dm && 5;/ ^ * T+ w=" B && d * T^&& =dK = πx w δ dx 5 T%! & %! -
K=
-
r
dK = πw hδ
r
&x TV+ & y < Δx @C/ & 7+; 5;/ ^ S 4 @ ! V 24 ^ w=" B [Q`0=F 8" & & P && +; ^ < L dV
π x dx = w hδr
(π(x + Δx) − πx ) × y π(xΔx + Δx ) a − (x − b) πx a − (x − b) dx
=
= ≈
& %! && 4 VB V T^&& -
-
b+a
V =
b+a
dV = b−a
b−a
πx
a − (x − b) dx
V x − b = a sin t i: & -
' Y;! L ./ @D!3 w[Q >=F 8" U& < . ^+& <3 @+ % w
−π/
2 N
x + y = ay @ ! Y;! L ./ % =+ D!3 %! " & x + y + z = a @ s! V+! <&< 8" p Y;! L $ ' =
4 5" < P y 3 ^+& <L O V+ i: =V
24 ^ ="& p @ (, a/) @;N L & \j Y;! L " B @5;/ = ≤ θ ≤ π &x =V+S p %! θ + dθ θ c/ xOy @34 @;N 2j ( T24 ^ w=" B [Q`>=F 8" a a a sin θ, + cos θ && θ & +p T]Q q%! & && ;N d ! z=
π/
V = = =
πa πa
a − a sin t (a cos t) dt
π(b + a sin t) -
π/
(b + a sin t) cos t dt
−π/
b
t+
b
sin(t) −
a
cos t
π/ −π/
= π a b
5" & S T%D!3 ^ c! & %! B {QB ^ TV+ t& d < b 5" & & .C a
< d % A74 && 4 VB V 24 =S
θ a a −x −y = √ − cos θ = a sin
dl = a dθ/ && θ + dθ θ @5;/ ,X :X L =%! T%! dA = zdl && p % T^&& =%! + =dA = (a /) sin(θ/) dθ 5 -
π
π
dθ = a sin
π θ = −a cos = a
A =
-
m B & VB %! LO * N $ w %+& VB S -VD& r 5" & ^+L @ Y;! L h -%! N$ N T" < +h< !d & <3 @+ % w0 =+&+&
2 N
@C/ 5" Tδ QG$ & ^G.P @ ! + i: < \3 , w %&E <L %C! & h < =V+ D!3 ! DB * =V+P ! 3 TV V+! ! U;N V+ i: %! ^"< =V / P x 3 & C/ < P y 3 ! p +; OrBh @ ! < L T%Q ^ ="
@L& & ! < L ! 5;/ ^ B =V+ D!3 %! " 4 [x; x + dx] x && < 3 d @74: < %! dm = πxhδdx && r
! !
x / + y / = a /
@D!3 w + V @D!3 w[Q 0=F 8" DB *
θ dθ
00
HP 1 2,
W "#:*8 ,
[Q`9=F 8" &x %! x = a d & 3 mH ^+& <3 % V+P 7 ^ mH =w" B V+ D!3 x = a x = L y = x < y = a
√ x ax − dx a a √ x/ x a a − = / a -
S
=
=
a
+&+& x + y = a @ ! L ./ d % w9 xOy @34 & < %! \& y = z @34 s! =%! <3
5" & V+ Y;! & < : <+ %&7; w6 Vh/ 2j& < %! MD; d Y;! & d ;/ r =%! <Xl d
2 N
s ^+& <3 % =+ D!3 x − x V+P & .! < s & Tp ^ & =
y =
.! < x + y
√ ax
x+y = y = x − x
=
⇒ x = x ⇒ x =
x=
@+ 8" Tx = .! c@ 8 & B & mK! 7 mH =w" B `9=F 8" &x V+ V+! p L y = −x < y = x − x ^+& % @D!3 L %DC x = x = S
=
- (x − x ) − (−x) dx
=
x
−
x
d %+. & L @p3Q P %C! w> @;& ^++5 %&7; =%! {! < S m %+. N (t = ) L DZD 4 =" [j d N ,! T = %"]S L mH
=
@B t d R< 2 %! " 75 & & wF && S ! − ~
− ~ × t + ~ × − t & d S ' S & + ( =%! $ B 4 & d ! < B 4 =%! LO 2 _+ h
& 4 L s! " wI =+ D!3 " H
& : ' ! ' : & 4 w1 ! W" : ^ < V+"& " L+ <+ S7+ ' d : & * _+ $ T"& " ,X -%! L+
GN 0
0 ,e w
,e w[Q 9=F 8"
1*
+ i: x I FG & )&/- G T3 $ " ! & <
^+& <3 % T P " !
S=
b
f (x) − g(x) dx
a
)
y=x ,
x + y = ,
%! && [x; x + dx] @L& & ! +; % L =%! w=" B `>=F 8" &x =dS = f (x) − g(x) dx &
)
y = /(x + ),
x = y,
< ax =
)
x +y =
)
(x/) + (y/)/ = ,
)
y = x,
) y = − x / ,
,
y = x /,
x =
y = x + sin x,
(y −
y = ,
2
.! < ^+& % " ! =
),
≤ x ≤ π. 0>
y
ay = x ax = y
⇒ ax =
x a
⇒ x = a ⇒ x = a
W "#:*8 ,
HP 1 2,
√
√
V+ D!3 y = y = − L S
= −
= −
−y
√ √
-
=
#
√
-
−y
√
−
$ dx
y
y
dy −
y
)
√
−
)
√
y + arcsin √
−y
√ √
=
+ arcsin
=
√ + arcsin
D!3 " @ & +3 L ' P & <3 % +
−
−
√
−
√
x / + y / = a / , x / y / ) + = ,
√
√
)
x +y =a ,
y = x(x − ) ,
)
y = (x − )(x − ) ,
)
x + y = x + y .
+ i: y I FG )&/- & G T3 $ " ! =g(y) ≤ f (y) < !+H [a; b] @L& & x = g(y) < x = f (y) s Tg U& Tf U& . ^+& <3 % 24 ^ & %! && y = b < y = a -
b
S=
f (y) − g(y) dy
a
3 < & <3 % T P ! " ! + D!3 " √ √ x+ y = ,
) x+y = ,
y
)
x=y ,
x=
)
x = − y /,
x = y /,
)
x + y = ,
y = x,
+ ,
=" B [Q`6=F 8" &
2
< P y 3 ^+& <3 % " ! =+ D!3 x = y ( − y) 3 L %! ! @B L wy { &x x U& " B = : ^&& =w-$x %! c. y = < ]S y = y = y = L x = < x = y ( −y) ^+& % %! V<+& %!&
)
x − y = , x + y = , a+ a −y − a − y , y = , ) x = a ln y
- S
=
=
D!3 " +3 L ' P & <3 % +
)
a x = y (a − y ),
)
x = ( − y ) ,
AB8 )&
) (x
&
G
-
β
α
−
=
& 4A T3 $ " " !
(r (θ)) − (r (θ))
y
(a − y ).
(r (θ)) − (r (θ)) dθ
dθ dS = π π(r (θ)) − π(r (θ))
U& < . ^+& % w[Q 6=F 8" ,e w s! x
dθ
i< U& < . ^+& L " B %./ % L && TP N && Tθ + dθ < θ +p P5" s! dS =
y
!+H U& < r = r (θ) < r = r (θ) + i: 2;< B F=F 8" &x =r (θ) ≤ r (θ) T P [α; β] @L& & Tr = r (θ) U& . & <3 % 24 ^ w=" & %! && θ = β s < θ = α s Tr = r (θ) U& . S=
{y ( − y) − }dy
− y ) + y = ,
) x = y
)&/-
2 N
@ L ./ % =+ D!3 " & y = x V+P & .! < & p ^ & =
& %!
+y
x +y = y = x
=
⇒
y
+y =
⇒ y = − ±
√
=" B `6=F 8" & =y = ± y = mH x = y / < x = − y ^+& % %! : T5 09
HP 1 2,
[−π; π]
W "#:*8 ,
@L& %! 5 ^ &
⎡
sin(θ) ≥ ⎢ ⎢ sin θ + cos θ ≥ ⎣ sin(θ) ≤ sin θ + cos θ ≤ ⎡
−π
≤θ≤ ⎢ −π ⇒⎣ π π ⇒ ≤θ≤ ≤θ≤
D;/ U& < . ^+& % w[Q F=F 8" 1=I=F L %./ w
π
≥ θ ≥ t $ < ≥ r(θ) G d Tπ/ ≤ θ ≤ π/ S T 4 && r() < r(π/)
a sin(θ) (sin θ + cos θ)( − sin(θ))
= =
a
π/
-
π/
a sin(θ) (sin θ + cos θ)( − sin(θ)) cos θ sin θ (cos θ + sin θ)
2
3 < ^+& <3 @+ % " ! =V
V+ D!3 θ = π/ θ = L S
⎡ ⎧ ⎨ kπ ≤ θ ≤ (k + )π ⎢ ⎢ ⎩ lπ − π ≤ θ ≤ lπ + π ⎢ ⎧ ⇔⎢ ⎢ ⎨ (k − )π ≤ θ ≤ kπ ⎢ ⎣ π π ⎩ lπ + ≤ θ ≤ lπ + π
& %De
" V
r(θ)
=
dθ
S
dθ
=
= =
-
=
z dz ( +z ) −a = a + z
a
⇒ cos(θ) =
< θ = π/ qθ = π/ + kπ/ θ = π/ + kπ 5 ^&& = / [−π/; π/] @L& θ = −π/
V u = tan θ i: & S
r=a r = a cos(θ)
=
=
- π/
S = (a cos(θ)) − (a) −π/
a π/ cos (θ) − dθ −π/
a π/ + cos(θ) − dθ −π/
π/
a θ − sin(θ) −π/
a
x + y =
dθ
√
π −
2 N
axy 2 & & <3 % =+ D!3 V& D;/ @34 & 3 & =
r cos θ + r sin θ = a(r cos θ)(r sin θ)
+
r (cos θ + sin θ) cos θ − sin θ cos θ + sin θ =
& & <3 % w[Q I=F 8" & 3 ' <3 % w
=
ar
r(θ) =
" !
06
sin(θ)
a sin(θ) (sin θ + cos θ)( − sin(θ))
^&& <
W "#:*8 , /
(y/b)
HP 1 2, /
= sin t < (x/a)
_+ < r
= cos t i: mH
5 = ≤ t ≤ π <
C : x = a cos t , y = a sin t ,
S
=
π
(a cos t)(a cos t sin t)
−(a sin t)(−a sin t cos t) dt π
a cos t sin t dt - π a = sin (t) dt = πa 3 L 8+! ' & <3 % D!3 P x 3 < y = a( − cos t) Tx = a(t − sin t) =+
DZL& 3 5 T" 4 y N t = kπ DZL& = 3 L 8+! ' mH = U;/ P x 3 t = kπ ,: ^+Q< L ! & ^&& =%! ≤ t ≤ π 5 & V )=I=F =
= −
S
π
= −a
π
+ cos(t)
− cos t +
t − sin t − sin(t)
= = =
- t
(x + y ) = a xy,
)
x + y = a (x + y ).
-
-
θ =
π
r − r < θ
t − t +
; & <3 % w ) =+ D!3
C : x = x(t) , y = y(t) ; α ≤ t ≤ β
S
dt
=
x(t)y (t) dt
-
β
= −
= −πa
α
=
β
y(t)x (t) dt x(t)y (t) − y(t)x (t) dt
α
@+A/ L ! & < < 7B L 1 j: ,: ^ 2DE B C 3 & ;N % %B & =S n; ^S `I=Fx " P −S B T"& m8C& %B S =" =w" B +h< !d & <3 %
2
" !
C : x / + y / = a /
) dt
β
= α
t + t t
=
3 & <3 % wJ
8" & & H 3 ' C + i:
t( − t)(t − t ) dt
3 L & ' % w1 =+
+θ =
-
t t ( − t) ( − t) + dt
t ( −
= a cos(θ)
( ) J 25A5 ^ G & 4A T3 $ # " !
2 N
=
)
& %! && C & <3 % T24 ^ =%!
& +Q & %fC =" πa && B T DQ
=%! 3 & ;N % %B & m8C < x = t( − t)/ 3 & <3 % =+ D!3 ≤ t ≤ y = t ( − t)/ V )=I=F ,: ^+< L ! & = S
x + y = ax y,
( − cos t) dt
)
=+ D!3 r
π
= −a
x / + y / = a / ,
a( − cos t) dt a( − cos t)
-
= −a
)
D!3 r
2 N
-
3 & <3 % w0
" @ & +3 L ' P & <3 @+ % + D!3
$
-
θ
3 < & <3 @N7 d % w> r = a cos θ < r = a(cos θ + sin θ) =+ D!3 T & (a/, ) @;N
#
3 < & <3 % w =+ D!3 r = a cos θ
=+ D!3 r = a cos
≤ t ≤ π
^+! L ! & + =" B [Q`1=F 8" & V )=I=F ,: -
= a( − cos θ)
p ^ & V+ H
0F
(x/a)/
C
=+ D!3 3 & & = V+
+ (y/a)/ =
]D " 1 I,
& y
= x/
U& . c/ ,X
W "#:*8 ,
2
!
=+ D!3 [; ] @L& V =1=F '. & =
- =
/ x
+
-
dx
x dx
/ × + x
√ −
= =
2 N
3 s! y = x / − . L !/ ,X =+ D!3 \& P x √ ^&& =%! x = ± x = 5 & y =
" = & %! && p ,X
√
= −
)
x = a − b sin t,
y = a − b cos t
)
x = t − t ,
y = t − t
)
x = a cos t,
y = b sin t
)
x=t ,
y = t( − t )/
)
x = a cos t,
y=
)
x = a( cos t − cos(t)) ,
)
x=
a sin t
+ sin t y = a( sin t − sin(t))
c c cos t , y = − sin t , c = a − b a b
D!3 " @ & +3 L ' P & <3 % +
)
y = t − t
) x=t − ,
+
=
-
P = De C c < b Ta + i: " ! + D!3 " +3 & <3 % T
x + y = ax y
) x
/
+ y / = a /
+ x dx
√
√
= + x + ln x + +x √ − √ √ √ = + ln +
x
" !/ L ' P ,X ) y = ln x, a =
)
√
,
!
√
b=
[A 0
S x I FG ^ )&/- P/ /M ; A ! . c/ ,X T"& [a; b] @L& & ]HM 5& y = y(x) & %! && U& ^ -
+ D!3
(x+ dx, y(x+ dx))
y = ln |coth (x/)| , a = , b = c ) y = c ln , a = , < b < c. c −x
)
y=
+ y (x) dx
a
)
< (x, y(x))
N & <3 c/ ,X L &&
d = =
− ln x + x − ,
x x −
b
=
y = arcsin(e−x ), a = , b =
(dx) + (dy) dy + dx dx
=" B 1=F 8" & =%!
a= , b=a+
S y I FG ^ )&/- P/ /M ; A ! . c/ ,X T"& [a; b] @L& & ]HM 5& x = x(y) & %! && U& ^ =
b
H*
+ x (y) dy
=
a
0I
=I=F ,e L %./ w[Q 1=F 8" c/ ,X D!3 w
W "#:*8 ,
]D " 1 I,
^&& < y = r sin θ < x = r cos θ L
d
=
+ #
dy dx
dx =
dx + dy
-
(r (θ) cos θ − r(θ) sin θ)
=
=
+(r (θ) sin θ + r(θ) cos θ)
=
dθ
2
= =
= =
θ
- π a θ θ + ÷ cosh dθ a tanh - π θ a + tanh dθ
a
a
-
π
-
π
a (π + tanh(π)) /
L r(θ)
= =
= =
/
√
=
√
=
z dz z − / z − z + ln z+ √
) dy
−
=
2 N
+
− sin y cos y
dy
a
dy cos y a + tan y ln cos y a π ln tan +
=
2 N
a
=
dθ
U& . c/ ,X T P ! ! + D!3 b a L x = x(y) ) x = y / , a = , b =
−
√
dy
U& . c/ ,X T ≤ a < π/ + i: =+ D!3 y = a y = L x = ln(cos y) V 9=1=F '. & =
=
dθ θ θ (z − ) + (z − )
+ y dy
−
-
/θ
(y + )/
× × ( + y)/
=
U& . c/ ,X =+ D!3 θ = V z = + ( /θ) i: & =
=
+
/
-
−
dθ
cosh (θ/) π θ a θ − tanh
=
θ
-
+ tanh
−
=
+ (y +
-
@;& & r(θ) U& . c/ ,X ! θ =+ D!3 θ = π θ = L a tanh V I=1=F '. & =
=
+
−
$/
=
2
U& . c/ ,X ! =+ D!3 y = y = − L V 9=1=F '. & =
x = (y+ )/
) −zdz (z − )/
)
x= x=
y
, a = , b =
c − y y y −
c
− ln y + y − , a= , b=c+
√
√ √
)
y
− ln y, a = , b = e b + b − y ) x = b ln − b − y , ( < a) y
/
+ ln − ln( − √)
x=
2;< FG ^ )&/- P/ /M ; A " !
a
L r U& . c/ ,X T P
!
+ D!3 b
G d T"& [α; β] @L& θ L ]HM 5& r = r(θ) S & %! && r = r(θ) D;/ U& . c/ ,X
) r(θ) = aθ, a = , b = π
)
-
β
=
r(θ) = a( + cos θ), a = , b = π
α
01
r(θ) + r (θ) dθ
7$ ?P= HP $ U 1 J,
W "#:*8 ,
) C : x = a( cos t − cos(t)) , y = a( sin t − sin(t)) ; t
≤ t ≤ π,
C : x=t , y=
)
C : x = (t − ) sin t + t cos t ,
(t − ) ; −
√
)
y = ( − t ) cos t + t sin t ;
)
≤t≤π
)
π π , a = , b = r(θ) = a sec θ −
C : x = sinh t , y = cosh t ;
)
C : x=
≤t≤a
c c cos t , y = sin t ; a b
-
b
=
c =a −b
2+
x (t) + y (t) dt
a
6# <N: GN # S 0
+h< !d c/ ,X
I*
I 2G C) & I 78 3 ) & U3 ; A !
!+H 5& y = y(x) + i: 6 y ) /A /3 x ^ =y(x) ≥ x ∈ (a; b) P DZL& < %! [a; b] @L& & . & <3 @+ < L 4 < VB V 24 3 , x = b s < x = a s TP x 3 Ty = y(x) U& & %! && P x V =π
, a= , b=
< x = x(t) ]H+ U& '. & C 3 t $ ,X 24 ^ T" +& T%! a ≤ t ≤ b y = y(t) & %! && C c/
≤t≤a
-
r
( ) J 25A5 ^ P/ /M ; A # !
)
≤ t ≤ π ,
θ(r) =
& d N R 5" & @QQ ' + i: %!& " @+ % & QQ V %D = / h =
√
≤t≤
C : x = a(sinh t − t) , y = a(cosh t − ) ;
r+
)
2
!
C : x / + y / = a /
=V+ D!3 3 L %./ d ,X %! : p ^ & V =I=F .P ^&& =V+ D!3 %! ,< U& w%! C $ ' C x C : x = a cos t , y = a sin t ;
≤ t ≤ π/ ^&&
b
y (x) dx
a
=
% & %! && [x; x + dx] @L& & g @ ! V L & %! && dx y(x) 5" & @ dv = πy (x) × dx
=" B J=F 8" &
=
=
-
(−a sin t cos t) + (a cos t sin t) dt
π/
a
-
π/
y = t − t Tx =
sin t cos tdt = a sin t
√
π/
= a
2
t 24 & C 3 c/ ,X =+ D!3 %! " H − ≤ t ≤ & V )=1=F & B & =
=
- √ −
- = =
t
−
+ ( − t ) dt
( + t ) dt
t + t
−
=
L +3 L ' P c/ ,X 0J
!
+ D!3
7$ ?P= HP $ U 1 J,
W "#:*8 ,
DN % &
@L& & g @ ! L "& d Q ,X %! πy(x)
< V D B % @D!3 J=F 8"
[x; x + dx]
=
y=
V ! & %! && P x 3 , ≤ x ≤
+ (y (x)) dx V
=
2
S
= = = =
- √ √ π x( − x) + √ − x dx x - √ π x( − x) x − x + dx x - π ( − x)x − x + dx π ( x − x + ) x − x +
arcsinh
+ =
π
√
√
(x −
=
π
2 N
V
=
R
π −R
R −x dx
π R x−
=
x
R
= −R
πR
& <3 @+ < L 4 V ! D!3 P x = b < x = a s TP x 3 Ty . +
) y = x − x , a = , b = ,
2 N
&& R 5" & @ P Y;! % +P =%! πR U& . < L Y;! ^ . i: = & B & =d %!& P x 3 , y = R − x ^&& T%! [−R; R] U& ^ @ 8 S
=+ D!3 R 5" & @ V =−R ≤ x ≤ R < y = r − x V+ i: = _ < R 5" & @.+ L %! 2DC y . T24 ^ L 2DC V ^&& =P x 3 O& U/< < DZD P x 3 , .+ ^ L % < L 4 V & %! && T"&
+ ln( + ) +
/ 0 0 −x 1 = π R −x + dx −R R −x - R = π R dx = πR -
π R x − x/
=
) √
- √ π x dx
3 < L 4 Y;! % ! =+ D!3 P x 3 , y = x( − x) U/< T%! N P x 3 & %D 3 = d %!& y / 4 && L =y = ± x( − x)
@L& & y = x( − x) U& mH =x = x = V+& V+ mH ≤ x ≤ $ =V+S p [; ] √ + Ty = x( − x)
2
√ x .! < L 4
! !
+ L 3 < L 3;! % %&7; w x = @74: P x 3 , y = a cosh (x/a) =d %!& x = a
y = (x/)
, a = , b = ,
)
y = sin x, a = , b = π,
)
y = cosh (x/c) , a = −c, b = c.
3 < & <3 @+ < L 4 V w6 D!3 P x 3 , y = x/ < x + y = =+
3 < & <3 @+ < L 4 V wF =+ D!3 P x 3 , y = /π < y = sin x
R
−R
/
)
I 78 3 ) & U3 N< T3 $ ; A !
y = y(x) + i:
6
x ) /A /3 x I 2G C)
&
DZL& < %! (a; b) @L& & ]HM < [a; b] @L& & !+H 5& Y;! V % 24 ^ = ≤ y(x) x ∈ (a; b) P x = a L x y = y(x) U& . < L 4 < VB & %! && P x 3 , w%! " V+! x = b S = π
>)
-
b
y(x)
a
+ y (x) dx
- . / 0*1 V,
=
πab
W "#:*8 ,
V+ < L 4 8" < Y;! % %&7; w0 =P x 3 , y = sin x !+! 3 L |
−b +a b −a b −a b + arcsin b −a b −a b
3 < L 4 Y;! % %&7; w> =P x 3 , [; π/] @74: y = tan x +h< !d < L 4 Y;! % %&7; w9 =P x 3 , x / + y / = a /
!
3 & <3 @N; < L 4 < VB V w =+&+& P y 3 , x = √y < x = y +h78+! < L 4 y = L < P y 3 ,
3 < L 4 Y;! % %&7; w6 =x = e x = L P x 3 , y = x /−(ln x)/
< VB V w0 x = y /(a − y) =+ D!3 y = a
+, - ./(0
)&/- C) & I 78 3 T3 $
U& . S 6 y ) /A /3 y I 2G Y;! % TV+P < P y 3 , a ≤ y ≤ b
& && V 4 < VB V < S 4
x = x(y)
U*
S = π
K+
Int(exp(−x) ∗ cos(x), x = 0..Pi) −−−−→ 0
π
e
x(y) + (x (y)) dy,
b
(x(y)) dy a
2
@7+!& y = ax .! L ./ ! TV+P < P y 3 , %! " B x = a s & %! && 4 VB V V
=
a
π − a
y
a
y π × a
=
+1
dy
a
= − a
A+& < L 4 Y;! % % & %! && P y 3 , x /a P y 3 , [−b; b] @L& & x = a
e−x cos x dx
K+
value(Int(exp(−x) ∗ cos(x), x = 0..Pi)) −−−−→ 1 −π e +1 2
7 24
b
a
V =π
! 7 24 E- ; A # ! f (x) d T%! int(f(x),x=a..b) ,G @D!3 int & S =%! +GQG +a x < ,G U& " ^. 8" & ,G T" ! Int L ! L %! : d @D!3 & =" P( D!3 < . & =V+ ! value K+ 1 −π 2
-
-
%3 W(& & TK+ _: L ! 2N @P & =" 5B ' j: L ^+.P
int(exp(−x) ∗ cos(x), x = 0..Pi) −−−−→
U3 " !
S
=
= E- )& b b # !
8" & ,G +a ++a !
=
student[changevar](R(x,u),I(x),u)
x +a { & %! QG I(x) d T%! %! ;& R(x, u) TV+P d +a ++a V+P %! B +a u < V . +& x { & u d
'. & T . & =V+& d { & ,G &
=
π
-
b
a −b
-
2 N
+ y /b − y /b
y dy b
− y dy
−a b −a
−y
b y b + b −a arcsin b (b − a )
−b
>
=
3
/ # $ 0 y 0 −ay/b 1 − + dy b − y /b
b −a − b −b / 0 - b0 πab 1 −b b −a b ⎡ / 0 πab ⎢ y 0 1 ⎣ b −a b
πa
b
πa
W "#:*8 ,
- . / 0*1 V,
-
!
π
i: & DZ_B & DZ_B \< L x/ cos x dx ,G =" ! dv = cos x dx < u = x/
student[changevar](u^2=x^2+1,Int(x^3 √ K+ - 2 2 2 *(x^2+1)^(1/2),x=-1..1),u) −−−−→ √ −(u −1)u du − 2
E- 2; )4 ; A # !
+p T. 7+73 MX & QG + i: - π evalf ! '. & 24 ^ T sin x/x dx . & =. D!3 DN X & d C N K+
u
=V+! 24
evalf(int(exp(−x ∧ 3), x = 0..1)) −−−−→
< . D!3 L
−x
dx
cd
u = u(x) -
!
# !
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
-
√
−
√
- −
x (x + ) dx
,G
−(u − )u du @+ & < .
E- )& DZHK G DZHK ? ) # !
student[intpart](I(x),u(x))
,G DN N =%! + ~ e
+a ++a L
8" & ,G DZ_B & DZ_B ! 7
0.807511182
-
= x +
" i: I(x) ,G d '. & T%! u dv = uv − v du DZ_B & DZ_B @C/ L mK! < ! '. & . & ="
student[intpart](Int(x^(3/2)*cos(x), K+ 3 π√ ( x = 0..Pi), x 3/2)) −−−−→ − x sin x dx 2 0
>0
% " #$ "$ -
a
f (x) dx
$" ! "!
b→−∞
! h" $" &c(! "!
y = f (x) U& < I = [a; b) + i:
"
%! ]KQG I & f V+hS 4 =S [5 I & 0= =F 5 & f U& Ta < c < b (Q c P DZL&
B c→b− lim I
-
c
f (x) dx
f $" ! "! a
^+5 ,G T!! i: < ,.C & V" j: +GQG @ V i: 8 ,< =V 3& i: 8 d < < w[a; b] 8" & & @L& 'x %!
j: ^ =%! [a; b] & f ,G U& TV
! QG @ L < V& p Pi: wC +l T5x ! QG + & wC T5x G >= =F @ ! / T+Q ^+.P & =V+. S =%+ ,D/ & ! QG T3& +& %Q! & 8+& @ d T8 =V+ V+N 7 < P %! ^"< = 8+& U& d G < < ^ L P . . & G ! ,G =. _
a
< %! I = (a; b] + i: " 4 =S [5 I & y = f (x) @" U& a < (Q c P DZL& %! ]KQG I & f V+hS
-
b
f (x) dx . & < + I
-
b
f (x) dx
f $" ! "! ] c
=V+P D/ [5 _+ < [5 ^ " :5 ! QG =V+ T
a
. +∞
F h" $" &c(! "! + ) ,G N 2
"
dx/(x
=+ D!3 B< 24 i< U& G d T < b S %! ^"< T & =
b→+∞
b
dx = lim x + b→+∞
arctan
x b
5!4
1
L P 5 L C. 2j& & QG P T%" L n< ,G $ T5x =V+ w
$kl" ! "!
j
&
< I = [a; +∞) + i: " I & f V+hS 4 =" [5 I & %! 5& 5 & f U& Ta < b (Q b P DZL& %! y = f (x)
-
b
lim
f (x) dx
$" ! "!
b→+∞
f
\](! "!
a
a
< I = (−∞; a] + i: " I & f V+hS 4 =S [5 I & "& 5& 5 & f U& Tb < a (Q b P DZL& %! ]KQG y = f (x)
>>
/#18 "#:*8 2
6 # 5 2
-
− lim
=
ue
( )
−
=
−u
#
d→+∞
=
du
5d 4 lim − ue−u −
d→+∞
4 5d d + e−u d e d+ d→+∞ lim − ed d d→+∞ lim d − e
d→+∞ lim
= = = ()
d→∞ lim
=
b arctan − arctan b→+∞ b π = lim arctan −
d
-
$
d
e
−u
b→+∞
du
- ln x √ dx = − x
B< 24
(e
×
−
[a; ]
&
ex
- lim
a→−∞
+∞
e− √
- − √x - ∞ − √x e e √ √ dx = dx + dx x x x
ex dx
=
b→+
− lim
=
b→+
√
,G T
x
e− x √ dx x
=
lim
b→+∞
()
=
= =
lim
b→+∞
lim
b→+∞
B< 24
-
+∞
√
e− x √ dx = x
−e
−b
e
lim
c→−
c
=
−
-
b
√
x −x
x dx/
dx
B< 24
" i: w x _+
−
e
+
e
()
=
2 N
−x
-
( −u ) (−u)du u d→− - lim ( − u ) du d→−
=
√
x
d
lim
=
=
-
e
√
- -
e−u du
b→+∞
−
ex dx =
^&& =u =
4 −u 5b −e
a→−∞
.
e
dx
x
− lim ea =
=
√ − x
√
a→−∞
,G N =+ D!3 = i< U& G d T < c < S %! ^"<
− lim e−b − e− =
√ x %!
+ =u =
b
a→−∞
−∞
%! " i: w x V < -
√
∞
e
−
lim [ex ]a lim e − ea
=
-
b
b→+
2 N
=+
S %! ^"< =
<
a
4 5 lim −e−u b
=
N
^&&
- − √x e √ lim dx x a→+ a - lim e−u du
( )
π dx = x + . x e dx ,G −∞
=
V T,< ,G =
+∞
2+ N
√ x
- − √x e √ dx x
^&&
=
√ / x) dx ,G N
U& G d Ta
=+ D!3 G < 8 T 8 B < ,G ^ = V+ V+N %./ < & ] ,G T^&& =+∞ -
π
D!3 B< 24
√
√ − x
π
-
L w0x T x = e−u %! " i: w x T8 Y+ , +HP @C/ L w>x < %! " ! DZ_B & DZ_B \< ^&& =%! " :S &
.∞
π
=
− = −
ed
lim
√
d
( − u ) du (u − u + )du
u
−
u
+u
− x %! " i: dx =
−x . √ (ln x/ x) dx
w x
2 N
,G N =+ D!3 ,G U& G d T < c < S %! ^"< = √
=
lim
>9
u
du
6 # 5 2
/#18 "#:*8 2
2
N DZL& V+ & V+P " " .∞ p -%! G.P dx/x ! ,G < p N+N C L V T ! ,G [5 & B & = -
∞
- b dx = lim x−p dx b→∞ xp
V+S p L %Q ! Tp N & & G.P /(p − ) C & ,G 24 ^ p > L T%!
2
-
∞
dx xp
= = =
lim
b→∞
x−p −p
b−p − b→∞ −p
∞
dx xp
= =
∞
=
−∞
√ - √ x - +∞ √ x ex e e dx = dx + dx x + ex + e + ex −∞ √ V u = ex +a ++a & T P
−∞
√ ex dx + ex
p−
=
2p = ;!
= =
b
lim [ln x]
b→∞
=
lim ln b = +∞
2
lim
b→∞
x−p
;!
-
−p
+∞
b
b−p − = lim b→∞ −p
√ ex dx + ex
= = = =
2 N
-
∞
-
= ()
=
= = -
∞
xp dx +x
- ∞ xp xp dx + dx +x +x - - ∞ u−p −du xp dx + +x + u u +∞ - ∞ −−p - ∞ x xp dx + dx +x +x J−(+p) + Jp p
x dx mH =Jp = < u = %! " i: w x
+x x p & %D Jp G d T ≤ p S =" !& Jp %! :
lim
b→+
π
[arctan u]b
lim (arctan
b→+
−=
− arctan b)
π
√
b
ex dx b→+∞ + ex - a u du lim a→+∞ +u u - a du lim a→+∞ +u lim
b a→+∞ lim [arctan u] a→+∞ lim (arctan b − arctan
π−
π
=
)
π
+
N+N C L N DZL& V+ & V+P . -%! G.P ∞ xp dx/( + x) ! ,G Tp V+ B p ^ & = =
=
= +∞
- √ x e lim dx a→−∞ a + ex - u du lim b→+ b +u u - du lim b→+ b u +
-
=
+l < %! G.P " ,G G d T < p S + ="& S< T24 ^
Ip
= =
dx xp
+∞
-
L T%! S< ,G _+ 24 ^ < p < -
-
lim
b→∞
2# N
.∞ √ ( ex dx)/( + ex ) −∞
,G N =+ D!3 B< mH =%! 8 −∞ _+ < +∞ ,G ^ = V+
b
L T%! S< ,G 24 ^ -
;!
24
-
+∞
−∞
√
ex π π dx = + = π x +e
"& " B< ! ,G ! " =V+ G.P +l ! ,G =V+
!;!
!0
! ,G ' 8 ^ ^ : L +& N fk.C ="& V +& TS< %! G.P i< = . G.P ! QG L +& Ty: QG z $ :+H Pp '. & DQ = D!3 d L & QG S< < G.P @7 & T5& ^ ^&& =V+ + d M+/ N @D!3 & L < VLH ! >6
/#18 "#:*8 2
#:L <@8.a 2
=V+P / 5Q; @ W_: & G d T"& %De 5& y = f (x) S -
< Txq ≤ xp G d T
-
b
& f (x) dx 5 T& W_: ,G N T+GQG a & d +Q ^+.P & =%! 54 b L 5& C - ∞ f (x) dx ! ,G B< 5 N+/ +& & T%! a
& y = f (x) U& + i: T; FG C/I= " LO
" T24 ^ =%! ]KQG < %De [a; ∞) @L& -
U& %! d
∞
f (x) dx a
-
Jq
≤
J
=
f (x) dx
-
∞
f (x) dx
=
a
=
N
lim
N →∞
f (x) dx #a-
lim
b
a
-
b
=
f (x) dx + lim
N →∞
a
≥
$
N
f (x) dx +
N →∞
-
-
T−
+
b
f (x) dx
<
∞
dx +x lim ln |b + | = +∞
b→∞
Jp
N
=
b
<
f (x) dx = I(b)
()
=
∞
=%! M = f (x) dx & O& L I(b) T^&& a > a P L & "& M V+ i: , V+ i: =I(b) ≤ M
= < =
∞
-
f (x) dx
mH T%! %De f $ T24 ^ a A ^&& < M ∈ A T V+ i: = f (x) dx = α V+ %&E a P L & =α ≤ N < α + ε %P N ∈ A B< b > a T a L & S 24 ^ +l TL =I(b) > α − β [5 vf α − ε ∈ A G d TI(b) ≤ α − ε b > a P b > a P L & T%! 54 I $ + =%! α P& T{+ ^ & < |I(b) − α| < ε α − β ≤ I(b) ≤ α − ε 2 =%! .
b→∞
-
b
A := N ∈ R ∀ b > a : I(b) < N -
b
lim
n+
a
-
x dx +x
S =%! S< Ip ]Q < %! S< Jp G d T ≤ p S T^&& mH = P S< Ip < J−p− ]Q < − −p ≥ G d Tp ≤ − %Q ^ L T" 5Q; − < p < %Q %! :
8 & B & mH =+S / (− ; ) @L& _+ − − p (− ; ) @L& − + ;− + 8" & P L& n+ n
b
-
xp dx = Jp +x
∞
=
T24 ^ ="& B f (x) dx V+ i: A7S" a < %! %De L& P & d ,G T%! %De 5& f $ b > a P L & T+
b
-
a
∞
xq dx +x
S< _+ ≤ p P Jp @.P G d T"& S< J S mH = P
G.P & : <
="& O& L
b
-
b
-
=
=
I(b) :=
-
< ≤ q ≤ p S L T%! 54 ^&&
≤x
n
V+ i: T "H 24 ^
xp dx +x
x−+ n+ dx +x - ∞ y −n (n + )y n dy n+ + y - ∞ dy (n + ) + yn -∞ dy (n + ) n y +∞ y −n (n + ) lim b→+∞ −n ∞
f (x) dx ≥
=
S $ =x
n+ n−
= y n+
%! " i: w x 8 Y+
p ∈ (− ; ) P DZL& Jp ^&& T n + ≤ G d Tn ≤ n− Ip ]Q < "& G.P _+ J−(+p) %Q ^ T%! G.P %! G.P /< < /< Ip " %&E 5 =%! G.P =− < p <
!DM 9=7-`
1
< G.P '. %! +A/ Ld L p V+N +l < V+N 24 & ! QG S< >F
#:L <@8.a 2
/#18 "#:*8 2
.
T =0=I && mH ="& G.P a∞ g(x) dx V+ i: Tp P ^+t.P < b ≥ a P L & :X L =%! O& L ^&& =f (x) ≤ g(x) x ∈ [a; b] -
-
b
b
f (x) dx ≤
g(x) dx
a
-
^&& <
a
-
∞
≤
f (x) dx
a
="& G.P T+ < %! _+
2
2
@! ,G G.P
-
-
∞
dx +x
-
f (x) dx
xn dx − x
= +∞
=
=%! G.P
≤ u−
f (u) =
2 N
un
≤ =
un
u − u un
u/
+ u −
u − u
g(u) du = =
du u/
b − lim √ = b→∞ u lim
b→∞
I(b)
b
e−x dx
e−x dx .
∞
4 −x 5b −e e− − e−b ≤ e−
^&& < I(b) ≤ A +
x− dx x +x -
; ∞)
/e +
,G G.P
& f (x) =
x− x +x
2 N
$ =
b
=
5 =%! %De %+& && b → ∞ /< h(b)
=%! S< ,G ]Q < %+
S< _+
= g(u)
∞
dx +
U& < g(x) < f (x) + i: $ C/I= " ' DZL& S & T"& [a; ∞) & ]KQG < 24 ^ =f (x) ≤ g(x) x ∈ [c; ∞) P < c ≥ a
b
-
x− dx mH x +x ^&& < x − > x − mH T ≤ x 8 d +Q & x +x x +x - b x− I(b) ≥ dx x
b ln x + = x = ln b + − = h(b) b
+ u −
(u − )n
-
=" 3& & I(b)
(u − )n du
u − u
−x dx e
T%! ]KQG < %De (
−du − ( − u ) u
≤ u
un
e−x dx =
.∞
=+ 3&
( − u )n
+∞
-
=
^&& < ≤ u T + T−u ≤ − ≤ −u + u −
^+t.P =
b
=+ 3& − x) +a ++a L ! & =
-
-
-
b→∞
/(
e
−x
w x < %! C ,G ' A = e−x dx
Tx ≤ x G d T ≤ x S %! " ! %+5/< ^ L :X L =e−x ≤ e−x ]Q < −x ≤ −x
b
,G G.P
e−x dx
A+
b→∞
xn dx − x
V u =
≤
lim
-
=
"
b
a
S< _+ " ! ,G V+S + T%! S< =%! ∈ N
=
-
dx x + lim ln |b + | = +∞
= =
Tn
I(b)
∞
∞
"
=+ 3& T%! ]KQG < %De [; ∞) & f (x) = e U& $ = .b I(b) = e−x dx %! : %De U& Ld && =V+ %&E
( )
-
2
,G G.P
−x
+
=V+ 3& dx/ +x + x ≤ ( + x) G d T ≤ x S = /( + x) i: & mH = +x ≤ +x 8 & B & < =0=I g(x) = / + x
^&& < < f (x) =
−x dx e
-
∞
g(x) dx
a
.∞
_+
-
-
a
∞
g(x) dx G d T"& S<
∞
f (x) dx a
G d T"& G.P
-
∞
a
-
∞
f (x) dx S
w[Q
=%! S w =%! G.P
g(x) dx a
m8C w[Qx T =0=I & B & %! ^"< A7S" ^ & =V+ 2DE wx %! : mH =%! wx +N >I
/#18 "#:*8 2
#:L <@8.a 2
lim
=
+ x
x→∞
_+ < -
-
∞
g(x) dx
=
∞
−/
x
=
-
lim
b→∞
=
lim
b→∞
b
dx −/
x
%&E ^
=+ 3& &
∞
f (x) =
dx xex + e−x
xex + e−x
lim
x→∞
b − √ = x
< /<
2 N
< g(x) = e−x i: & = x 8 & p < 6=0=I [ ; +∞)
=
lim
x→∞
xe xex + e−x
xe x x→∞ xe x + (x + )ex lim = x→∞ (x + )ex
=
lim
P
=
-
∞
g(x) dx
=
≤ =
∞
x
+∞
e−x dx
b→∞
-
g(x)
∞
! ,G G d T"& %+&
f (x) dx a
="& G.P
G d T"& G.P
G d T"& S< <
-
∞
-
∞
<
g(x) dx -
L
∞
f (x) dx
<
e
2 N
! ,G q < p N DZL& -%! G.P q < < q = T < q %Q ! Tp ^ & = =V+S p
xp eqx dx
g(x) = < f (x) = e
S w -
∞
f (x) dx a
L = ∞ S - ∞
=%! S< _+
w| g(x) dx
a
G.P T+ = Lg(x) < f (x) < Lg(x) - ∞ - ∞ < %! L f (x) dx G.P 5 & g(x) dx a a - ∞ - ∞ g(x) dx S T
L
a
∞
V+ i: G d T < q S w[Q =p < 8 < ≤ p 24 ^ =xp eqx
-
∞
f (x) dx ="& S< _+ a $ k Tε = L & TL = " i: S , ≤ f (x)/g(x) < ε x ≥ k P L & B< - ∞ g(x) dx G.P T^&& =f (x) ≤ g(x) & -
∞
=" f (x) dx G.P a B< $ x ≥ k TL = ∞ " i: S , S< T^&& =f-(x) ≤ g(x) f (x)/g(x) ≥- ∞ ∞ 2 =" f (x) dx S< & g(x) dx -
a
∞
qx/
%! ^"< T G d T ≤ p S
G d T"& S<
f (x) dx a
a
∞
=
=%! G.P _+
a
^&& < %! S<
G.P _+ " ,G V+S + T"& G.P =%! -
%! G.P /<
g(x) dx a
a
a
e−x dx
4 5b lim −e−x =
- n x dx − x
(L − ε)g(x) < f (x) < (L + ε)g(x)
_+ < -
=%! G.P
g(u)du mH - ∞ f (u)du
L & T24 ^ =L = , ∞ V+ i: A7S" x > k P L & B< $k > a ' ε = L/ + =f (x)/g(x) − L < ε
x
f (x) g(x)
U& < g < f V+ i: (43 $ C/I= " 24 ^ ="& [a; ∞) & ]KQG < %De f (x) 4 [Q( < B L = x→∞ lim S w[Q
dx
,G G.P
∞
="& G.P n ∈ N P DZL&
="& G.P p ,G V+S + -
-
T =0=I M&; T^&& < %! G.P
=
dx + x
,G G.P − /
[ ; +∞) & g(x) = x
f (x) x→∞ g(x)
f (x) lim = lim p qx/ = x→∞ g(x) x→∞ x e
lim
>1
=
2
a
! "
=+ 3& i: & = < f (x) = + x 8 & p < 6=0=I lim
x→∞
√ x x
+ x
#:L <@8.a 2
/#18 "#:*8 2
V+ i: 6=0=I @+A/ L wx %./ 24 ^ =g(x) = ≤ x→∞ lim
f (x) g(x)
=
lim
x→∞
=%! S<
-
∞
e
I :=
< f (t) -
=
/ ln t - ∞
∞
g(t) =
e
lim
x→∞
lim
∞
dx x/
2+ N
,G +P V t = ln x i: & =
dx = x ln(ln x)
∞
dt ln t √ =g(t) = / t
n< & T24 ^
f (t) lim t→∞ g(t)
=
P = =
√ t lim t→∞ ln t lim
x→∞
lim
t→∞
√
P
(−p)(−p − ) · · · (−p − k)x−p−k = q k x→∞ eqx/ lim
f (x)
= 24 P T5 i: & T^&& =x→∞ lim g(x) < 6=0=I [ ; ∞) & g(x) = xp eqx < f (x) = eqx/ 8 & p -
-
∞
f (x) dx
= =
V+ i: 6=0=I L w|x %./ , dt ln t
−px−p− P = ··· x→∞ q eqx/ lim
=
-
P
=
=
x/
g(x) dx =
f (x) x−p = lim qx/ x→∞ g(x) x→∞ e
sin x/x /x/
-
∞
dx x ln(ln x)
∞
x
lim
≤ -
x
sin x x→∞ x/
=
,G ]Q < %! G.P
< f (x) = sin
x/
B< k = [−p] + 5+DX C G d Tp < S T L ! & k L mH T^&& =−p − k < V+! ≤ p %Q & k T, +HP @C/
∞
eqx/ dx
lim
b→∞
eqx/ q
b
=∞
L w[Qx %./ && - V+S + T%! S< ="& S< _+
∞
xp eqx dx
,G T6=0=I
/< < /< T w x F= =I M&; G d Tq = S w - ∞ =p < − "& G.P xp eqx dx
< g(x) = i: & G d Tq < S w| x & +D" QO ! &x 8 & p < I=>=I [ ; ∞) & w" u [Q %./ t d
√ / t /t
f (x) = xp eqx
t = +∞
f (x) xp+ = lim −qx = x→∞ g(x) x→∞ e - ∞ - ∞ g(x) dx = x− dx = < + T%! G.P - ∞ ="& G.P _+ xp eqx dx ,G V+S lim
G.P & : < LO
" 2W/' C/I= " " - ∞ $ k ≥ a Tε > P L & %! d f (x) dx .
=
β α
f (x) dx < ε
a
α, β ≥ k P L & B<
L & mH =%! I & G.P a f (x) dx V+ i: A7S" b ≥ k P L & B< $ k ≥ a Tε > P . b V α, β > k P L & T = a f (x) dx − I < ε/ .∞
β f (x) dx α
- α β f (x) dx − f (x) dx < a a α β f (x) dx + f (x) dx ≤ a a ε ε + =ε <
%P k ≥ a Tε > P L & V+ i: . T24 ^ = αβ f (x) dx < ε α, β > ε P L &
-
∞
xp eqx dx ! ,G T. mH /< < /< =yq < z yp < − < q = z %! G.P
=%! G.P -
∞
-
∞
sin x dx ,G +P x
^ " & =
- - ∞ sin x sin x sin x dx = dx + dx x x x
,G ^&& <
sin x x→ x lim
=
8 & B <
V+S + T B< ]Q < T%! C =V+P >J
2 N
-
∞
- sin x dx x
sin x dx G.P %! :
x
/#18 "#:*8 2
)
-
∞
$ #N #:L 2
x dx − ex
-
)
∞
(ln x)p dx.
# !K !DM
V+hS T"& G.P -
∞
∞
|f (x)| dx
S
"
PQ &!0
a
-
∞
< G.P f (x) dx S =%! f (x) dx a a =%! V+hS T"& M7; G.P +l
G d T"& M7; G.P i< ! ,G ' S
@P & =%! %! S ^ m8C ="& G.P =" B F=0=I ,e L w x %./ & d L .
i &!0
+ <
- k ∞ ∞ f (x) dx − f (x) dx = f (x) dx < ε k a a
-
-
a
=%! M7; G.P
b
|f (x)| dx .∞ a
f (x)g(x) dx
+
.
& G.P a∞ f (x) dx V+S 7G= C/I= " 24 ^ ="& [a; ∞) & 8 < 5& g < . =%! G.P a∞ f (x)g(x) dx P L & T9=0=F @+A/ L w9x %./ '. & A7S" B< $ ξ ' Tt , t > a -
-
t
t
f (x)g(x) dx = g(t )
-
ξ
f (x) dx + g(t ) t
)
t
f (x) dx ξ
P L & B< $ M T%! g $ . L & T%! G.P a∞ f (x) dx $ =|g(x)| ≤ M x ≥ a t , t ≥ k P L & B< k ≥ a Tε > P . t Vu Tk < t < ξ < t $ T = t f (x) dx < ε/M
t
a
f (x) dx
&& < B k→∞ lim
.k a
f (x) dx 5
)
) )
t
9)
∞
x dx x −x +
∞
-
dx
)
+ 3& L ! QG G.P
-
)
f (x)g(x) dx =
-
x + x +
-
dx √ (x − ) −x - +∞ - ∞ dx x ln x ) ) dx ( +x ) x +x +x - +∞ - ∞ arctan x ) dx ) e−ax cos(bx) dx ( + x )/ - +∞ - ∞ dx ) e−ax sin(bx) dx ) x - - dx
) ln x dx ) − −x - +∞ - +∞ dx dx ) ) x +x− (x + x+ ) −∞ - +∞ - π/ dx ) ln(sin x) dx ) x + - π/ - xn ) ln(cos x) dx ) dx −x - +∞ - +∞ dx dx ) ) n cosh x x(x + ) · · · (x + n)
a
2
+∞
)
& B< M C T%! g $ A7S" .∞ f (x) dx $ T
G d Tb ≥ a S T^&& < |f (x)g(x)| ≤ M |f (x)| b ≥ a |f (x)g(x)| dx ≤ M
.∞
N+N C a + i: L 2. " β < αT q Tp < Y+34 C m T%De 5+DX C n T%De =P(Q N+N C G.P 24 x L ! QG L ' P N + D!3 w&
.
b
=%!
2
M7; G.P a∞ f (x) dx + i: " ^ ="& [a; ∞) & < ]KQG 5& g < & . =%! M7; G.P _+ a∞ f (x)g(x) dx 24
-
P L & V β = k ^ "
G %&E & . α mH T%! (Q α ≥ k $ = k f (x) dx < ε
- b ∞ f (x) dx = lim f (x) dx < ε k b→∞ k
1
= & %De U& TV+ " + Ld & W(& ^ = + ^+$ U& L +& fk.C Q =VLH 7 Ld $ u -
α ≥ k
∞
-
∞
-
∞
xp
dx + xq
) )
arctan(ax) dx xn
)
dx p x lnq x
)
xα |x − |β dx
)
-
∞
-
∞
-
∞
x
dx x +
m
x dx + xn
ln( + x) dx xn
xm arctan x dx xn +
-
∞
-
ln x dx −x
$ #N #:L 2
-
∞
<
sin x dx x
F (x) =
f (x) dx =
g (x) =
− x
lim g(x) = lim
x→∞
x→∞
x
(k+)π kπ
<
∀x>
sin x x dx
-
∞
-
sin x dx V+S x
≥
lim
π
k=
3&
π
-
n
lim - ∞
π
k
+x
F (x) =
x
=
f (x) dx
A7S"
a
ξ
f (x) dx +
a
.
f (x) dx
t
f (x) dx −
a
≤
-
ξ
f (x) dx
t
a
≤ M + M = M
t Tx→∞ lim g(x) = $ = ξ f (x) dx < M & 24 & B< $ k > a T (Q ε > P L & ^&& + =|g(x)| < ε/M x ≥ k P L &
dx x
t
f (x)g(x) dx =
=
g(t )
≤
|g(t )|
-
ξ
t
f (x) dx + g(t )
t
dx x
= =
T^&&
f (x) dx + |g(t )|
t
f (x) dx
ξ
ε ε × M + × M M M ε ε + =ε
=%! . P& <
2
T%! !+H [a; ∞) & f U& + i:
2 N
f (x) dx
ξ
ξ
t
cos x dx ! ,G G.P +x
& < 9=>=I g(x) =
t
t
dx = +∞ x - ∞ sin x S< x dx
=%!
< t < ξ < t B< $ ξ '
t
(k + )π - k+
T <
a
≥ a P L & T9=0=F @+A/ L w9x %./ &&
kπ
n→∞
=%! ∞
k= n )
n→∞
=
-
k= n )
:Q )& C/I= "
x
=
∞
lim
=
-
f (t) dt < lim g(x) = x→∞ - ∞ =%! G.P f (x)g(x) dx G d
Tt , t
(k + )π
n→∞
≥
f (x) dx
t
f (x) dx
t
ξ
t
a
sin x x dx π - (n+)π sin x lim x dx n→∞ π n - (k+)π ) sin x lim x dx n→∞
-
=
f (x) dx + M
f (x) dx
M ε = ε M
& F (x)
(k+)π
V
=
t
t
t
=%! . P& T" Ld && <
[a; ∞)
=
sin x x dx ≥
f (x) dx + |g(t )|
8 [a; ∞) & g U& + i:
+
| sin x| dx (k + )π kπ
(k+)π ± cos x (k + )π kπ
≥
∞
ξ
ξ
2
=
=
-
=
M
f (x) dx
t
f (x) dx + g(t )
t
& B & T
≤
M
-
ξ
t
∈ [−; ]
x
≤
|g(t )|
sin x dx
<
=
g(t )
t
x
-
= cos x −
! "
-%!
< G.P " i: 9=>=I S L T7& = +Q& G d Tg(x) =
x
2
! ,G d
f (x) = sin x -
/#18 "#:*8 2
"
-
x
& g =%! [a; ∞) & F (x) = f (t) dt a 24 ^ =x→∞ lim g(x) = < g ≤ T]HM [a; ∞)
=+
i: = 8 & B
< f (x) = cos x
=%! G.P
-
∞
f (x)g(x) dx a
& ^. C & < T"& &d Ld L + A7S" 2 = @C
cos x dx
9
/#18 "#:*8 2
#*7; 4 *P4$ /#18 <@Q#:*8 2
!(6E 3 (N3# .!07 9=O!D(7
-
1
=
cfHO \< +p T ! ,G P& L +& & 2O5 : QG < Q.5 + 2O5
! QG { & 5& %! LO Th_B 2N & UB V+ & & Zj(& =V+ 5Q; " [5 ^ =V+ 3& d ]KQG < ]HM TG !+H =" VP: V ^ & LO _& W(&
-
∞
f (t, x) dt a
=%! G.P
x→∞
-
∞
< %! +l S ⊆ R + i: " 5& f (t, x) + i: =(a; b] × S = {(t, x) | a < t, x ∈ S} ,G x ∈ S P DZL& < S [5 (a; b]×S & %! . V+hS 4 ="& G.P F (x) = ab f (t, x) dt < %! G.P F (x) & 88 ;&
-
b
f (t, x)dt a
∀ ∃c ∈ (a; b) ∀c ∈ (a; c ) ∀x ∈ S : - b f (t, x)dt < F (x) − a -
V+ %Q ^ b
f (t, x)dt = F (x) a
cos x dx ! +x
-
-
=%! 88 G.P S &
a
2 N
sin(x ) dx =
f (t) = sin t
-
L &
∞
sin t √ dt t
-
∞
∞
,
g(t) = √
t
sin(x ) dx V+S + 9=>=I @+A/ L
-$ =%+ M7; G.P ,G ^
2 N
sin x dx x
,G +P =%! G.P a > Q<_ < n< & g(x) = e−ax V+ i: = =%!
G d Tf (x) = sin x/x -" i: S T
e−ax
=%! G.P _+
-
-
a
∞
f (x)g(x) dx =
a
x
∞
e
−ax sin x
x
dx &d
,G d + ( P " " %!
< G.P < M7; G.P TG.P " + )
) ) )
a
f (t, x) dt
,G T+
i: &
L S + i: PW cM C/I= " =%! [a; ∞) × S & 5& f (t, x) < R L +l C. %! ]KQG [a; ∞) & f (t, x) x ∈ S P DZL& + i: B< [a; ∞) & M (t) 5& < =|f (t, x)| ≤ M (t) (t, x) ∈ [a; ∞) × S P DZL& w[Q - ∞ =%! G.P M (t) dt w ∞
=
∞
∞
-
-
+x
-%!
< G.P sin(x ) dx d √ %" Tx = x i: & L T7& =
=%! G.P
a
<
-$ =%+ M7; G.P T,G ^
M!
∈ [−; ]
−/
lim g(x) = lim
x→∞
V+hS 4
f (t, x)dt = F (x)
g (x) = −x( + x )
V+ %Q ^ ∞
sin x
- b ∀ ∃b ≥ a ∀b ≥ b ∀x ∈ S : F (x) − f (t, x)dt < a -
− sin x cos x dx
= sin x −
< +l S ⊆ R + i: " f (t, x) + i: =[a; ∞) × S = {(t, x) | a ≤ t, x ∈ S} x ∈ S P DZL& < S [5 [a; ∞)×S & %! 5& . ="& G.P F (x) = a∞ f (t, x) dt ,< ! ,G
!0 F (x) ' D. . Q
x
)
T24 ^ 90
∞
-
∞
-
∞
-
x cos x dx, +x
)
cos x dx, + x
)
sin x dx, e x−
)
cos x dx,
)
∞
-
xp (ln x)q dx,
-
∞
-
∞
-
x sin x dx, +x
∞
cos x dx, −x
−∞
-
)
sin x dx, x(x − )
∞
-
xp sin x dx,
∞
xp (e−x − ) dx.
#*7; 4 *P4$ /#18 <@Q#:*8 2
/#18 "#:*8 2
!+H S & F 24 ^ =%! 88 G.P F (x) & =%! " " & -%! 5& f (t, x) + i: ∞ DZL& f (t, x) dt ,G < " [5 [a; ∞) × [c; d] a i:
∞ ∂ f (t, x) dt ! ,G < 88 24 & [c; d] & ∂x a < %! ]H+ [c; d] & F 24 ^ =%! G.P . ∂ f (t, x) dt QG & & V8 =F (x) = a∞ ∂x =%! /& < !
(Q x < < r DZL& + i: F (x) =
∞
2
t→
−rt e sin(xt) t −rt sin xt |x|e xt
f (t, x) = =
ke−rt = M (t) - ∞ G.P k/r & M (x) dt
&
[c; d]
&
∞
e−rt sin xt t dt
L < %! !+H
-
&
S = [c; d]
= =
∞
e−rt cos(xt) dt
r r +x
2
T24 ^
"
= tx− e−t ≤ td− e−t = M (t) - ∞ = td− e−t dt
& f ,G V+S + Tw-$x %! G.P =%! 88 G.P
,G G d T < G.P [a; ∞) & k
a ∈
S +P- ∞ N P DZL& (x
2 N
+ t )−k dt
=%! 88 < M (t) = (a + t )−k V+ i: >=9=I = " + < a ≤ x L $ T24 ^ =S = [a; ∞) V S & mH Ta + t ≤ x + t
-
T
= (x + t )−k
≤ (a + t )−k = M (t) - ∞ - ∞ T%! G.P M (t)dt = (a + t )−k dt
L
& e−rt cos(xt) dt < %! e−rt cos xt && x & V R & mH Tw-$x %! 88 G.P r/(r + x ) F (x)
M (t)dt
∞
V+S + c "< =%! G.P F (x) & 88 24 & F V+S + F=9=I L
R
∞
f (t, x)
[c; d] %D e−rt sin(xt) h_B M $ V+S + I=9=I - ∞t
f (t, x) dt a
=%! 88 G.P [c; d] ⊆ (; ∞) @ & @L& P & i: & G d T ≤ t < < c ≤ x ≤ d S = 8 & B & < >=9=I M (t) = td− e−t
≤
-
a
b
tx− e−t dt ,G +P
lim
,G ' F (x) mH Tf (t, x) = G d Tx = S _+ < i: &
`M Ld L T%!
∞
f (t, x)
e−rt sin(xt) t t→ sin(xt) = e x lim =x xt t→
=
-
e−rt sin(xt) dt t
-
=%! 88 G.P S &
"
=+&+& F (x) @;& I=9=I L ! & x = P DZL& V+ B p ^ & = lim f (t, x)
L S + i: PW cM C/I= " (a; b] × S & 5& f (t, x) < %! R L +l C. ]KQG (a; b] & f (t, x) x ∈ S P DZL& + i: =%! B< (a; b] & M (t) U& < %! =|f (t, x)| ≤ M (t) (t, x) ∈ (a; b] ×-S P DZL& w[Q b =%! G.P M (t)dt w
−k
(a + t )
dt
≤ =
∞
(a + t )− dt
lim
b→∞
a
arctan
b t π = a a
= P /& >=9=I s" ]Q L +l C. L S + i: ! " < %! [a; ∞) × S @C. & !+H 5& f (t,- x) < %! R ∞ ^ =%! 88 G.P F (x) & S & f (t, x) dt a =%! !+H S & F 24 f (t, x) < %! R L +l C. L S + i: S
9>
&
-
b
f (t, x) dt a
< %! [a; b] × S @C. & !+H 5&
/#18 "#:*8 2
#*7; 4 *P4$ /#18 <@Q#:*8 2
a, b ∈ [; ∞) P DZL& + %&E -
∞
e−bx − e−ax cos x dx = x
+a +b
ln
2 N
V TF () = $ T+
= f (x) − F () - x = F (u) du - x r du = r + x
F (x)
V+ i: p ^ & = F (x) =
∞
− e−xt cos t dt t
r > P L & " %&E T^&& < -
i: & L T%! G.P %! %.! ,G f (t) =
t
−e
−xt
∞
x e−rt sin(xt) dt = arctan . t r
24 &
cos t , g(t) = e−xt cos t -
8 & B & < %D Ld f (x) t→∞ g(x)
=
lim
t→∞
P = + d G.P T
-
e
lim
xt
− t
xext
lim
t→∞
=∞ -
∞
∞
< =S h_B M 8 < I=9=I @+A/ '. & ^&& T"& e−xt cos t & && x & %D − e−xt cos t t V g(t)dt
-
F (x)
=
=
∞
e
−xt
e−xt cos t dt
Γ(x) :=
Γ(x + ) =
= = =
∞
cos tdt
= =
F (b) − F (a) b + ln a +
,G N Ta > + i: -
Ia,b :=
∞
e−ax
+ mK! < D!3 b < -
∞
a
b
2 N
tx e−t dt
#
4
lim
b→∞
-
5 x −t b
−t e
+x
$
b
t
x− −t
e
=
- b bx + x lim tx− e−t dt b→∞ eb b→∞ - ∞ +x tx− e−t dt
=
x Γ(x)
dt
lim
.∞ ) = e−t dt =
V+S + TΓ(
F (x) − F () - x x dx x + ln x +
e−bx − e−ax cos x dx x
b→∞
=
^&& < -
lim
=
+ F (x)
tx− e−t dt
@C & ^.x " %&E =x > TS [5 G.P [c; d] ⊆ (; ∞) @ & @L& P & Γ(x) w \< L ! & < (Q x > DZL& T
x x +
=
∞
; 2 N
Γ( )
=
,
Γ()
=
× Γ( ) = ,
Γ()
=
× Γ() = ,
& B & mH
···
=Γ(n + ) = n! V n ∈ N DZL& T. < w @C & ^. C &x " & Γ(x) M [c; d] ⊆ (; ∞) @- & @L& P &
∞ & 24 & =%! 88 G.P tx− e−t ln t dt Γ(k) (x) =
sin(bx) dx x
-
∞
√
G d Tu = t
[7 ( N L & b P L & +G&
Γ
π sin(bx) dx = sgn(b) x
k
S " < 7B -
= =
99
tx− e−t (ln t) dt
∞
-
t−/ e−t dt ∞
e−u du =
√ π
#*7; 4 *P4$ /#18 <@Q#:*8 2
/#18 "#:*8 2
& T+ < De < P a − b < a + b G d Ta > b S V D/ ,e V8 & -
Ia,b
=
=
∞
sin(a + b)x dx x - ∞ sin(a − b)x + dx x π π π + =
sin(bx)
& %D Ia,b T%! !+H b & %D e−ax $ = x + < %! ]KN -
dIa,b dt
=
Ia,a
=
π
=
∞
=
()
=
+ Ta − b < < a + b > G d Ta < b S O& < Ia,b
=
=
Ia,b
=
⎪ π ⎪ ⎪ sgn(a) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
= sgn(a)
π
=
=%! " ! DZ_B & DZ_B \< L w0x < w x
T+
S 2DE T. mH
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ π ⎪ ⎪ ⎪ ⎨ sgn(a)
=
∞
sin(a + b)x dx x - ∞ sin(a − b)x + dx x π π − =
a dIa,b = dt a +b
^&& <
< |a| < |b| S Ia,b = arctan
< |b| < |a| S < |a| = |b| S a = S + sgn(|a| − |b|)
"
TIa,
-
R
-
&
+ %&E T
sin(bx) dx = x
∞
cos(xt) dt +t
=
L & Ia,b
+ %&E w> =%!
-
Ia,b =
∞
e−x sin xt dx = t/(t + ) e−x ( − cos xy) dx = ln +y x
:=
∞
I,b = lim Ia,b a→+ b π lim arctan = a a→+
2+ N
sin(ax) cos(bx) dx N x =+ D!3 b < a [7 ( N
" B =
8 & B & < 1=9=I n< \< & w9 ∞
∞
88 G.P
-
=
∞
=F (x) = t− ( − e−xt ) dt + i: ≤ x DZL& w0 =+&+& F (x) @;& T .C 1=9=I ,e &
b +C a
V b = L & $ =%! %&E C C
=Ia,b = arctan(b/a) + < C = ^&& ^&& < sgn(b) = - %! & G dT b = S ∞ π sin(bx) dx = sgn(b) < $ ^ + =V+G& a = + d %!&
,G G d T < a < ≤ k S - +P w ∞ tk e−xt dt =%! 88 G.P [a; ∞) & -
e−ax cos(bx) dx
∞ b ∞ −ax −ax sin(bx) e + e sin(bx) dx b a
∞ cos(bx) + −e−ax b b ∞ −ax − e cos(bx) dx a - ∞ a a − e−ax cos(bx) dx b b a a dIa,b − b b dt
=
sin(a)x dx x π
cos(bx) dx x
()
G d Ta = b S
xe−ax
-∞
=
∞
Ia,b
96
∞
sin(a + b)x sin(a − b)x + x x
dx
$ =a < b < a = b Ta > b V+S p %Q ! =a > V+ i: k / T%! : a & %D
/#18 "#:*8 2
#*7; 4 *P4$ /#18 <@Q#:*8 2
) B(p, q) = Γ(p)Γ(q) ,
-
Γ(p + q)
-
)
π/
sinp x dx =
-
) )
B
cosp x dx =
sinp x cosq x dx =
) B(p, q) = B(p +
p+
,
B
p
-
,
p+
,
q+
L {f (t)} :=
,
) L {
B(p, q) =
∞
xp− dx ( + x)p+q
+y
+a ++a & w>)
=
m > P L & +P − cos(mx) −x e dx = ln( + m ) x
∞
-
- n = x − ln x ∞
dx = (x + a)n+
-
= -
-
∞
xn e−ax dx =
∞
cos(mx) dx = +x
dx = ln(n + ) + %&E
n! an+
) L
) L
-
∞
-
x ( + x ) dx ( + x)
w>>
2
) L
(s > )
,
(s > )
k! sk+
ect =
,
(k ∈ N, s > )
,
s−c
,
(s > c)
tect =
(s > c)
(s > |a|) (s > |a|)
e−ct f (t) = F (s + c),
+ %&E w>6
) L {f (t − c)} = e−csF (s),
+ %&E w>F
) L {f (ct)} =
c
F
s c
,
) L {f (t)} = sF (s) − f (). t > - Γ(t) = ln dt t Γ
# "
(k)
(x) =
t
x− −t
e
k
(ln t) dt
p & T < q < < p L & + i: -
B(p, q) :=
x ( + x ) dx = ( + x)
P L & +P w0)
k ∈ N P L & +P w0
∞
8" & q
=+ D!3 V J=9=I L >) ^. '. & =
∞
e−st f (t)dt
G d TF (s) = L {f (t)} S + %&E
π x sin(mx) dx = e−m +x
N
, (s − c) )L √ =Γ , t ) L {sin(at)} = a , s +a ) L {cos(at)} = s , s +a ) L {sinh(at)} = a , s −a ) L {cosh(at)} = s . s −a
w>0
& _+ < S [5 1=9=I S U& '. & <& +& @+t+H QG T" [5 J=9=I ^. B L & =. D!3 TL $ @D!3 +
s
k t =
+ %&E w>9 π × × · · · × (n − ) n n!an+/ ∞
s
) L
∞
-
}=
) L {t} =
G d T"& %De C b < a S + %&Ew> (a + b)a+b arctan(ax) − arctan(bx) π dx = ln ab b a x
-
∞
S + %&E 24 ^ =wf (t) ^+!fHO + (&x
G d Ts >
),
+P x =
- y √ sin(xy) dx = π e−t dt x
+ i:
) B(p, q)B(p + q, r) = B(q, r)B(p, q + r). -
−x
B(p + , q − ),
p
e
,
, q) + B(p, q + ),
) B(p, q) = p + q B(p, q + ) B(p, q) = q −
,
π/
p+
π/
-
B
+ %&E 1=9=I n< \< & w6
∞
xp− ( − x)q− dx
+P 24 ^ =V+ [5 9F
- . / 0*1 '2
/#18 "#:*8 2
(b − a)p+q+
= ()
-
- ∞ x− x− = dx + dx ( + x)+ ( + x)+ = B( , ) + B(, )
θ (b − a) sin θ cos θ dθ
q
cos -
π/
p+
sin
θ cos
q+
θ dθ
(b − a)p+q+ Γ(p + )Γ(q + ) Γ(p + q + )
=
=
=%! " ! J=9=I L 06 ^. L w x
=
2+ N
=
< "& 4 [Q( C n + i: - Im,n,p :=
- m− x + xn− := dx m+n ( + x)
=
=
-
n -
=
y (m−n+)/n ( − y)p dy = (m+)/n−
(p+)−
( − y)
=
-
π/
-
∞
sin
m−
-
n−
θ cos
θ dθ
=
"
√
π
Γ
- In
w w0
n! m(m + a) · · · (m + an)
w>
=
=
∞
x
xm e−n
dx =
n
Γ m+
=" ! y = n =
-
∞
x
m+
+a ++a L
x ( + x ) dx = ( + x)
+, - ./(0
=
=
dx
-
√ π/
n - π/
dx − xn sin /n− θ cos θ dθ cos θ
sin /n− θ dθ n Γ n Γ n Γ + n
=%! " ! J=9=I L 06 ^. L w x
w9 w6
=
()
=" ! y = xa +a ++a L .P = -
2 N
√ =+ D!3 In := − xn n V x = sin θ +a ++a & =
Γ(n)Γ(m) m a bn Γ(n + m)
(a sin θ + b cos θ)m+n
.P =
y m− dy + y)m+n
,G N T"& %De C n 4
√
− x
xm− ( −xa )n dx = an
=
xn− dx + x)m+n
-
dx
dy
,p +
+P L < L ' P =
- xm− dx + m+n ( + x) ( - - ∞ m− x dx + ( + x)m+n ( - ∞ m− x dx ( + x)m+n B(m, n)
= =
y n m+ B n n
=
- Im,n
xm−n+ ( − xn )p (xn− dx)
2 N
,G N 24 ^ =+ D!3 V y = /x i: & =
Im,n
=+&+& Im,n,p N 24 ^ Tx = y V+ i: = Im,n,p
n
-
×
T"& %De N+N C n < m + i:
xm ( − xn )p dx
B(, ) Γ() Γ( ) Γ( ) ××× × × ×
=
(b − a)p+q+ B(p + , q + )
=
∞
C q < p < (Q C b < a 4 D!3
-
b
24 ^ Tx = a cos
%1
-
,G N T"& %De =+
θ + b sin θ V+ i: =
(x − a)p (b − x)q dx a
b
(x − a)p (b − x)q dx =
%3 W(& & TK+ _: L ! 2N @P & =" 5B ' j: L ^+.P
a
=
9I
-
π/
(b − a)p sin
p
2 N
θ (b − a)q
/#18 "#:*8 2
- . / 0*1 '2
< limit 2 ! '. & G ; A " QG < . ! ! ,G [5 L int . +& K+
@ K+ )4 G ; A " ^++5 ! QG %! 2 ! L 5+!< QG & int ! & ^&& N T QG K+ t $ =. D!3 !
! evalf ! L ^+$ = S & k+C d . & = D!3 d DN N +
K+ 1 √ √ int(cos(x ∧ 2), x = 0..infinity) −−−−→ int(x ∧ 2sin(x ∧ 3), x
K+
=
4
F := b− > int(f(x), x = a..b) −−−−→
f (x)dx a
K+
limit(F(x), x = infinity) −−−−→ lim F(b) b→∞
K+
− 1..infinity) −−−→ - +∞ 1 2 x sin dx x4 1
. & K+
F := b− > int(1/(x ∧ 3 + 1)(x), x = 0..b) −−−−→ - b 1 F(b) = dx 1 + x3 0
evalf(%) −−−−→ 0.9819638240
K+
yD/ s @+ z 5 & % TK+ s+3 8 Y+ =%!
F(b) −−−−→ b −b+ ln b + b +
+
√
arctan
√
"
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
b
F (b) =
2 π
cd
-
K+
limit(F(x), x = infinity) −−−−→
91
2 √ π 3 9
(b −
) + π √
& & '()" n ≥ P DZL & < x = x =
2+ N
Tx
2# N
=
Tx
$ D+: @QD =xn = xn− + xn− = π C / @QD = = = < x = Tx = Tx =
Tx
=
=%! QD {xn }∞ n=a + i: < %! C && < B QD
M! !0 C & {x }
@QD 4 TG +& & xn @74: %D/C ε > P DZL & w Tx QD =w|xn − | < ε 5& & n L T5x " ε L .
=V+ T"D G.P ∞ n n=a
C D
2
!;!
@QD +P n =n→∞ lim / = %! G.P 4 & − log ε < n /ε < n 5 & | /n −| < ε
" = ^ ="& − log ε && N V+ i: & mH =%! 24 ∞
∀ε ∃N ∀n
n > N ⇒ n − < ε
n + & n +
∞
2 N
@QD +P =%! G.P n + < ε 5 & − < ε
" = (n + ) n + " i: %! : mH =%! − < n ε =
n=−
N=
V+hS 4 n→∞ lim xn = V+
∀ε ∃N ∀n (n > N ⇒ |xn − | < ε)
{ /n }n=
%N+N =%! ! < QD & "d j: ^ L vP V+P ^ nX & ,G < + Ok4 % d . 74 @ +L
,e C & = +H 5 V+.5 & ^+t.P =%! +& &/ PQD s! T"& e3& [5 &/ V4 U& T5& PQD & QD ="&
− ε
O7 Z
2& d '8 ( ) "
H
5& @C. T x Z ^+hH L @C. L ' L %! =R & w{a, a + , · · · , n, n + , · · ·}
@: . & R & {a, a + , · · ·} L x @QD {7l xa , xa+ , · · · , xn , · · · @ S . & < {xn }∞ n=a S n d & < xn = x(n) TP =" ∞ @C. L %! 2DC {xn }n=a
'()" F! '8P0U
'8()"
{xa , xa+ , · · · , xn , · · ·}
! ! P M7Z M): {x }
@QD V+hS 4 P DZL & " %: N
="& P
∞ n n=a
%+4 xn n ≥ N
xn
= n
5+DX C @QD
2
={n}∞ n= q ≤ n q ≤ n xn = n + : C @QD ={n + }∞ n= n ∞ = ( /) n=− q− ≤ n xn = /n @QD Tx = Tx = yxn = ,< C ^+ nz @QD = = = < x = Tx =
2 N 2 N 2 N
9J
< <#1 $ Q 8 I
Txn =
√ n n−
n
Q 8 [ I
2# N
√ n
V+ i: S L Tn→∞ lim n= V T ≤ xn $ G d
= (xn + )n =
+ nxn +
>
+
n(n − )
n(n − )
xn + · · · + xnn
x
n √ TN = /ε < n S mH =| n − | = xn < /n ^&& √ =" %&E V8 < n − < ε G d n
2 N
=n→∞ lim an = G d T|a| < S + %&E T24 ^ +l =%! & V8 G d Ta = S = i: %! : ^&& =%! |a|n < ε 5 & |an − | < ε =N = − log|a| ε " &&
n
Tn→∞ lim yn = m < lim xn = + i: n→∞ )
)
lim axn = a
n→∞
S L =lim a a ∈ R P DZL & n! n > m P DZL & G d T"& [|a|] +
n a − n!
24 ^
lim xn yn = m
=
P L & S w6 xn lim = =n→∞
_+ < = = / V+ i: w0x 2DE & n ≥ N P DZL & 24 ^ =N = max N , N V
=
N=
< <
√ n
lim =n→∞ xn =
|xn − | + |yn − m| + =
n a < − < ε G d n!
2+ N
< a P DZL & +P V+S p %Q ! = √ + < < a G d T < a S w[Q ^&& =%! %De
a=
√ n a−
a
n
= (xn + )n =
+ nxn +
>
+ nxn
n(n − )
+ xn xn + · · · + nxn− n n
a− a− < n S mH =xn < ε n √ n a − = |xn − | < ε
G d TN =
√ n
=n→∞ lim
|xn yn − yn + yn − m|
|a| n
−(m)! log ε < n |a| m
=" %&E V8
|xn − + yn − m|
|yn ||xn − | + |yn − m| + M M [|| + ] + =
···
" i: S
=%! w0x +D" w>x 2DE DZL & %P N < M V+ i: w9x 2DE & V+ i: w^.x |yn | < M n ≥ N P N = max N , N , N S = = < = (|| + ) M
G d n ≥ N < ≤
|a|
m +
m m m |a| m ··· (m)! m + m + n n− m m |a| (m)! n |a| m (m)!
m
∀ ∃ N ∀n n ≥ N ⇒ |axn − a| <
|xn yn − m| =
|a| m |a| (m)! m +
≤
& %P N T (Q > DZL & i: & & A7S" > P DZL & _+ < |xn − | < n ≥ N P DZL =|yn − | < n ≥ N P DZL & %P N T (Q a = %Q L Ta = V+ i: w x 2DE & N = N < = /a i: & 24 ^ =%! & V+ p f
<
= ≤
= ≤ m G d Txn ≤ yn %D/C S wF
≤
|a|n n!
n→∞
yn
|xn + yn − ( + m)| =
=
lim xn + yn = + m
n→∞
) n→∞ lim xn − yn = − m ) G d Tm = < yn = yn
2 N
n
m
√ n a=
+ <
%./ M&; + <
n − < ε T a
=n→∞ lim
6)
√ n a= <
a
=n→∞ lim a = ^&& <
G d Ta = S w
G d T < a < S w|
+ =n→∞ lim
√ n a=
^&&
= V w[Qx a √ √ = − n a < ε n a < ε n
Q 8 [ I
< <#1 $ Q 8 I
24 |_ |( < 24 & lim
n→∞
n +n+
−
lim n +n+
=
n→∞
lim
=
n→∞
√
=
√
+
n −n+
2+ N
V
P DZL & N < M > V+ i: w6x 2DE & V+ i: =w^.x M < |yn | n ≥ N
=
" i: S , = = |m|M < ||
G d n ≥ N < N = max N −
n
n −n+
+
+ n + n +
− n + n
"
n
−n+ ) lim = n→∞ n + n +
)
n→∞
)
n→∞
+ + ···+ n = n nπ = cos
lim lim
)
lim
n + − n −
n→∞
=
+ D!3 L PQD L ' P ) n − n + ) n + n − n + n + n − n − n + n + n + n + ) + + · · · + n ) n + n + n + n + ) n +
) n n
)
√ n+
√ + n
)
)
) ) )
n
n
loga n ×
n
+ ··· +
⇒ yn < + =
+ n + n +
+ +· · ·+n =
V T lim
n→∞
=
2
lim
n(n + )
+ + ···+ n n
!
+ /n + /n n→∞ + /n ++ = +
= =
2 N
8 & B &
n(n + )/ n lim + = n→∞ n lim
n→∞
V 9= =1 ,e L w6x %./ & B &
√ n n!
lim
n − × ···× n n−
+
|yn − | <
+m
=
)
+m
n→∞
) n sin(n!) n+ n ) n
(a > )
|xn − | < ⇒ xn > − =
n
lim
√
) cos(n ) − n n n + √ √ √ √ n ) · · ·
V n & V+N &
√ n + + n ) √ n + n − n ) − n + n
√ n
, N , N
=%! A i: & yn < +m < xn +
2
n
) n − n + n
& mH T"D ≤ m S V+ i: wFx 2DE & −m N < N C T = = i: & , =m <
G d n ≤ N = max{N, N } S %P
n
M
xn mxn − yn yn − m = myn |mxn + m − m − yn | = |m||yn | |m||xn − | + |||yn − m| < |m|M || |xn − | + |yn − m| = M |m|M < + =
=
+P TQD [5 L ! &
=
√ n
n
n→∞
= =
lim
√ n
n→∞
×
lim
n→∞
√ n n
− + − · · · − n n + + n −
lim
n
=
lim
n→∞
+ + + · · · + n + + + · · · + n
6
n
n→∞
+
2 N
=
V T^ /S } |( &
n
− n + n +
2 N
=
n − n + n + n + n +
=
< <#1 $ Q 8 I
LQ 8 #:L <@8.a I
mH = − < xn < + − < xn − < + =O& L VP < %! ^+H L VP xn n ≥ N P DZL & " i: t $
)
(n + ) − (n − )
)
×
+
×
+ ···+
n(n + )
=%! 8 B< 24 QD + %&E
A = max{x , · · · , xN } , B = min{x , · · · , x)N }
2%
n P DZL & G d
M O7 !DM 9=7-`
+ A − < xn < + B +
=%! w>x V8 DN m8C w9x V8
2
Tx
=
√ √ a + a Tx = a
2
@QD
√
i< C < a xn = a + a + · · · + a < === %! G.P QD ^ + %&E =+G& p %! %&E < =+&+& d mK! < √ =xn+ = a + xn U/< d & QD [5 L = QD ^ V+P TQD ^ G.P 2DE & =%! O& L < 54
G d Txn+ < xn V+ i: S L T%! 54 QD a+
<
^&& =%! a + xn
< xn
√ a + xn < xn T xn −
+
a+
< xn <
−
a+
$ =%! 8"d / ' ^ T =
+
<
+
a+
<
−
a+
<
−
&7
4 {xn }∞ @ QD n=a 4 QD =xn+ ≥ xn n ≥ a P DZL & V+hS & =xn+ > xn n ≥ a P DZL & V+hS =%! [5 &/ Q<_ < @QD & 24
Y! ! ( S"
H >!
&7 Y! !
4 {xn }∞ @ QD n=a n ≥ P DZL & S %: $ M C V+hS V+hS 4 QD =xn ≤ M a =M ≤ xn n ≥ a P DZL & S %: $ M C = @QD T"& ^+hH < O& L QD
!"! J >!
T O& L < 54 @QD P w
!"!
=%! G.P =%! G.P T ^+hH L < Q<_ @QD P w0 =%! TG.P @QD P w> =%! S< T & @QD P w9
=
V+ i: w x 2DE & A7S" M&; C. ^ < "& P xn @.P O& ^ 8$
=%! H! ]Q < %! +l < O& L i: lim xn = a V+P mH ="D ^+$ V+ i: n→α n ∈ N ' N > P DZL & %P < xn − a > 24 ^ =|xn − a| > B< $ P xn O& ^ 8$ a . mH =xn > a + =%! / "& L < Q<_ w0x %Q G d Tyn = −xn " i: S =%! yn O& L < 54 5 & xn ^+H =%! . P& w x %./ & & < i: & = = n→α lim xn V+ i: w>x 2DE =|xn − | < n ≥ N P DZL & %P N ' T = a = sup{xn |n ∈ N}
< xn
i: mH
=xn+ ≥ xn G d Tb = max {, a} S L T%! O& L QD < xn > a 24 ^ +l < Txn ≤ b + < xn ≤ a + xn
<N QD ' M+/ N ^ : TU/ L +& L +.X L mH =. ^+.A d B< T%+ &x DN "< < 7+73 P\< & T B< =. 2D d N ^ : & w+K '.
n P L& ^&& < T%! s7l xn+
H
=
a + xn−
≤
a + xn ≤ xn + xn = xn
=xn ≤ b VP L& ]Q < xn < ^&& Txn > n< & $ < =xn ≤ b n P L& 5
60
LQ 8 #:L <@8.a I
+
< <#1 $ Q 8 I
]" QD ^
=%! O& L < 54 =V+P e . & < T^+ 7.B< ,: L ! & p ^ & = V+ xn
=
=
≤
=
+
n
n(n − )
+ ··· n n(n − ) · · · (n(n − )) ···+ n! n + − ! n − − + + ··· ! n n n− − − − ··· ···+ n! n n n + − ! n+ + − − + ··· ! n+ n+ ···+ − − ··· n! n+ n+ n− ··· − n+ + − − ··· (n + )! n+ n+ n − ··· n+ xn+ +n
i: TV {xn }∞ @ QD G.P L , n= + xn = a + xn ^ & B & < n→∞ lim xn = V+ V+S =
lim xn
n→∞
=
n
lim (a + xn− ) = a +
n→∞
= = ± + a − − a = ^&& T"& d . mH T De P xn @.P $ lim xn = 5 =%! < − + a + n→∞ = + + a
2 N
< x = b TP(Q %De C < b < a +
i: a x V+P =xn+ = √n + xn ≤ n P DZL & p ^ & =%! G.P a C & QD ^ V+P =V+ %&E xn ^+hH L < & Q<_ DZL & V+ U/< T%! ^+hH L %D/C xn + T%! /& h + xn+
= = ≥
xn
=
+ +
−
···+ ≤
+
≤
+
n!
n
− n −
+ ···+
!
+
!
+
×
=
n!
+ ··· +
+
√ a
+
+
=
− ( /) − / n− − ≤
n−
+
mH T De P
G.P xn @QD ^&& =%! ! C & O& L xn mH V+ = e C QD ^ N =%!
a xn a + √ = ( a) +
lim xn = V+ i: S =%! G.P QD T^&&
G d Tn→∞ V xn [5 L
× ×!· · · × " C n−
+ ··· +
n ≥ P DZL & T5 L T%! Q<_ xn
= ≤
n
=
xn+ xn
− + ··· n n− − − ··· n n n
=
a xn + xn √ √ a xn a √ + a xn √ √ a ×= a
!
!
≥ < T h %De C P
=xn ≥
h
lim xn+ a = lim xn + n→∞ xn a + = l √ xn @.P $ = = ± a = + a √ √ = lim xn = a ^&& < %! < − a n→∞
n→∞
Te =%%*. . . ]" 2 N
xn
6>
+ %&E =+G& p
n
xn = ( + /n)
QD
< <#1 $ Q 8 I
LQ 8 #:L <@8.a I
. mH Te ≈0I I1
' P + %&E O& \< & d 8 24 = P G.P L PQD L + D!3 xn− ) xn = , a + xn−
)
xn =
n n −
)
xn =
n (n + )!
)
xn = +
)
xn =
)
xn =
)
xn =
)
xn =
,
!
×
!
× ···×
+
+
+
+P Tex
+
−
xn =
+
−
+
lim
n→∞
xn
−
+
···
n+
+ ···+
2 N
n+n
=
n +
=
(n + )(n + )
x n
n
xn :=
xn
=
≥
>
=
n
>
n+n
+ ··· + = n ! n"
+
m+%%+ ( ! 2+ N
γ= +
+ ··· +
+
− ln n
+ ···+ + − ln n n− n - dx dx + + ··· - n - n dx dx ···+ + − n − n n− x - - n dx dx dx + + ···+ + − ln n x x n n− x +
n
≥
L T%! Q<_ QD ^
k
2
=
-
k ∈ N P DZL & + i: ! @QD L ' {xn }αk= @QD 24 ^ =nk < nk+ =V+ {xn } @QD L @QD L QD L ' T,< C @QD
+ ···+
−
( !
L & %! $ {xn }∞ @ QD + i: w 0 n= +P 24 ^ =n→∞ lim nxn = d n lim ( + xn ) = e
! ^. L .P =n→∞ =+
n
n+
n +
n =%! ^&& < T%! ^+hH L < Q<_ QD ^ =P γ . & < + L T%! ^+hH L xn @QD =
4 w
< a + i: = ln a + ln b
n
@QD +P
n x −n =n→∞ lim − = ex n
+P 24 ^ T < b < √ =n→∞ lim n ab −
+
n+
+
C n V >=>=F ^. L w6x %./ T
n
+
= <
n + n
···
:=
+
n+
xn+ − xn
n +
+ ···+
+
xn =
n+
n −
n
V+ i:
n!
+ ···+
n→∞
n! nn
xn =
+ ···+
+
)
)
+
=%! G.P {xn }∞ @ QD + %&E n= L < 54 QD ^ V+P p ^ & = %! O&
n>
+
x = a >
n
e := lim
=
n+ - n+
= ≤
"
n - n+ n
=%! 5+DX C
=
69
− ln(n + ) + ln n dx n+
− ln(n + ) + ln n
dx − ln(n + ) + ln n x n+
[ln |x|]n
− ln(n + ) + ln n =
LQ 8 #:L <@8.a I
< <#1 $ Q 8 I
=|ym −a| < /m m P DZL & TDZN ! & & mH ="& xn ∞ 2 =%! G.P a & {xn }∞ @ QD L T^&& n= L {ym }n=
{x } @QD V+hS 4 T%! @ '8()" ' j & < C n7 @ i@ ∞ n n=a
n≥N
P DZL & S %: N ' Tε > P DZL &
=|xn − xm | < ε m ≥ N P <
=%! " TG.P @QD P w =%! G.P T" @QD P w0
& ^&& =n→α lim xn = V+ i: w x 2DE & A7S" n > N P DZL & %P N ' > P DZL ^ =m ≥ N < n ≥ N V+ i: , =|xn − | < / 24 |xn − xn | = < <
|xn − + − xm | |xn − | + |xm − | + =
=%! " {xn } @QD mH =%! " @QD ' {xn } V+ i: w0x 2DE & n ≥ N P DZL& %P N ' T = DZL & @QD 5 = +xN < xn < +xN 5 =|xN −xn | < = L ' T @QD P +A/ & & =%! {xn } @QD V+ %&E %! : = {xn } G.P @QD =%! G.P {xn } %! G.P .P & {xn } %P N ' > DZL & {xn } & " i: & & ' T^+t.P =|xn − xm | < / G d n, m ≥ N S
|xn − | < / k ≥ N P DZL & %P N k P DZL & =%! {xn } @QD L V m ≥ N < N = max{N , N } i: & mH =nk ≥ k k
k
k
k
|xm − | = ≤ <
|xm − xnm + xnm − | |xm − xnM | + |xnm − | + =
2
' [5 && =C C x x α = ± x + +
2
=%! . P& <
8& %! DC α C + ··· +
xn
+ ···
n Y+34 C G.P = = = < xn < = = = Tx Tx d
P G.P = = = < xn < = = = Tx Tx < ≤ x T P
9:
L QD L '
{ /(n + )}n= ∞
2
2 N
@QD =%! {
∞
/n}n=
T"& G.P & {xn } @QD S =%! G.P & _+ {xn } L QD L P G d {xn } @QD G d T"& S< {xn } @QD L QD L S =%! S< _+
2
: mH =%! w x +N m8C w0x %! ^"< A7S" @QD L ' {xn }∞ k+ V+ i: =" 2DE w x %! DZL & %P N ' (Q > P DZL & ="& {xn } k P DZL & Ti: M&; $ =|xn − | < n ≥ N P k ≤ nk k P DZL & mH ≤ n n< & < nk < nk+ < nk ≥ N k ≤ N P DZL & + wN ! &`^.x 2 =%! G.P & _+ {xn } @QD 5 =|xn − | < ]Q k
k
2T
k
L =%! S< {(− )n }∞ @ QD n= < %! G.P ' C & d L x n = (− ) n = @QD ' { C & d L x n+ = (− ) n+ = − @QD L ?+P & xn = (− )n mH = − Q =%! G.P =%+ G.P
2 N
L TL =%! G.P 4 & { /n!}∞ @ QD n= G.P 4 & %! { /n}∞ @ QD L QD n= G.P ="& QD L @QD P
#
=%! G.P
mH T"& P A S =A = {xn |n ∈ N} V+ i: A7S" xn = a V n ∈ N % & DZL & %P a C P& < %! 2f.B ^ L 4 @QD {yn}∞ V+ i: n= A Ti: M&; =%! P A V+ i: mH =%! . ^ 8$ x ! H! mH =%! O& L < +l =a = sup A V+ i: =%! wO&
%P n T! H! [5 & & T = DZL & T = / DZL & ="& xn d y V+ i: =a − < xn < a a − / < xn < a %P n T! H! [5 & & V+ i: DZN ! & ="& xn d y V+ i: =xn = y < ' T = /m DZL & 24 ^ ="& " ( ym− =a − /m < xn < a n ≥ N P DZL & %P N 8 /O P xn ^ ^+& L %! P P xn 5 $ d ym V+ i: = r: y , y , · · · , ym− & %P 66
< <#1 $ Q 8 I
LQ 8 #:L <@8.a I
@QD V+P xn =
+
+ ···+
2 N
n
=%+ " xn V+P p ^ & =%! S<
G d Tm = n S L |xm − xn | =
n+
>
m
+
/ ' ". 8$
n+
+ ··· +
m
)
xn = xn =
+ −
<x
+
!
+
!
|ym − yn |
− ···+
L ε "
" 5 =%!
= <
= b Tx = a T < w <
+ ··· +
xm
m n+
+ ··· + m n+ m−n
− ( / ) − / n+
= n n+ − /
!
− ···+
2 N
(− )n n!
" ] @QD +P =+G& p T ≤ n
="& G.P + < T%! V+ B p ^ & = m n j ) (− )j ) (− ) − |xm − xn | = j! j= j! j= m ) (− )j = j!
T" {xn }∞ @ QD +P = ≤ n P DZL & n= ="& G.P + < 5+DX C P L & C W. wF C W. & V8 = ! d TV8 ^ 24 +& ^. = B< k @H & =w+ 5B >=0=1 L w x %./ &x + %&E
j=n+
< k
≤ ≤
m ) j=n+ m ) j=n+
n ≥ P DZL & < x = a > + i: wI L N DZL & + M+N3 =xn+ = + /xn =%! G.P {xn }∞ @ QD a n= @QD " %: $ C C V+hS − xn+ | ≤ C|xn+ − xn | n ≥
n∈N
,
@QD
xn+ = wxn+ + ( − w)xn
= <
∞ n n=a
P DZL & < < C < =|xn+
xn+
xn = − +
+ i: w6
n
+ T n < ε |xm − xn | < ε 4 TmH < %! " {yn }∞ @ QD ^&& =N = − log ε < n n=a = B< α C C 8 + ="& G.P +
n
(− )n (n)!
xn
x xm n+ = ± + · · · + m n+
≤
+ ···+
o)KC 4 {x }
≤
/
+ ···+
G.P {yn }∞ @ QD T5 B< α V+ %&E n= ∞ " {yn }n= QD V+ %&E Tp ^ & =%! %!
m−n=n
@QD +P P "& G.P + < %! " " sin sin sin n ) xn = + + ···+ n ) xn = cos ! + cos ! + · · · + cos n! × × n(n + ) )
x x yn = ± x + +
+ ··· + m ! m"
C
n = m
=
+
N+/ +& & =wN75 {, , , · · · , , } @C. & T5x d α = n→∞ lim yn
j!
j−
m−n −
n − / n−
n− > ( /)n− < ε |xm − xn | < ε 4 mH =N = log/ ε + " i: %! : ^&& ==log/ ε
6F
LQ 8 #:L <@8.a I
=
n+ n+ −
=
−
=
−
n+ − n+ −
n+
=
^&& < %! " TDN @QD P
n+
n+
≤
n+
n+
−
< <#1 $ Q 8 I
n+
−
+ ≤
=
n→∞
()
= =
lim
N →∞
C|xm− − xm− | + C|xm− − xm− |
≤
n+ −
lim
|xm − xm− | + |xm− − xm− | + · · · · · · + |xn+ − xn |
C
(xm − xm− ) + (xm− − xm− ) + · · · · · · + (xn+ − xn )
|xm − xn | =
n+
#
· · · + C|xn − xn− |
== =
n+ N $− + N
C m− |x − x | + C m− |x − x | + · · ·
≤
· · · + C n− |x − x | C n− − C m−n A< A C n− −C −C
e − < =
=N = −(n + ) %! " i: w x V F= =1 ,e L w0x %./ lim
n→∞
+ + ··· + n = n
2 N
S 5 T C
T5x + ' & d 2DC
n =%+ DN p @QD T^&& =n→∞ lim = n+ =
= |x − x | d
ε( − C) + < n − xn | < ε G d TlogC A =%! " QD ' {xn }∞ @ QD n=a
−C
A < ε
S mH =A
2
@QD "
n xn = + + + · · · + n! 24 ^ =+G& p (n + ) − xn+ | (n + )! =
|xn+ − xn+ | = xn+ − xn + · · · + (n + ) + · · · + (n + ) − (n + ) (n + ) = + · · · + (n + ) + · · · + n − (n + ) n (n + ) (n + ) (n + ) − (n + ) = (n + ) (n + ) − (n + ) n n n(n + ) = = (n + )(n + ) n+
n−
+ < |xm
+ T^&& =%+ DN ] @QD Q DN QD TG.P @QD P <_Qz V+S y="&
wC
="& G.P V+ i: A7S"
n ≥ a P DZL & < < C < Tn < m S T24 ^ |xn+ − xn+ | < C|xn+ − xn |
G d
− n+
!
|xn+ |xn+ − xn |
= = ≤
(n + ) (n + )! n+ (n + ) n+ n(n + ) + n+ = n(n + ) + n
|xn+ − xn+ | < C|xn+ − xn | G d Tn ≥ S mH =%! G.P + < " TDN QD ^ 5 =C = =+G& p xn =
|xn+ − xn+ | = |xn+ − xn |
@QD +P P "& G.P ^&& < %! DN " 6I
2 N
+ · · · + n! QD @ nn 24 ^ (n + )! (n + )n+
+
(n + )! (n + )n+
< <#1 $ Q 8 I
LQ 8 #:L <@8.a I
' {yn }∞ / # n=a + i: ∞ $ {xn }n=a @QD < %! +∞ & S< < 54 @QD ∞ xn+ − xn %! ="& G.P α C & t $ =%! G.P α C P S< _+ xn /yn @QD yn
& <
/xn
2
Tn→∞ lim xn
yn+ − yn n=a & _+ xn /yn @QD 24 ^ ∞ x −x T"& S< n+ n yn+ − yn n=a
=&
L xn & TD/ @+A/ %! :
=" !
= a
V+ i:
2
A7S" /yn
zn+ − zn = lim x = a, yn+ − yn n→∞ n+ lim yn = lim n = +∞
x + x + · · · + xn zn = lim =a n→∞ yn n
G d Tyn = n! < xn = n i: & n = lim xn lim
lim
n→∞
=
lim
n!
+
+
(− )n
n
+ ···+
n +
xn − xn+ xn = lim n→α yn − yn− yn
=P $ < "& P $ n n+ =L < ∞ n→α lim = L V+ i: A7S" yn − yn− P DZL & %P N ' > P DZL & 24 ^ xn − xn+ X & − L < n ≥ N
x −x
xn − xx+
x
= = = Tn + Tn DZL & w =1 x ,: =yn > yn+ L & TV+ U.B VP & d ^+:X < V+ n + p − < %" V+P T{+ ^
lim
n→∞
=
lim
& < V+P + % & & p < :S ^+:X L V
n
n × n!
n→∞
(L − )(yn − yn+p ) < xn − xn+p < (L + )(yn − yn+p )
(n + )! − n!
lim
n
n→∞
× n→∞ lim
n
n!
n
n
n!
n!
=
V 0)=0=1 yn = n < xn = ln n i: & = = = =
xn n→∞ yn x − xn lim n+ n→∞ yn+ − yn ln(n + ) − ln(n) lim n→∞ (n + ) − n n+ lim ln = n→∞ n
(L − )(y − ) < xn − < (L + )(yn − )
+
=
lim =n→∞
ln n n→∞ n
2 N
n+ − n
=
lim
+
− ··· +
yn − yn+
yn xn+ − xn lim n→∞ yn+ − yn
=
n→∞
xn =
+
(n!) (n)!
n→∞
=
n
)
lim
n→∞
n!
−
xn =
& G.P PQD {yn } < {xn } S 24 ^ T"& Q<_ QD {yn} < "& 4
V+S +
n→∞
xn =
lim
lim
)
n!
n→α
n→∞
n→∞
n
)
L
x + x + · · · + xn & =%! a && _+ n→∞ lim V+P n =xn = x + x + · · · + xn < yn = n V+ i: p ^ 8 & B & < 0)=0=1 && 24 ^
n→∞
) xn =
k_Q TmH
2 N
L − < xn /yn < L + V < yn $ T^&& < =%! L & G.P _+ {xn /yn} mH =|xn /yn − L| < @QD T5 =%! %+& L = ∞ V+ i: , DZL& mH = + % & & {(xn − xn+ )/(yn − yn+ )} n ≥ N P DZL & %P N ' M > P yn > yn+ $ T+ =(xn − xn+ )/(yn − yn+ ) > M xn − xn+ > M (yn − yn+ )
lim
n+p−
w0=1 x
< = = = Tn + Tn DZL& w0=1 x ^+:X _+ & ^ ^&& =V+ U.B VP & < " xn − xn+p > M (yn − yn+p )
& xm > M yn " + p → ∞ & ^+:X L +S & 2 =%! % & & S< _+ {xn /yn } ^&& =xn /yn > M 61
LQ 8 #:L <@8.a I
p xn
< <#1 $ Q 8 I
2
= n /n
@QD L T%! G.P xn 24 ^ T+G& (n + )
lim
n→∞
xn+ xn
=
=
xn+ n→∞ xn lim
lim
n→∞
n+ n
<
2 N
@QD L %! S< QD T24 n
xn = n /n!
(n + )n+ (n + )! lim nn n→∞ n! n n+ lim n→∞ n n lim + n→∞ n e>
=
= = =
V 0>=0=1 @+A/ L ! %./ '. &
=
lim
n
n→∞
2 N
(n + )n+ (n + )! = lim nn n→∞ n! n n+ = lim =e n→∞ n
n→α
= =
xx+ xn
lim
n→α
−n−+(−)
−+ n→α lim
(−)n n
=
lim
n→∞
)
lim
p
p n→∞
+ p + · · · + np n − np p+
=
n+
−n−+(−) −n+(−) # "& : n S − "& |
=
+ p + · · · + (n − )p p = p+ p+ n
DZL & mH || < < n→α lim n+ = $ w[Q A7S" xn DZL & %P N Y+34 C || + < (Q x
>
xn +
^&&
− <
n ≥ N P xn x =|xx+ | < k|xn | n+ < k G d k = + || " xn
G d n ≥ N S
|xn | < k|xn− | < k |xn− | < · · · < k n−N |xN | =
2 N
/n
4 [Q( 2f.B & QD xn S x T24 ^ =n→∞ lim n+ = < "& xn < %! 4 & G.P xn G d T < S w[Q ="& %+& & S< xn G d T > S w x B n→∞ lim n+ < & %De 2f.B & QD xn S w| xn √ lim xn G d T"& =%! && 7D/ & < B< _+ n→∞ √ ^ =n→∞ lim xn = < "& %De QD xn S T24 < %! 4 & G.P xn G d T < S w ="& %+& & S< xn G d T > S wP
B 24
|xN | n .k kN
=n→α lim xn = ^&& < lim k n = mH k < $ n→α x > DZL& =|| > < n→α lim n+ = $ w 2DE xn n ≥ N P DZL & %P N ' || − >
a |x | mH || − < n+ < || + ^&& = n+ − < |xn | an P DZL & < < k 24 ^ Tk = || − V+ i: S ^&& =|xx+ | > k|xn | n ≥ N |xn | > k|xn | > k |xn− | > · · · > k n−N |xN |
n+
=
)
+ p + · · · + np = p+ np+
i: S 24 ^ =
√ xx+ Q< "& B lim n xn %! ^8. n→α xn n→α −n+(−)n ^ =xn = V+ i: fke L ="& √ n xn
n→∞
lim
n
nn n!
lim
lim
p
)
n
=%! S< 0>=0=1 k+A/ && T+ <
n lim √ n→∞ n n!
@QD G d Ta > S +P w =%! +P L < L ' P
=%! G.P 0>=0=1 k+A/ && T+ < ^ =+G& p
n a
n
n
G.P 4 &
n+
lim
n→∞
=
|xN | =n→α lim |xn | = α ^&& < lim k n = α =|xn | > N k n n→α
n
k
wx 8 2DE =%! | ^ @74 L w|x 2DE 2 =" K! & < %! wx < w[Qx +D" wPx < 6J
Q 8 4 345 (47 I
< <#1 $ Q 8 I
/& & : < LO
" ∞ G.P {xn }n=a @QD P DZL & %! ^ x→x lim f (x) = ="& G.P & {f (xn )}∞ @ n=a QD Tx &
= B< n→α lim
# lim
lim n sin
n→∞
=
n
lim
=
√ n lim n cos − n→∞ n
=f (x) = cos x − x
< xn
= √ n
√ n lim n cos = − n→∞ n = =
& L =n→∞ lim lim
n→∞
n
lim
n→α
=
= =
n
+ αn =
+ αn
= =
n
)
)
=%! G.P _+ =%! G.P _+ =%! G.P _+
xn =
(n!) (n)!
)
/xn
+ 3& n
xn =
)
)
)
xn
G d T"& G.P
3
G d T"& G.P
3
|xn | G d
T"& G.P
3
xn /n G d
T"& G.P
3
n (n + )(n + ) · · · (n) = =n→∞ lim n e
2 N
lim ( + αn ) n→∞
un /n lim ( + un )/un n→∞
√ n
=%! S<
G d T < α < S V un = αn i:
TD
n
" n; C +Q u & TI 9 L ' P +P d & s7l T,e ' @h < 2DE
cos(xn ) − lim n→∞ (xn ) cos x − lim x→ x −
/n
L PQD L ' P G.P
V+ i: =>=1 ^&&
n $/
n+ n
n / n+ ··· = n n+ · · · n+ n+ lim n n→α · · · n+ n n+ n+ lim n→α n+ n+ lim + =e n→α n+
) xn =
2 N
···
N @D!3 &
V 0>=0=1 L w|x %./ & &
n
sin x = lim x→ x
=+ D!3
sin n
n→∞
n→α
2
^&&
2+ N
N
P DZL & T^&& =x→x lim f (x) = V+ i: A7S" |x − x | < δ x P DZL & %P δ > T > G.P QD {xn } V+ i: , =|f (x) − | < V P DZL & %P N ' δ > DZL & mH =%! x & n ≥ N P DZL & ^D7& =|xn − x | < δ n ≥ N =%! G.P & {f (xn )} ]Q < |f (xn ) − | < Tx & {xn } G.P @QD P DZL & V+ i: , ws7l i:x V+ i: ="& G.P & {f (xn )} @QD lim f (x) = P DZL & %P > mH ="& s7l x→x =|f (x) − | < < |x − x | < δ %P x ' δ > |xn − x | < %P xn mH =δ = n < n ∈ N V+ i: %! G.P x & {xn } {+ ^ & =|f (x) − | < < /n {f (xn )} mH =". L . L f (xn ) @74: Q 2 =%! i: vf %+ G.P & N @D!3 & lim n sin ( /n) < xn = /n V+ i: =>=1 Tn→∞ ^&& =f (x) = sin x/x
xn+ xn
xn
S w9
xn
S w6
xn
S wF
xn
S wI
+P w1
O7 3 234 &36
H
QD _+ < N+N +a & +a ' U& ' 5Q; < d + @;& W(& ^ =V 5Q; =V+ F)
<#1 I
< <#1 $ Q 8 I
)
lim
n→∞
)
) )
n− n+
n − n +
n − −n lim n n→∞ + −n lim
lim tann
(− ) n
csc
lim
n→∞
√
+n
π
π
n→∞
) n
+
n→∞
)
n+ n −
n
n
lim
n
+
n→∞
αn
n→∞
lim sin ( /x) +P
=
x→
2+
lim ( + u)/u u→
=
^ =V+ D!3
lim m (n + a ) · · · (n + am ) − n
= B<
=>=1 M&; + Tn→∞ lim un =
+
exp
αn n→∞ n
lim αn /n n→∞
lim
αn n→∞ n lim
N %! : mH L T%! 4 &&
αn ≤ lim αn = n→∞ n
≤ n→∞ lim
="& e = && p T+
9!0
H
2 N
= B< x→∞ lim sin x V+P yn = nπ + π/ < xn = nπ PQD p ^ & = 24 ^ =V+S p
= P PQD L V +& < Z ! wP " x ! TV S PQD t d P T^&& ="& Y+34 _+ ! C L QD + i: i< @QD k h_B . T k ∞ {xn }n=a
[5 Sk x
( '8()" & ∞ )
<
xn
Q
P DZL & =%!
≥ a k )
j=a ∞ {Sk }k=a
xj
24 &
. & < + wxn .C @7.B
= B< yn =
=V+P
xn
. & _+ d N T"& G.P ∞ )
xn = lim
n→∞
n=a
n )
lim tan ( /x)
< xn
nπ + π
xn
N+/ +& & =V+P
k=a
lim {xa + xa+ + · · · + xn }
L T%! G.P & ∞ ) n=
n
n=
=
n
!
lim
2
P N Tb > < a > 4 + D!3 L < L ' π n + n − ) lim ) lim n tan n→∞ n − n + n→∞ n
)
n )
n→∞
k=
k n+
− ( /) = lim n→∞ − ( /) n = − lim = n→∞
PQD p ^ & = 24 ^ =V+S p
nπ
="& B . p T =>=1 M&; + <
n→∞
∞ )
2+ N
+P
lim xn = lim yn = , n→∞ lim tan = , n→∞ xn lim tan = , n→∞ yn
xa + xa+ + · · · + xn + · · · = =
=
=>=1 && T+
n→∞
n=a
xk
= .
n→∞
x→
mH T%! QD ' ! P $ &&) ! S =%S ^(! d S< < G.P n=a
lim sin(yn ) = lim
= B< x→∞ lim sin x
xa + xa+ + · · · + xn + · · ·
= ,
n→∞
n→∞
@QD =V+
∞ )
lim sin(xn ) = lim
n→∞
n=a
∞ )
n→∞
= xa + xa+ + · · · + xk =
∞ {xn }n=a
lim xn = lim yn = ∞
n→∞
) )
F
lim n
n→∞
lim
n→∞
lim
n→∞
√ n
−
√ √ n n a+ nb
cosn √
n
) ,
lim
a−
n→∞
)
n→∞
)
lim n
lim
n→∞
n+ n+ √ n
n √ n b
+ a n
−
√
n+
< <#1 $ Q 8 I
<#1 I
+ + + + ··· + + · · · + ···+ n n n ! "
C
=
+
+
+
! C
∞ ) n=
n−
+ ···+
=
"
+
n(n + )
n
=
=
lim
=
∞ )
(− )n
n=
!
2+ N
. r4 "
" d h_B
=
−
lim
n→∞
n )
Sn =
)
n=
n (n + )
∞ )
)
e−nα cos(nα),
−
− ··· +
+
n ) + + + · · · + n −n )
×
)
×
××
+
+ ···+
××
∞ ) n+− n+
) )
+
+ ···
lim
n→∞
(n − )(n + ) + ··· + +
+ ···
n(n + )(n + )
√ n
2 N
!
+ ···+
n!
> Sn
(n + )!
+
≤
+
+
+ ··· +
+
+ ··· +
+
− ( )n
n!
n−
<
−
+
+
!
+ ···+
= lim
n!
n→∞
∞ ) n=
n
n
+
'+ P !
=e
n
2 N
n
∞ ) (− )j j+
j=
n=
n!
h_B PC. @QD V >=0=1 ,e L w>x +Q =%! S< ^&& < . r4 "
" d
n(n + )
) )
∞ ) n=
k
+ +
k
= =
∞ ) k k=
n
) k=
- P S< '+ -G.P L ! L '
)
=
%./ L =%! S<
q sin α + q sin(α) + · · · + q n sin(nα) + · · ·
∞ )
n=
w @C & ^. C &x
n=
)
∞ )
"& O& L <
=
+ ···
k+ =
n+
(α ∈ R) (− )n
54 QD G d
n=
)
k=
=+
k!
k=
Sn
n −
$
n )
S TU/< =%! O& L < 54 d h_B
Sn+ = Sn +
∞ )
−
k
k=
k+
PC. @QD L T%! G.P
n n+ ) ) k k (− ) − (− ) k= k= (− )n+ =
+ D!3 L ! .
2 N
−
k
k= # n )
n→∞
!
k(k + )
k=
n )
n→∞
= + %+& & d 2DC Tn → ∞ /<
|Sn+ − Sn | =
n→∞
lim
n(n + )
n=
n )
= lim
n
C. @QD L T%! S<
∞ )
L T%! G.P ' &
+
+
+
+
+
+
+ ···
··· + + n− + ···+ n− + + ≥ + + +
n
n!
F0
n
@ #1 #:L <@8.a 'I
{Sn }∞ n=a
%! d
∞ )
< <#1 $ Q 8 I
! G.P & : < LO
xn
n=a
@QD L =%! S< Sn
∞ )
="& O& L √
n=
2
!
n
+√
=
n√ = n
=
)
∞ ) (n!) (n)!
n=
+
G.P
n=
qn
D!3
2 N
+ q + · · · + qn − q n+ −q
=
∞ ) P (n) n a n!
n=
≤
/< < /<
xn
=!0 !DM 9=7-`
2/+ :K C/I=
=n→∞ lim xn = %! d
−q
!
# lim xn
=
n→α
=
m > n P < n ≥ N P
k=n
TO& 2< & " B %! : A7S" =%! O& L < 54 QD
T < a ≤
∞ ) n=
na
!
2
!
S TU/< = . r4 "
" L T%! S<
G d Tm = n m ) = ka k=n
≥
n ) k=n
lim
n→α
=
k=n
n
V+ i:
L T%! S<
!
A7S"
$ xi
i=a
n→α
i=a α )
n− )
xi
i=a
xn
n=a
α−α=
∞ )
∞ )
(− )n
n=
qn
n=
!
2
!P ! G d T
≤ |q|
S
)n
2 N
=n→∞ lim q n = 24 ^ L
∞ )
" G d TSn
= B< fk4 n→∞ lim (−
xn
S
( )4-' C/I=
n=a
F>
n− )
xi − lim
xn −
xn
n=a
=%! . P& {+ ^ & <
& ! ' =
α )
xi −
i=a n )
n→α
2
k
n )
lim
n )
n=a
n ) k=n
≥
=
T%! S<
ka
xn
∞ )
n=a
n=a
2
α )
24 ^ =%! α & G.P
2W/' C/I=
m ) = xk < ε
%H
V+N +l "< L _+ ! %Q TPQD 3& .P G.P 5Q; ! dz W!H ^ & !H & = Ld "< ^ =" ! y-+ "& 5 T^&& q%! L +& Ld ^ 5 =V+ n; Ld ^ . L
DZL & " %: N ' T < ε P DZL & %! G.P
{Sn }
2% =+
="& O& L ∞ )
+ ···
! N T"& (Q N+N C
G.P & LO
"
q n+ − −q −q
=
+ ··· +
+
√ n
@QD L T%! =
(n − )(n + )
n
!P ! G d T < q < S
Sn
n=
(n − ) n + + + ··· + + ··· n −
="& & O& L ∞ )
∞ )
)
' a < & k @B 7.B $ ' P (x) S P
+ ··· + √ n
C
)
√ + √ + ···+ √ n n n ! "
≥
)
= xa + xa+ + · · · xn
< "& 2f.B
< <#1 $ Q 8 I
<
∞ )
+ i:
xn
@ #1 #:L <@8.a 'I
L T%! G.P T
(43 $ C/I=
n=a
xn < B n→∞ lim < "& %De 2f.B & ! < yn
∞ )
xn yn
S =%! 8 ∞ )
S =& P G.P _+ _+
yn
∞ )
<
n=b
G d T"& G.P
xn
G d T"& G.P
yn
∞ )
∞ )
n n ( + /n)
n=
lim
n→∞
=
+
m ) ka
<
≤
xn yn
n→∞
=
n→∞
+
n→∞
n $−/
n
n + n + n − n= =
n
=
L w0x %./ &&x
! '
∞ )
xn
+ T <
n
lim
n→∞
= e−/ ∞ ) n n=
n
! <
∞ ) n=
<
lim
n→∞
+ n + n − n
∞ ) n=
n/
∞ )
n=a
xn
yn
<
∞ )
a
= .
+ i:
xn
$ C/I= "
n=a
n=a ∞ )
="& S< _+
yn
n=b ∞ )
G d T"& S<
n=a
L T%! G.P
=
! <
=w <
=%! S< F=6=1
2
n + ! n + n= <
n + n n
Lx %! G.P
! G.P & : < LO
" T24 ^
∞ ) n=
="& 4 & G.P < Q<_ {|xn |}∞ @ QD %! n=a
n
n P DZL & V+ i: A7S" V+P 24 ^ =xn > < %! 4 lim xn Txn ≥ xn+
=
n
∞ n ) n=
n −
!P ! <
F9
!
2 N
= √ < n n −
=%! S<
n→α
S w
H5;[ C/I=
L T%! S<
xn
n=b
∞ )
n + n +
= P < %De + 8 P xn 5 T%! ! d
lim
n→∞
$ <
<
V+"& " n ≥ N P DZL & < "& %De 2f.B & !
G d T ≤ xn ≤ yn ∞ ∞ ) ) ="& G.P _+ xn G d T"& G.P yn S w[Q
n + n lim n→∞ n + n − n
√ = n
+ i:
2 N
!
a a−
=
(a − )an−
a n
G d Tn > N S %P N ' T < ε P DZL & mH =" 8$ ε L p
n=a
∞ )
(a − )an−
−n
= lim
∞ )
√
an
<
n=b
lim
m−n+ − a − a
#
=w-$x %! G.P
√ n+ n +n−
2 N
!
ak
k=n
=%! G.P
n
na
ka
k=n m )
n
n /n # lim +
L T%! S<
n=
m )
=
k=n
L T%!
n /
yn
< " %+& n→∞ lim
xn
2
!
∞ )
∞ )
a =w-$x n→∞ lim a = 8 d +Q & r4 "
" n ^ =an < na G d Tn ≥ N S %P N T^&& 24
n=b
n=a
n=b
! <
xn
n=a
n=b
n=a
∞ )
G.P
∞ )
n
yn
S< < G.P T24 ^ ="& %+& < 4 [Q( " 4 n→∞ lim
∞ ) n=
n
'+ P ! <
@ #1 #:L <@8.a 'I
< <#1 $ Q 8 I
< g(x) ≥ G d Tx ≥ e S mH = g (x) = G d TV+G& x :X L =%! 54 f (x) ^&& − f (e) = f (e) e
T^&& =f (x) ≥ x ≥ e P L & + t $ %&E ^ =%! 54 [e; +∞) @L& & =xn+ = f (n + ) > f (n) = xn G d Tn ≥ > e
f (x)
lim xn
=
n→α
= =
n=
n
= S + x > S = x − x + x − x = S + (x − x ) > S
n→α
= x + x + x + x + · · ·
A7S"
x + x + x + x ≤ x + x + x + x = x = x
== =
n P DZL & S p f DZN ! & mH S > S > · · · > S
n
S < S < · · · < S
n+
n+ −
≤ x
n
+ ···+ x n = x ! " n
>S
(n+)
<S
> ··· >
(n+)+
< · · · < S
w>=1 x w9=1 x
%! 4 & ^+H L < Q<_ {S n }αn= @QD mH @QD T
n=
|xn | =
+ ··· + x
i=
= S − x < S
x + x ≤ x + x = x
n+
(− )i xi
= x − x + x
S
x ≤ x
+x
n )
= S + (x − x ) < S
n+ lim (− )n n + lim lim (− )n n→α n n→α lim (− )n
V B
n
= x − x
n→α
="& G.P
x
S
n+ n
+ i: 2W/' 2O ;- C/I=
" T24 ^ =%! %De < Q<_ QD {xn }∞ n= 3 ! %! d ∞ x G.P & :
< LO n= n n x
= x >
S
= B< d
∞ )
n=
= S − x < S
N
)n
S
V+P
(− )n xn
" p f =V+S p Sn =
=
L =%! S< − + − + · · · ! S p f =xn = (−
α )
@QD p ^ & =%! ]G.P
V TO& P;! U.B & T^&&
! !
2
TL ="& G.P T%! (Q a >
%! 4 & G.P < Q<_ /na
n
n+
)−
k=
xk ≤
n ) k=
k x
T^&& < %! O& L 2
∞ ) n=
k
≤
∞ ) k=
xn
k x
|xn+ | =
(n + )a
≤
na
= |xn |,
V T( < a) %! 54 f (x) = xa U& $ < k
lim |xn | = lim
n→∞
%De 2f.B & ! mH =%! G.P
C & " B TW&& = / ' L S_& Y+34 C P
@QD TL q%! S<
n→∞
∞ ) n=
na
=
√ (− )n / n n
!
2 N √ n
%fC T ^ @P & =%+ Q<_ |xn | = / n =V+ !& ( ; ∞) @L& & f (x) = x−/x U& M g(x) = ln x −
F6
d 24 S < f (x)
= f (x)
ln x − x
< <#1 $ Q 8 I
n + n + n + n= ∞ )
)
M)( #:L <@8.a ,I
+ (− )n , ) n+ n= ∞ )
∞ )
)
n=
(− )n √ , n + (− )n
∞ )
)
(− )n−
∞ )
)
n=
(− )
n+
n= ∞ )
/n)
n
(− )n
n=
n
,
) )
n=
sin n , n
∞ ) n=
n(ln n) {ln(ln n)}
& 5 T /p−
4
∞ )
*H
! V+hS
n
'+ P ! V+
2
=%!
< G.P
∞ ) (− )n+ n
n= n+
∞ ) (− ) n
n=
= xn
n
!
(n )p n
p−
! /< < /< T^&& = < p − =
≤ xn+ =
%! G.P < p
∞ ) n=
!
n ln n
2 N
f (n + )
≤
f (n)
= xn
V+ B TmK! n=
n x
n
=
=
∞ ) n= ∞ )
n
n=
=
ln
Ld && T+ =%! S< ="&
!
'+ P ! Q Tw9=9=1 L w9x %./x %! S< =w 0=6=1 L w x %./x %! G.P
n=
%! G.P /< < /<
<
i &!0 T"D M7; G.P T"& n=a
/np
@QD V+ %&E & {7; ^ & V+ B Tp ^ & =%! Q<_ < %De {xn }∞ n= %! %De [; +∞) @L& & f (x) = x ln x U& M %fC
54 L& ^ & f (x) ^&& < wf (x) = ln x + Lx = T"& Q<_ L& ^ & U& + =%! f (x) x ln x ^&& <
PQ
T"& G.P TM7; G.P ! P %! ^"< =%! s7l {7; ^ m8C Q<
n=
n=
!
|xn |
np
n= ∞ )
=%! S<
!
xn
G.P ! ="& G.P
∞ )
/np
∞ )
n=a
=" +
∞ )
.
< %De 2f.B & ! & UB 3& @.P D/ W(& +/ ^ V+P =& w ! x " , 2f.B & ! " V+N _& @ < & ! G =V& =
< G.P ! < M7; G.P !
&!0
∞ )
=
n
n=
J'& !DM 9=7-`
∞ )
≤
(n + )p
=
,
n(ln n) {ln(ln n )}
n x
,
&
∞ ) n=
≤ xn+ =
∞ )
! & 8& ^ >=6=1 Ld ^&& < !P
n= ∞ )
24 ^ =V+S p
∞ ) n+− n− ,
)
2
! < Tp > + i:
(− )n+ , − ( /)n
∞ )
) n sin(
√ n
n=
)
∞ ) (− )n+ , √ n n n=
)
n − , n − n n= ∞ )
)
,
∞ ) n=
L ' P S< < G.P
! +
)
∞ ) n=
FF
nn+ /n , (n + /n)n
)
n ln(n )
n ln ∞ )
n
n= ∞ )
n
n=
n ln n
'+ P ! <
S< ! T >=6=1 !
+ 3& L ! ∞ ) n=
n , n + n
M)( #:L <@8.a ,I
=
lim
n→∞
=
< <#1 $ Q 8 I
n
n+ n
lim
+
n→∞
L T%! M7; G.P
−n n
T"& S< T%! (Q a =
n=
!
n+ lim n→∞ |a|
=
L
+
+ =xn =
+
.. · · · n .. · · · (n + )
=
xn+ lim n→α xn
=
(n + ) lim n→α (n + )
=
lim
'
xn
+ ···
=+ 3&
Q ^ =
n=a
xn
n |xn |
∞ )
! G d T < S w[Q =%! G.P
xn
xn
n
p %Q <
∞ )
n=N
∞ ) n=N
rn = rN
%! "
=%! G.P xn
! G d T > S w
xn+ = V+ i: lim =n→α xn = > w < ≤ ≤ w[Q V+S
A7S"
23(!
%! C r V+ i: = ≤ ≤ V+ i: N C ε = r− DZL & 24 ^ = < r < x + = n+ − < ε n ≥ N P DZL & %P xn
|xn | <
n=N
M )
xn+
r
n−N
|xN | = |xN |
∞ )
M−N )
k
r <
k=
n=N
mH =%! G.P
∞ )
rk
k=
+Q & d !P !
< r <
G.P ^&& < O& L _+
∞ )
xn
%De 2f.B & !
n=a
=%!
24
V+ i: DZL & 24 ^ = > n > N P DZL & %P N ' ε = ( − )/ xn+ − < ε V xn
x < n+ < xn
−
+
DZL & < < k 24 ^ k = − " i: S < %+ 4 n→∞ lim |xn | mH =k|xn | < |xn+ | n > N P ∞ )
="& S<
2
xn
! ^&&
n=a
L T%! G.P
n
|xn | <
xn
! G d T < S w[Q
n
∞ )
=<
n+
n=a
! G d T > S w
n=a
23(!
∞ )
=%! S<
M )
V+S p %Q < A7S" r < %P r C 24 ^ ε = r − DZL & = lim |xn | < r < < r < n→α |xn | − < ε n > N P DZL & %P N ' + =|xn | < rn mH = ≤ |xn | < r S
x
|xn | < r|xn− | < r |xn− | < · · · < rn−N |xN |
< %! (Q ! 24
n=a
=%! S<
;[& C/I= !
%" T^&&
lim ^ ="& B = n→∞ ∞ )
! + i:
x − r < n+ − < r − xn
2W/' * ) C/I= !
+ < M7; G.P
xn
2 N
+ n +
=> n + n +
n→α
∞ )
+ < M7; G.P
n
+ i:
= ≤ < ]Q < <
24 ^ ="& B n→∞ lim
="& S< " ! mH ∞ )
=wF=6=1 L w0x %./x %! G.P ! '
n=a
. .
2 N
!
n=
=∞>
.
n=
n=a
! G.P
2 N
(n + )!/an+ lim n→∞ n!/an
=
n=
∞ ∞ ) (− )[ln n] ) = n n
= e − <
∞ ) n! an
∞ ) (− )[ln n] n
rn
n=N
FI
=
∞ ) n! nn
n=
!
2
!
(n + )!/(n + )n+ n→∞ n!/nn lim
< <#1 $ Q 8 I
M)( #:L <@8.a ,I
a x cos x→∞ x
x a − = lim + cos x→∞ x
lim x cos a − x = lim ( + u)/u x→∞ =
! ^&& =%! G.P
lim
=%! G.P _+
a x
i: & :X L =u =
lim x
x→∞
cos
a x
−
− cos
a
cos v − = lim v→ v a = −
mH
lim n |xn | =
n→α
= = = =
# lim
n→α
n+
n+ n
n+ lim n→α n lim + n→α
n −
n n
n+ − n −
−
^&&
N
$−
n+ n
−
n n→α n +
lim
) ) ) ) )
)
−
n |xn | − ^&&
≤ lim |xn |
n→∞
∞ )
xn
n=
! ]Q <
|xn+ | |xn |
S " %&E TW&& ! ! && < B _+ lim |xn | G d T"& && < B n→∞ =%! s7l 7 %Q {7; ^ m8C T =%! %Q & DO Ld L ! t $ S T^&&
G d TV+ ! Ld d L V+ ^&& < TV+!& = %Q & TLx V+ ! V+ . _+ " @ Ld L =w+ P = n→∞
n
$ =+G& p
∞ ) an na
2
!
!
lim
n→∞
=
Q T%! G.P
" !
an = lim n a n→∞ n =
+ + + · · · + ! ! n! (!) (!) (n!) ( !) + + + ···+ + ··· ! ! ! (n)! × ! + × ! + × ! + · · · + n n! + · · · n × ! × ! × ! n n! + + + ···+ n + ··· n ( !) (!) (!) (n!) + + + · · · + n + · · ·
+ × × × × + + ··· ×× + × + × × × ×× × × × + ··· + ×× ×
N
n
+
n=b
+ 3& L n + · · ·
<
="& G.P .
2
=%! G.P " ! mH
)
<
! L ' P S< < G.P
n |xn |
<
n→∞
(e − )− × e−
∞ = lim
lim
S p f T%Q ^
+
<
a
<
24
n
=%! . P& < = e−a /
|xn |
n=N
−
x
α )
DZL& 24 ^ = > V+ i: Tε = = |xn | − < ε n > N P DZL & %P
u→∞
V Tv =
+Q & d !
< r <
|a|
∞ ) an na
a
|a| √ ( n n)a
= |a|
! G d T|a| < S T^&&
n=b
="& S< ! ^ G d T|a| > S
Ta = − S < %! S< ! n& G d Ta = S n T^&& =%! S< ! + < a a = n(− )n G d /< < /<
∞ ) an na
n
! V+hG& V+ .
n=b
G.P T
= =
F1
= a ∈ R
=|a| < %! G.P
∞ )
cos
n=
a n n
a n n lim cos n n→∞
a n cos n→∞ n lim
!
2 N
L T"&
#5*#N; 9.a %& 2I
< <#1 $ Q 8 I
∞
-
dx x +
=
lim
a→∞
=
a
a→∞
" i: S L T%! G.P
n e
n=
dx
x +
lim arctan a =
∞ )
)
√ − n
n=
)
π
!
2 N
)
√ − x
< %! %De [; ∞) @L& & y = f (x) G d Tf (x) = x e √ √ [; ∞) @L& & y = f (x) mH Tf (x) = x( − x)e− x $ √ V u = x i: & T^+t.P =%! Q<_ -
∞
x e−
√ x
dx
∞
= = = ()
= =
= ( )
=
=
-
−
)
P () e
)
an ,
n=
)
∞ ) n=
)
∞ ) n=
n(ln(n))p
)
,
h_B PC. @QD S 2f.B & QD
∞
{yn }n=b
n e
√ − n
n−ln(n)
),
n n +
√
−
n
,
∞ ) nln(n) , (ln(n))n n= ∞ ) cosh πn . ) ln cos πn
)
,
−
e
n=
n= ∞ )
∞ )
,
n=
n=
1H
! &/ ! L Zj(& P ! Ld ^ @.P +& 8 fk.C T+ ="& +& T P =V& d L & T%+.P {+ & =%+ d 5& y = f (x) + i: E- C/I= " < LO
" T24 ^ ="& (; ∞) & Q<_ < ,G %! d "& G.P
∞ ) n=
)
na
∞ )
n n + n − n= ∞ )
xn
-
! G d T + 4 & 8 8" & "& %De =%! G.P
n=c
xn yn
k+
=
f (x) dx k
-
k+
f (k) dx = f (k)
< k
V T[7 ( P n DZL & ;& ^ U.B & -
n
f (k) <
f (x) dx <
k=a+
a
n )
f (k)
k=a
" + Tn → α DZL & ^+:X L +S & < ∞ )
f (n) ≤
n=a+
!
k+
f (k + ) dx k
.
n=a
∞ )
P L& mH T%! Q<_ f $ A7S" + f (k + ) ≤ f (x) ≤ f (k) V
f (k + ) =
,
:Q )& C/I= "
< "&
∈ [k; k + ]
n+ )
n ln(n) ln(ln(n))
f (n) ! 8 & :
- ∞ ="& G.P f (x)dx a
,
∞ )
∞ )
n=a
x
n=
, arctan n
∞ )
,
∞
TP(Q N+N C p < a + i: " 3& " ! L ' P G.P 24 ^ +
)
n=
+ cos n + cos n
n
n=
!4 ("!K E 8-` $
< %! 6 @B L 7.B $ ' P (u) U& w x
" ! ^&& =%! " ! , +HP @+A/ L w0x ="& G.P
∞ )
∞ )
√ ∞ ) n ( + (− )n )n
)
, n ln(n)
u e−u u du
u e−u du - a u e−u du lim a→∞
a −u lim P (u)e a→∞ −a − lim P (a)e − P ()e a→∞ P (a) P () lim − a→∞ ea e () P (a) P () lim − a→∞ ea e
∞ )
∞
f (x) dx ≤
a
=%! . P& < ∞ ) n=
n +
%De < Q<_ [; ∞) & y FJ
f (x)
n=a
2
S L q%! G.P
∞ )
= f (x)
2
"
G d Tf (x)
=
x +
< <#1 $ Q 8 I
#5*#N; 9.a %& 2I
∞ ) (− )n n ) + (− ) n
{ < T%! | ^ @74 L V8 ^ 2DE =S 2DE _+Q d
n=
) ) )
+
p
−
+
−
p
+
p
−
+
+
∞ )
G.P ! '
−
−
−
p
+
+
xn
−
+
−
p
+
+
+ i:
− ···
' Ta ∈ R
+ · · · (p > )
p +
+
−
n=
|Sk |
n=a
! T24 ^ ="& 8 < G.P @QD ' {yn }∞ n=b < ∞ )
2
"
n
7G= C/I= " "
=%! G.P
!
< xn = sin(ax) i: & L T%! G.P ! 4 & G.P < Q<_ T%De {yn }∞ @ QD 8 & B & < n= < %! yn =
− ···
∞ ) sin(an) n
= ()
=
xn yn
k k ) ) xk = sin(na) n= n= sin (k + ) a sin k a sin a
n=c
24 ^ =Zn = y − yn < y = n→α lim yn V+ i: A7S" & & mH =%! 54 +l {Zn} < n→α lim Zn = < Zn ≤ xn yn = yxn −xn Zn
=%! G.P
α )
xn Zn
n=a
α )
xn yn = b
n=a
α )
xn −
n=a
α )
78 Ld +
≤
! V+S + 78 Ld L TmH q%!
="& G.P w%! " ! .P x
xn Zn
< xn
=
π (a)n
2
S i: & L T%! G.P
n=
an
V yn = sin ∞ )
xn
∞ )
=
n=
n=
lim yn
π
n
/
=
=
<
x cos x − sin x x x − tan x ≥ x cos x
π/n+ < π/n
yn+ = f
n+
=
n
n −
−
+ ··· n
V+ i: =+G& p S [5
x = x = x = x = · · · = xn+ = xn+ =
< %! 4 & G.P < %De TQ<_ yn @QD T24 ^
;
=%! 54
π
+
π
|Sn | =
=
G d Tf (x) = sin x/x S L T%! 8 yn < f (x)
n −
x = x = · · · xn = −
sin x = lim x→ x
=
+ + − + ···
< 24 & xn < yn
n
π (a)n
n→∞
−
n
π = a − − a π π / n lim sin n
=
n→∞
π
π a
=
+
"
sin
2 N
!
···+ ∞ )
xn yn
w=%! " 2DE >=F= ,e L w>x %./ w x <x
n=a
>
∞ )
n=a
$ %.! ! mH TG.P %! %.! ! < $
2 ="& G.P _+ ! G d T|a|
a sin
π
n
π
f (x)
n ) xk k= ⎧ n = m + ⎨ n = m + ⎩ n = m
p ! .P x & + < +
∞ ) n=
xn yn
= yn
∞ ) cos(an) n
n=
I)
≤
! T9=I=1 M&; mH
Ld '. & & L ! G.P )
S S S
="& G.P w%! ! "
+P 78
#5*#N; 9.a %& 2I
< <#1 $ Q 8 I
ya+ y y + a+ a+ + · · · ya ya+ ya y yn yn− · · · a+ ··· + yn− yn− ya y y yn = xa + a+ + a+ + · · · + ya ya ya xa = (ya + ya+ + · · · + yn ) ya xa tn = ya
< xa
G.P
+
< xn T
∞ ) n=
=
<
∞ )
xn
=
a n+
mH =
b
yn
=
lim Sn
=
C L QD
G d T < S =
{xn }∞ n=
S
= lim n n→∞
xn − xn+
< LO
" 24 ^ =yn
=
:X L =
yn
%! d
∞ )
/n
xn
n=
V+ i:
!
∞ ) n− n+
)
A7S"
)
! G.P & :
) 5
<
=
(n + ) nk k + n k(k − ) k + + + ··· n n
∞ ) n= ∞ ) n=
∞ )
xn
G.P _+
/
a n
xn yn
b
2
−
=−
&& p ! T^&&
n−/
)
∞ ) n+ n!
n=
p(p + ) · · · (p + n − ) × p n! n n n + n
S
1$ . & C/I=d # "
∞ )
xn
G d T"& G.P
n=a
∞ ) n=a
∞ )
yn
n=a
yn
<
y xn+ < n+ xn yn
=%!
V+ i:
> n
n=
mH Ta < b
n ≤ a P DZL & _+ < "& %De 2f.B & !
k k(k − ) + + ··· n n k(k − ) + ··· = k+ n xn L S_& k n→∞ lim n − > S ^&& xn+ ∞ ) < Ld & & mH T%! S< yn ! $ < %:S ' xn − xn+
a < b
−
+ n
! mH
n=a
k
=
)
n=
yn xn > xn+ yn+
>
^&& <
b
L ' P G.P T&d Ld '. & " +P L !
< & %De ∞ )
n→∞
=%! G.P T"&
n=a
xn xn+
b
n=
b a n+ ÷ − = yn+ b
n→∞
=%! S< ! T > S < %! G.P k
a n
a n
lim yn = lim
G) C/I= "
xn =
n=
^+t.P =%! 54 yn @QD T5
=%! . P& <
2
<
÷
<
xa lim tn ya n→∞ ∞ xa ) yn ya n=a
≥
∞ )
$ T
n→∞
n=a
a n = / − b ∞ n )
$ T24 ^ =yn
<
^&&
2 N
S
< a < b
V+ i: T{7; ^ 2DE & =%!
b
b
! G d T
b n − an n
Sn
=
xa + xa+ + · · · + xn
tn
=
ya + ya+ + · · · + yn
A7S"
24 ^
Sn
)
=%! S< _+ xn ! TN w^.x =S 2DE & 24 & < %Q I
x = xa + a+ + xa xa+ = xa + + xa xn xn− ···+ xn− xn−
xa+ xn + ···+ xa xa xa+ xa+ + ··· xa xa x · · · a+ xa
< <#1 $ Q 8 I
xn =
× · · · (n − ) × · · · (n)
- . / 0*1 II
p
= = = =
P
=
P DZL & S 12 ) E C/I=d " xn < S G d T = lim n ln < xn > n ≤ a n→
24 ^ =+G& p ^&& <
=%! S<
xn lim n − n→∞ xn+ p n + lim n n→∞ n + − − x lim ( + x)p − x→∞ x ( + x)p − lim x→∞ x p( + x)p− p lim =
x→∞
∞ )
! > S < G.P /nk
∞ )
=S 2DE & 24 & <
2 " &!'P0U n @7.B { x
∞ ) α n ( + a) = a n n=
T5 q"& a = − L &
xn
=
< α − n + G d Tn > n := [α] + S 24 ^ V+ = P %fC VP P an @.P 5& & n L ^&& < 24 ^ = De d @.P V+ i:
%! L 8" & ! ' N @D!3 K+
sum(x(n), n = a..infinity) −−−−→
n=
sum((−1)∧n/n∧ 2, n = 1..infinity) −−−−→ −
cd
xn = lim n − n→∞ xn+ n+ = lim n − n→∞ n−α n(α + ) = lim =α+ n→∞ n − α
! α < /< T^&&
! .
∞ )
! @D!3 . & K+
α (− )n n α(α − ) · · · (α − n + ) (− )n n!
:=
(&4+ ( ^ )4 ; A
V
"
α
k T D!3 K+ t $ P fC infinity T" %+& B S =. P fC ="
∞ ) (− )n n
S< T{+ ^
yn
n
limit((1 − 1/n) (2 ∗ n), n = infinity) −−−−→ e
x(n)
A7S"
n=a
< %! N+N C a + i:
%! L 8" & QD ' @D!3 K+ limit(x(n), n = infinity) −−−−→ x(n) @QD n V n→∞ lim ( − /n) @D!3 . & K+ −2 ∧
L
∞ )
S< &
n=a
2
HH
xn
(&4+ ;-& ^ 43 ; A
n=a
V+ i: _+
!
& < q ( ' L S_& k > S T^&&
%3 W(& & TK+ _: L ! 2N @P & =" 5B ' j: L ^+.P
5& &
xn
xn yn xn > ⇔ > + k xn+ yn+ xn+ n xn + > k ln ⇔ ln xn+ n xn − ⇔ n ln > nk + − · · · xn+ n n n xn k k ⇔ n ln + − ··· >k− xn+ n n
+, - ./(0
∞ ) n=a
24 ^ =yn =
%Q =
7 24
xn
n=a
! G d Tp < S T+ =x = n + ="& S< ! T < p S < %! G.P "
7 24
xn+
n=
∞ ) α(α − ) · · · (α − n + ) (− )n xn = n! n=
=%! G.P
2
π 12
!
http://webpages.iust.ac.ir/m_nadjafikhah/r1.html
=%! "
I0
p +
× ×
p +
×× ××
p
+ ···
2 N
! & '()"
< + Td UD & < _+Q d ^ . L 8 U& L F + i: =%! {N @ 7 T,G [5 S @ C. & w7.B $ x "& ! d =%! Df ⊆ S @ & 5& y = f (x) < " V+ C V+ & S & %: fn (x) ∈ F U& & DN 8" & / < -D & f (x) =
∞ )
fn (x)
n=
& &B ^ : j: ^ L vP -. n; C ^ %H V+P ,! ^ &
;N G.P =J 8"
∞
2
5& @QD =+&+& QD ^ ;N =+G& p = ^ : & =D = R < fn (x) = +x n V+ .C L \< & d ;N +x
n
n=a
n→∞
n→∞
+x
n
=f (x) = ^&& < n→∞ lim x n = ∞ G d T|x| > S = ^&& < lim x n =
G d T|x| = S n→∞
lim x ^&& < n→∞
n
=
G d T|x|
<
S =
< C = R . mH =f (x) = ⎧ ⎨ f (x) =
Q< !+H P
⎩
fn (x)
/
|x| > |x| = |x| <
S S S
. " p f
+
=
+
=
I
=V+ Lld [5 $ & P L & + i: { @ ="& D @C. & U& ' fn (x) D fn (x) n =V+ ∞ ' {fn (x )}n=a x ∈ D P L & %! \< & 5& C & 5& @QD P 5 T%! C @QD =. j yQD z N < N+N +a G.P {fn(x)}∞ @ .P C @C. n=a P x ∈ D x ∈ P L & S =V+ %! lim fn (x) = f (x) C f (x) U& Tn→∞ V+ < + {fn (x)}∞ n=a n
≥ a
{fn (x)}∞ n=a
'8C!
;N
f (x) −−−−−−→ lim fn (x) = lim
f (x)
34 O7
2F! '8P0U d 0 '8P0U '8()"
'()" !0 '8C!
&!'QK"
;N
`M@!
lim fn (x) −−−−−−→ f (x),
n→∞
%+ f (x)
C
&
=" B =J 8" & I>
45 <#1 $ Q 8 J
< " [5
U
&
45 Q 8 J
<
g(x)
f (x)
) f U ≥
)
f U = ⇒ f ≡ U
)
af U = |a| f U
)
f + gU ≤ f U + gU
&
S
G d Ta ∈ R
≤ |f (x)| ≤ sup{|f (x)||x ∈ U } = =f (x) = ^&& < V+ B w>x 2DE & =
sup{|af (x)| | x ∈ U }
=
|a| sup{|f( x)| | x ∈ U }
=
|a| f U
|a + b| ≤ |a| + $ S
f + gU
C [5 L T
sup{|f (x) + g(x)||x ∈ U }
≤
sup{|f (x)| + |g(x)||x ∈ U }
≤
sup{|f (x)| | x ∈ U } + sup{|g(x)| | x ∈ U }
=
f U + gU
=
lim fn (x) x n = lim + n→∞ n x x n/x = lim + = ex n→∞ n n→∞
. T^&& =f () = fn () = lim
n→∞
+
x n ;N x −−−−−−→ e , n
G d Tx = S <
R &
5& @QD + i: 7Q*Q 43 4 =%! ;N G.P f (x) & C & {fn (x)}∞ n=a ∞ f (x) & U ⊆ C & {fn (x)}n=a 5& @QD V+hS S %: Nε (Q ε > P L & %! V+"& " (Q n ≥ Nε P < (Q x ∈ U P L &
V+ %Q ^ =|fn (x) − f (x)| < ε
&!0
D. .
88
p f w9x ^+t.P mH T|b|
=
2 N
x n ∞ 5& @QD n n= n =D = R < fn (x) = + x n
G d Tx = S " + e +
=%! & w x V8 |f (x)| ≤ x P DZL & $ A7S" & G d U & f ≡ S V+ B w0x V8 2DE & f U = ]Q < |f (x)| = x ∈ U P DZL & %! DZL & mH =sup{|f (x)| | x ∈ U } G d f U = S m85Q& x ∈ U P
af U
=+G& p
lim fn (x) −−−−−−→ f (x),
n→∞
U
&
=" B 0=J 8" &
=%! . P& <
2
5& @QD 8 & : < LO
" ! %! d "& 88 G.P y = f (x) & U & {fn(x)}∞ n=a P L & S %: Nε ' Tε > P L &
G +& & =fn(x) − f (x)U < ε n > Nε 88
lim fn (x) −−−−−−→ f (x) ,
n→∞
U
&
⇔ lim fn (x) − f (x)U = n→∞
& ^&& =n→α lim fn (x) − f (x)U = V+ i: A7S"
G d n ≥ N S %P N ' ε > P DZL ,5 X & Tfn(x) − f (x)U < ε sup{|fn (x) − f (x)| | x ∈ U } < ε
U
& 88 G.P 0=J 8"
[5 S ⊆ R & y = f (x) + i: V+ [5 L 2j& S & f (x) =" =f S := sup {|f (x)| |x ∈ S }
D. . F"
e 5 & H! Supremum @.7 [( sup & G d T"& !+H S & f (x) S %! / =%! =S ! w"& Maximum [( x max L sup d O& ^ 8$ 5 A @C. H! TM+/ ;& =sup[; ] = sup[; ) = fke =C. I9
45 Q 8 J
= =
=
45 <#1 $ Q 8 J
lim sup { |fn (x) − f (x)| | ≤ x ≤ } lim sup − ≤ x < n→∞ +x n ∪ − x = # $ x n lim sup ≤ x < n→∞ +x n
V sup [5 M&; T^&&
n→∞
()
= w%: 8& w x ,e t d .P "< &x w x < =+ 2DE 5& QD G d TU ⊆ [; ∞) " i: S , ^ & ="& 88 G.P 4 & U & i<
∀ x ∈ U : |fn (x) − f (x)| < ε
=%! G.P U & f (x) & 8" ' X & {fn(x)} @QD mH & 8" ' X & U & {fn(x)} @QD V+ i: , & %P N (Q ε > DZL & mH ="& G.P f (x) + =|fn(x) − f (x)| < ε n ∈ U P n > N P DZL
=
& T24 ^
sin(nx) =fn (x) = n
|f (x)|
= = ≤
2 N
+ i: x ∈ R P L
{|fn (x) − f (x)| | x ∈ U } < ε
V Tsup [5 && mH fn (x) − f (x)U = sup{|fn (x) − f (x)| | x ∈ U } < ε
U = [; /]
lim fn (x) n→∞ sin(nx) lim n→∞ n lim
n→∞
n
lim x − U
n→∞
=
n→∞
=
^&& ;N
2
& {xn }∞ " @ QD n= L =%! f (x) = & 88 G.P
n
=
lim fn (x) −−−−−−→ ,
=n→α lim fn (x) − f (x)U = + <
2
R &
lim sup xn ≤ x ≤ n→∞ n lim = n→∞
;N
L T%! 88 G.P ^ T
f (x) −−−−−−→ lim fn (x)
=
n→∞
=
= [; ]
& Q L q%+
lim xn
n→∞
lim fn (x) − f (x)R =
≤x< x=
n→∞
= = =
S S
lim sup { |fn (x) − || x ∈ R} | sin(nx)| x ∈ R = lim sup n→∞ n
=
;N U& & 88 G.P U
n→∞
lim
n→∞
lim
n→∞
lim
n→∞
n n n
lim xn − f (x)U = lim sup { |xn − f (x)|| ≤ x ≤ }
n→∞
4 P x
sup { | sin(nx)|| x ∈ R} sup { | sin x|| ≤ x ≤ π} =
lim fn (x)
= ()
=
( )
=
P
=
=
L & y = f (x) < | n − f ( )| = $ V+& V+ O& 2DC & ^&& T%! =
2 N
=U = [; ] < fn (x) = nx( − x)n + i: S =fn(x) = G d Tx = x = S T24 ^ ^&& < < − x < G d Tx ∈ (; ) n→∞
n→∞
= =
88
y = f (x)
lim nx( − x)n
lim sup { xn | ≤ x < } n lim lim x
n→∞
n→∞
n→−
=
lim
n→∞
& {fn(x)}∞ @ QD G.P T+ n= =%+
n→∞
n an y x lim y y→∞ a x lim
88 G.P [;
n→∞
x lim
y→∞
ay ln a
=
lim fn (x) − f (x)U
n→∞
I6
∞
2 N
& @QD + x n n= L =w0= =J ,e L w x %./x %+ ]
45 <#1 $ Q 8 J
45 Q 8 J
G.P +Q & 24 ^ =x ∈ U V+ i: B^ 7S" N ' ε > DZL & f (x ) & x = x {fn} ;N =fn (x) − fm (x ) < / n, m ≥ N P DZL & %P DZL & ^&& T%! G.P U & 8" ' X & {fn } $ < m, n > N P DZL & %P N ' ε > P S , =fn (x) − fm (x ) < ε/(b − a) x ∈ [a, b] P
G d x ∈ [a, b] < m, n > N < N = max{N, N }
L w0x < a =
%! " i: w x 8 Y+ ^&& =%! " ! =>=1 ;N lim fn (x) −−−−−−→ , [; ] & n→∞
G d Txn =
lim fn (xn )
^&& fn (x) − fm (x) − fn (t) + fm (t) = = (x − t)(fn (β) − fm (β)) ε ε < x − t ≤ (b − a)
< x ∈ [a, b] P DZL & T =n, m ≥ N < x, t ∈ [a; b] S V n, m ≥ N P fn (x) − fm (x) − fn (x )
+fm (x ) − fn (x ) + fm (x )
fn (x) − fm (x) − fn (x ) + fm (x ) +fn (x ) − fm (x ) ε ε + =ε
<
=%! 8" ' G.P [a, b] & {fn} ^&& < G.P g & {fn } < !+H .P P fn i: M&; $ V y ∈ [a; b] P DZL & =%! 8" ' lim
y
fn (x) dx =
-
y
g(x) dx - y lim {fn (y) − fn (a)} = g(x) dx
n→α
n→α
a
a
a
U
y
n→∞
−
lim
x→∞
n+ n+ x x
= e −
& {fn (x)}∞ @ QD + i: n=a 5& =%! 88 G.P y = f (x) &
_+ f (x) G d T"& !+H x ∈ U fn (x) %D/C S w[Q
x→x
n→∞
lim fn (x)
x→x
< & ;N G.P f (x) & [a; b] ⊆ U & fn (x) S w n P L & < "& 88 G.P [a; b] & {f (x)} 88 G.P [a; b] & f G d T"& !+H [a; b] & fn =n→∞ lim fn = f < %! & {fn} < & ]KQG [a; b] & fn n _P L & S w| [a; b] & _+ f (x) G d T"& 88 QG.P f & [a; b]
b
f (x)dx = lim
n→∞
fn (x) dx
n P DZL & $ =x ∈ U V+ i: B_!" A7S" δ > ' ε > P DZL & mH T%! !+H x
G d Tx ∈ U < |x − x | < δ S %P a
a
fn (x)
fn (x) − fn (x ) < ε
N ' ε
> DZL & mH f (x ) = lim fn (x ) n→α fn (x) − fn (x ) < ε/ n ≥ N P DZL &
$ %P ε > DZL & mH T%! f & 8" ' G.P {fn } $ x ∈ U P < n ≥ N P DZL & %P N ' Tn ≥ N = max{N , N } S mH =fn (x) − fn (x ) < ε/ V x ∈ U < |x − x | < δ f (x) − f (x )
& {fn} Q< + n→α lim fn (a) = f (a) <
-
−
lim
^&& =%! " ! =>=1 @+A/ L w>x
=%! 4 [Q( + < n→∞ lim ||fn (xn ) − ||U ≥ e−
lim fn (y) = f (y) c< T%! ;N G.P f
n→α
= =
ϕ(x) − ϕ(t) = (x − t)ϕ (β)
≤
S L T%+ 88 G.P ^
()
@+A/ & & 24 ^ =[t, x] ⊆ [a, b] < ϕ = fn − fm V+S < t < β < x %P β R SO
=
n+
n→∞
fn (x ) − fm (x ) < ε , ε fn (x) − fm (x) < (b − a)
fn (x) − fm (x)
−x
=
≤ g(x) dx = f (y) − f (a) =⇒ f (y) = g(y)
f (x) − fn (x) + fn (x)
−fn (x ) + fn (x ) − f (x )
f (x) − fn (x)| + |fn (x) − fn (x ) ε +fn (x ) − f (x ) < = ε
a
IF
45 Q 8 J
45 <#1 $ Q 8 J
V x & x 5 & < − x + x − · · · + (− )n x
88
−−−−−−→
V U = [−a; a] ⊆ (−
n
+ ···
x +
; ) &
,
[−a; a] &
=[a, b] & n→α lim f (x) = f (x) mH P DZL & %P N C ε = DZL & B` 7S" + =fn (x) − f (x) < x ∈ [a, b] P < n ≥ N = fn (x) + f (x) − fn (x) ≤ fn (x) + f (x) − fn (x) < fn (x) +
f (x)
T+GQG < +GN &
+ x + x + · · · + (n + )xn + · · ·
88
−−−−−−→
( − x)
− x + x − · · · + (− )n (n + )xn + · · ·
88
−−−−−−→ x−
x−
x
x
+
+
x
− · · · + (− )n
n+
x n+
( + x)
+ ···
88
x
+ =%! [a, b] & mH T%! ]H ,G fn $ %P N ' (Q ε > DZL & =%! _+ f & =fn (x) − f (x) < ε G d Tx ∈ [a; b] < n > N S
b−a {+ ^
−−−−−−→ ln(x + ) − · · · + (− )n
x n+ + ··· n +
-
V+ i: 1?/' C/I=d # & U & {fn } 8 & : < LO
" =%! U & QD ε > P DZL & %! ^ "& 8" ' G.P f 5& x ∈ U P < n, m > N P DZL & %P N ' =|fm(x) − fn (x)| < ε
8" ' G.P f 5& & U & {fn } V+ i: A7S" n ≥ N P DZL & %P N ' ε > DZL & mH ="& P DZL & =|fn (x) − f (x)| > ε/ x ∈ U P < V x ∈ U P < n, m ≥ N |fm (x) − fn (x)|
=
|fm (x) − f (x) − fn (x) + f (x)|
≤
|fm (x) − f (x)| + |fn (x) − f (x)| ε ε + =ε
<
DZL & %P N ' ε > P DZL & V+ i: , DZL & =|fm(x) − fn(x)| < ε x ∈ U P < m, n ≥ N P < r4 "
" {fn(x)} @QD T%&E x ∈ U P @QD V+P =%! G.P f (x) C & ]Q =%! 8" ' G.P x → f (x) @;& & f U& & fn
" α & n + < m ≥ N ^ :S %&E & V+S + |fm (x) − fn (x)| < ε
ε dx = ε b−a
a
2 {fn }
a b
≤
88
−−−−−−→ arctan x
=%! G.P
-
b
f (x) dx a
&
x n
-
b
fn (x) dx a
@QD ^&&
2
=ex := n→∞ lim + [5 M&; n @QD [a; b] @ & @L& P & + %&E ^. C& x n x $ T+ =%! 88 G.P e U& & + n
(ex )
p
=
n=
k=
" p f =+G&
−x
n→∞
TU
2 N
n=
;N
lim fn (x) −−−−−−→
,
(− ; ) &
S +P ^. C & "& 88 2j& U & G.P G d
= [−a; a] ⊆ (− ; )
+ x + x + · · · + xn + · · ·
88
−−−−−−→
−x
,
[−a; a] &
V −x & x 5 & T^&&
fm (x) − lim f (x) < ε
− x + x − · · · + (− )n xn + · · ·
n→∞
2
b = {fn (x) − f (x)} dx a - b fn (x) − f (x) dx ≤
- b b fn (x) dx − f (x) dx a a
88
=%! . P& < =|fm(x) − f (x)| < ε
−−−−−−→
II
x+
,
[−a; a] &
45 <#1 $ Q 8 J
Sa+ (x)
=
Sn (x)
=
45 <#1 J
G.P < ;N G.P !& " PC. & " PQD 88 +
fa (x) + fa+ (x), · · · n ) fk (x), k=a
) fn (x) = xn − xn+ ,
. & < + {fn(x)}∞ n=a
)
fn (x) = xn − xn+ ,
U = [; ],
U = ; ,
{Q; @.P mH T%! 5& @QD ' 5& ! P $ L = +H s& _+ Zj(& @ ! ^ & D/ W(& =88 G.P 7.B
)
fn (x) = x − x
U = [; ],
)
fn (x) =
U = (; +∞),
fn (x) =
U = [; ],
U = ; ,
Q @QD & 5& ! QD ^ =V+P
∞ )
fn (x)
=V+ [5
n=a
C
&
∞ )
5& ! + i:
f (x)
)
& : < LO
" =%! ;N G.P y = f (x) & < ε P L & %! d 5& ! ^ 88 G.P n > Nε P L & S %: Nε '
fk (x) − f (x)U < ε
k=a
/< < /< TG +& & 88
∞ )
fn −−−−−−→ f (x),
U &
U
="& F= =J @+A/ L j:f& + ^
2
G.P y = f (x) & U &
∞ )
fn (x)
S
n=a
G d T"& ]H,G [α; β] ⊆ U & P fn (x) @.P S w|
β
f (x) dx = α
2
∞ ) n=a
)
fn (x) =
x , + xn
U = [; ],
)
fn (x) =
nx , +n x
U = [; ],
)
fn (x) =
nx
U = ( ; +∞),
)
,
+n x
fn (x) =
x +
n
U = R,
,
sin(nx) , n
U = R, U = (; +∞),
fn (x) = arctan(nx),
)
fn (x) = n(x n − ), U = [ ; a], < a,
∞ +P G.P [; ] & −nxe−nx
5& ! ;N
n=a
G d T"& 88 _+ f (x) G d T"& !+H x ∈ U P fn (x) @.P S w[Q =%! !+H x _+ f (x) G d T"& !+H x ∈ U P fn(x) @.P S w ∞ ) =f (x ) = fn (x )
xn , + xn
) fn (x) =
n=a
k=a
,
n
)
6 n 6 6) 6 6 6 =n→∞ lim 6 fk (x) − f (x)6 =
6 6
n
, x+n ) fn (x) = nx , +n+x
n=a
n )
n
=n→∞ lim
-
fn (x) dx =
f (x) -
n=
S T
G d T"& "
w 6
f (x) dx
+P w F
- n + sin x dx = n→∞ n + cos x lim
5& @QD 88 G.P L .Px w=" ! [; ] @C. & ,G
β
fn (x) dx
34 9!0
α
="& 6= =J @+A/ L j:f& + ^
T%! C ! ' ;N P 5& ! P $ & C ! G.P Ld . mH 8" & = V+.5 5& ! & ;N 24 -;$ +S:
I
! =VLH C ! V+.5 & W(& ^ =%! 5& PQD L Zj(& ' 5& 5& @QD ' {fn(x)}∞ n=a + i: 24 & B 5& @QD ="& D @ &
Sa (x)
I1
=
fa (x),
45 <#1 J
45 <#1 $ Q 8 J ∞ ) xn = f (x) n!
=
! 8 & : < LO
"
n=
%! d "& 88 G.P U
+ < df (x) = dx T df (x) = f (x) T^&& f (x) dx =f (x) = Aex T^&& =%! %&E C A Tx + ln A =f (x) = ex + =A = Ae = mH Tf () = " %&E 5 ln(f (x)) =
88
ex −−−−−−→
p U
+x+
= [; a]
x
&
m ) x e−kx
xn + ··· [a; b] & + ··· + n!
∞ )
x e−nx
n=
k=n
k=n m )
≤
2 N
24 ^ =+G&
m )
=
5& !
m ) = fk (x) < ε m 6)
=666
k=n
N>
ln
a
k=n
∞ )
f (x) :=
m ) xk k!
∞ )
=
k=n
x
n
C n!
<
Cn n!
∞ )
(− )n
n= ∞ )
Ck k!
k=n m )
C C C × × ···× n+ n+ k k=n m k−n ) k=n
" i: S mH
G.P
U
&
ε(C)n log +
n= n
∞ ) x =f (x) = n! n=
!
k=n
f (x)
=
+
∞ ) xn n!
n=
x n . (− )n (n)!
=
n=
∞ ) nxn− n!
n=
IJ
< ε
G d
U
V+"& " U & V+ i: =%! 88
x n+ , (n + )!
m k (C)n ) n! k=n k m (C)n ) n! k=n n− (C)n n!
<
(e−x )n
V+ [5 + i:
:=
=
=
+ <
x − e−x
=
2
m Cn ) C k−n n! (n + )(n + ) · · · k
=
n=
C(x)
k=n m )
x e−nx
∞ )
P < n ≥ Nε P L
m ) |x|k k!
≤
=
n=
≥ Nε
i: & G d TU = [a; b] ⊆ R S V m ≥ N < n ≥ N TN = ([c] + )
≤
G d
x e−nx
5& !
n=
k=n
n=
S(x) :=
∞ ) xn n!
U
= max {|a|, |b|}
6 6 m 6) 6 6 −kx 6 x e 6 6 <ε 6 6
≥ Nε
U
=+G& p
− (e−a )m−n+ − e−a
a ε( − e−a )
P L &
5& PQD & " @+A/ L j:f& + ^ 2 ="&
S mH
< ε
<m
6 6 fk (x)6 < ε m ≥ Nε 6
a (e−a )n < ε − e−a
<
5&
& S %: 6 Nε ' < ε P L & TG +& & 6
a e−ka
a e−na
∈ U
fn (x)
n=a
k=n
TC
x e−nx
V+"& " x
∞ )
&
= [a; b]
P L &
S %: Nε '
k=n
=
2W/' C/I=
24 ^
45 <#1 $ Q 8 J
G.P R & =fn (x) ≤
n
∞ ) n=
ANA #:L <@8.a J
G.P 5& !
x +n
G d Tfn(x) =
=%! G.P wa
=
2 N
S L T%! 88
x +n ∞ )
& !x
n
n=
C !
G.P U & S G d TU = [a; b] ⊆ R S +P
5& ! 88 G.P c "<−M Ld && mH =V R & p & @L& T88 G.P @ " B %+ & L 5& ! 88 G.P +P c "<−M Ld '.
∞ ) (− )n ) , x + n
) ) )
∞ )
nx , + n x
n= ∞ )
arctan
n=
x
,
x + n
(x + n)(x + n + )
n=
U = [; ]
&
&
∞ )
fn (x)
(
n=
5& ! S
− x)x
U
2%
&
& < M
! $
A7S"
ε > DZL & mH = m ) ^ & = xi < ε m, n ≥ N m ) i=n m ) i=n m )
fi U sup{|fi (x)| | x ∈ U } xi < ε
n=
xn+ xn − n n+
≤x≤
& "
" {fn} mH =%! 8" ' G.P
U
5& !
2
S L T%! 88 G.P U = [− ; ] n xn+
G d Tfn (x) = x − n
fn (x) =
7G= C/I=
⇔
xn− − xn =
⇔
x=, x=
i: & mH =U & fn (x) ≤ xn =
n
−
n
−
n+
n+
^&&
n+
8 & B & <
=c ≥ max{a, b}
∞ )
xn
=
n=
@QD > %De C ' L & V+hS U & =|fn (x)| < M x ∈ U P L ∞ {fn (x)}n=a
∞ )
<−
n=a
n=c
'
& ^&& < r4
2
+P
xn
n=a
i=n
88 U & {gn (x)}∞ @ QD < "& 88 G.P n=b 8 {gn (x)}∞ @ QD x ∈ U P L & < "& n=b C ∞ ) T%! 88 G.P fn (x)gn (x) 5& ! G d T"&
!"! 4
U
<
. c "< Ld L ^ Q< T%! 88 =%:S + U
≤ =
; ,
∞ )
i=n
n
=%! 88 G.P _+
N
V T{+
i=n
24 ^ T|fn (x)| ≤ xn
fn (x)
n=a
P DZL & %P
U = R. ∞ )
∞ )
< M7; G.P U &
U = R.
U=
C/I=
x ∈ U P L & < "& G.P < %De 2f.B & ! '
6 6m 6) 6 6 6 fi 6 6 6 6
−M
PW
, U = (; +∞),
∞ ) sin((n + )x) , n(n + )
G.P
+ i:
∞ ) n √ xn , ) n! n=
)
xn
I
n=a
U = [; +∞),
∞ ) n=
∞ )
r4 "
" T%! G.P
U = (−; +∞),
n=
+>K> !DM 9=7-`
D. .
=
lim
N →∞
lim
N →∞
N )
n
n=
−
−
N+
n+ =
=S + c "<−M Ld L p V8 1)
95 <#1 J
)
45 <#1 $ Q 8 J
∞ ) (− )n , n + sin x
U = [; π],
n=
&
∞ ) sin x sin(nx) √ , ) n+x
U = [; +∞],
n=
n=
sin(nx) , n
_+
n=
)
∞ ) n=
)
,
n
n
x + n(− ) , x +n
)
5& ! +P = =%! 88 G.P
R
&
∞ ) n= ∞ ) n=
=c ≥ max{a, b} T& P 88 G.P U &
n=
∞ ) (− )n+ ( + nx )n
n=
N ) sin(nx)
=
n=
≤
∞ )
=%! 88 G.P
[a; b] ⊆ R
n=
gn (x) =
I
I! &
fn (x) !
≤ | sin x |
√
fn (x)gn (x) =
∞ ) sin(nx) n
n=
&
∞ )
n sin
n= n
x
n
5& !
2 N
sin (x/ ) i: & L T%! 88 G.P x/n n ∞ {gn (x)}n= @QD V fn (x) = x (/) <
Ld &&x %! 88 G.P [a; b] & x &
∞ )
[a; b] fn (x)
n=
5& ! T&d Ld && T^&& =wc "<−M ∞ )
fn (x)gn (x) =
n=
∞ ) n=
n sin
x
n
="& 88 G.P U & T78 < &d Ld '. & PC. & " 5& ! 88 G.P +P " (
N S =
n=
& 5& !
U =
y !z & 5& ! L 4j(& 7.B L = 2+ & <: P&
Zj(& @ ! ^ L ! '. & + 2O5 "& ^ d +Q " =S <: @ ! ! L d & ^&& < 5 Z ] !
="& !
n→∞
∞ )
L P & {7; ^+.P =%! 88 G.P U & = %&E R − πZ @C. L [a; b] @C.
@QD .Px =%+ 88 G.P [; ] & ∞ w=+G& p
5& !
;
sin N + x × sin N x x sin
n=
x x x + + +· · · + x ( + x)( + x) ( + x)( + x)
an (x − x )n 8& n= < lim n |an |
π π
5& ! T78 Ld && mH
5& ! +P w 5& ! +P w 0
∞ )
U =
$ T%! 88 U &
x + nx )
84 9!0
"
@QD V gn (x) = < fn (x) = sin(nx) n k
+ i: w )
n
2
∞
n
&
5& !
{gn (x)}n=
|x| . n +x
nα (
n=
i: & L T%! 88 G.P
x , ( + x )n
< α ∞ )
∞ ) sin(nx) n
w="& xn = √ fn(x) N ^ +& .Px R
:Q )& C/I= !
fn (x)gn (x) 5& ! G d T"& 4 U& & 88
@C. &
U = [a; b] ⊆ R
n
∞ )
n=c
" ! 88 G.P @ T P + ( ∞ ) ) x+
5& ! S
P L & {gn (x)}∞ @ QD T"& 88 U n=b C ∞ G.P U & {gn (x)}n=b 5& @QD < "& 8 x ∈ U
U = R,
)
fn (x)
n=a
∞ ) cos nπ , ) n + x n=
∞ )
∞ )
a lim n+ n→∞ an
! G.P 5" d m8C T"& B =V+P R . & < +
)
∞ ) cos(nx) , n
n=
1
U = [a; b] ⊆ R,
45 <#1 $ Q 8 J
95 <#1 J
lim G.P ! G d T|x| < S mH = = n→∞ = T
R T|x| = S T =%! S< ! G d T|x| > S < %!
=S<
∞ )
(− )
n=
T
<
n
; )
∞ )
n
n=
! < P < x
= ±
G d
L %! 2DC ! G.P @ mH
G d T[a; b] ⊆ (− ; ) S 88
+ x + x + · · · + xn + · · · −−−−−−→
$ =+G& p
∞ ) n=
xn n!
−x
!
[a; b] &
2 N
/(n + )! = = lim R n→∞ /n! R
& ! ^ 5 =%!
^
∞ ) xn =f (x) = n!
∞
∞ ∞ ) ) nxn− xn = = f (x) f (x) = n! n! n=
x
+ ···+
<
∞ )
an xn
n=
S
n=
88 xn + · · · −−−−−−→ ex , [a; b] & n!
C/ ( 2 Q
= f (x)
U& & (−R; R) @L& &
+ i:
y = f (x) & "& R G.P 5" & ! ∞ )
bn xn
n=
=
x+
x
G.P y &
+ ···+
x n+ + ··· (n + )!
! ∞ )
n + (−)n (x +
n=
n
2 N
= af (x)
R
=
=
+ (−) )/(n + ) n n n→∞ ( + (−) )/n n ⎞ ⎛ − − n ⎝ lim n ⎠ = lim n→∞ n + n→∞ + − lim
(
n+
G.P ! G d T|x +
n+
S ^&& =R = mH S T S < %!
G d Tx + = S =x + = ± G d T|x + | = ∞ ) − n ( +( L T%! S< V ) ) C ! n n= | <
min{R, r} ≤
&
G.P 5" &
R
G.P 5" &
∞ )
∞ ) n=
∞ )
an xn
n=
& 24
= g(x)
aan xn
w
=%!
(an + bn )xn
n=
w0
=%! G.P y = f (x) + g(x) G.P 5" &
∞ )
(a bn + a bn− + · · · + an b )xn
n=
w>
=%! G.P y = f (x)g(x) & min{R, r} ≤
)n
$ =+G& p
n=
< %! G.P
^ =%! N+N C a < "& G.P y
ex − e−x
bn xn
C/ ( S 2:8 +
^+t.P sinh x =
∞ )
=an = bn n P L & 24 ^ =w < R
"& r G.P 5" & !
G d T"& (Q a < b S T5 =f (x) = ex + +x+
S
G d T"& R G.P 5" G.P x L & ! G d T|x − x | < R S w[Q =%! M7; =%! S< x L & ! G d T|x − x | > R S w U & ! G d TU = [a; b] ⊆ (x − R; x + R) S w| =%! 88 G.P
! G.P 5" mH = < f () = 24
an (x − x )n
n=
x "& G.P y
V+ i: =%! 88 G.P
n=
∞ )
& ! '
T" !
G d TU =
∞ ) n=
an xn
L
x |x| < R ,
∞ )
bn xn
n= ∞ )
x
an |x|n < r
n=
& S w9 < |a | < r
=& P G.P U & 4 ! !
∞ )
an xn
n=
+ i:
) /: 9$G
< %! G.P y = f (x) & "& R G.P 5" & ! |x − a| < R x P L & G d =−R < a < R 3 f (a) n ="& G.P y = f (x) & _+ ∞ n= n! (x − a) (n)
p
∞ ) n=
xn
!
2
!
$ =%! ' && R ! ^ G.P 5" =+G& 10
95 <#1 J
45 <#1 $ Q 8 J
: C & < R
=
=%! S<
lim n+ |a
n+ | n+ |a |
n→∞
= × × · · · × (n + ) =%! G.P R & ! mH =R = ∞ 4 P T^&& L %DC Q5 B . mH
=
n+
f (x) = ( − a )
∞ ) (− )n x n × n!
n=
n
+ a
∞ ) (− )n n! x (n + )!
n=
2+ N
x−
"& ∞ )
∞ ) n=
()
= =
-
x
= (n + )!
n=
n(n − )an xn− + x
∞ )
nan xn− +
n=
2# N
2 N
a
n
= =
a
n+
lim
= =
π √
∞ )
an xn =
+
+ a =
^&& +
V . mH
x→−
+
S
((n + )(n + )an+ + nan + an ) xn + a + a =
==
n=
=
=+G& p
n=
,G p ^ & =
dx + x (x + ) lim ln x − x + x→− √ arctan x√− +
⎧ ⎪ ⎪ a = − a , ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ a = − a = − ( − a ), ⎪ ⎪ ⎪ ⎪ a , a = − a = ⎪ ⎪ ⎪ ⎩=
n→∞ n+
C ! N
−
n
(n + )an+ + an =
∞ ∞ ) ) (− )n (− )n n+ = lim x n + n + x→− n= n= $ - x #) ∞ = lim (−x)n dx x→−
:= y + xy + y = + @Q5 ∞ ) an xn V+ i: d B ' f (x) =
n ≥ P L & < a
n |an | n→∞ n n+ (− ) = lim (n + )! n→∞
∞ ) (− )n n + n= - dx V+ D!3 x +
)n )/
ε
lim
=V+ D!3
=
n=
^ G.P 5" V+ B 7 ^ & !H & /& R & O& < + < %! ∞ && ! L T"&
lim
C ! G d Tx +
& mH =w r4 Q5 5x
x (− )n x n+ x + − ··· + + ··· sin x = x − ! ! (n + )!
=
−
n
2f.B & ! ! ' L T%! S< _+ ^ V |x+ | < ! G.P @ ^&& =w-$x %! Q<_ +l − ="& ; −
%" d V+!H
R
n=
( +(
'+ P ! <
n=
x (− )n x n+ x + − ···+ ! ! (n + )!
=
n
n ∞ ) − (− )n + n
n+
=%! 7+ s& T ! +Q "< L 8 f (x) = sin x U& n @D 7+ s& V+ ,e 5& & %! && x = @;N
∞ )
V B
√ ln π = +
=%! " ! J= =J L w0x %./ L w x 8 Y+
∞ )
an xn
n=
(− )n ( − a ) × × · · · × n (− )n ( − a ) n × n! (− )n a × × · · · × (n + ) (−)n n! a (n + )!
! G.P 5" @D!3 & |
R
= =
1>
lim
n→∞ n
|a
n
n|
| − a | √ = n ( n!)/
45 <#1 $ Q 8 J
)
∞ )
−n +
n
n=
95 <#1 J
e−nx ,
∞ ) n=
(− )n x n (n + )(n + )
n=
f (x) = ax ,
)
f (x) = cos x,
)
f (x) = sinh x,
)
f (x) = cosh x,
)
f (x) = arctan x,
)
f (x) = arcsin x,
)
f (x) = sin x, x
) f (x) = √
− x
,
x , + x − x
)
f (x) =
)
f (x) = ( + x)e−x ,
)
f (x) = e−x , ⎛
)
f (x) = ln⎝
)
f (x) =
)
f (x) = ex cos x.
⎞ + x⎠ , −x
x , ( − x)
x + ×
) )
+
x−
x
+
x
x
+ @Q5
&&x x = − L & < %! G.P ln & x = L &
vX < , ="& S< w^&& < %! '+ P ! V
x + ··· ×
∞ ) xn (n!)
n=
n=
xn (n)!
! +P w>
x − ln(x + ) − x
) )
cosh x = ln
+
= r4 y() = y
!
+ ···+
+
x
=
∞ ) n=
(− )n xn+ . (n + )(n + )
x
+
= x
∞ ) n=
(− )n x n . (n + )(n + )
' P G.P @ < G.P 5" "
) ) )
n
x + ··· (n)!
)
n=
x n+ x + ···+ + ··· ! (n + )! x
x
! +P w>0
•
sinh x = x +
(x − ) ln(x + ) −
Tx & mK! < V+h. V+N x & ^+:X %! : , x ∈ (− ; )∪(; ) P L & + =V+P& / x
P /& @ mK! < . %&E L < L ' P
& %D ;& ^ ^+:X L V+S
n=
= r4 xy + y − y =
+ @Q5
x
DZ_B @C/ '. &x [; x] @L& & d %!& < L x ∈ (− ; ] P L & + =V+S ,G wDZ_B &
− ···
∞ )
@L& & <
n=
+ ···
x + ×
]
x+
(− ; ) &
∞ ) (− )n xn+ 88 −−−−−−→ x ln(x + ), (− ; ] & n+
x + + ··· + ! ! x
,
∞ ) (− )n xn+ 88 −−−−−−→ x ln(x + ), (− ; ] & n+
)
x
x+
88
,G [;
+ D!3 L ! . )
− x + x − · · · + (− )n xn + · · · −−−−−−→
)
2% N
=
∞ ) m(m − ) · · · (m − n + ) n x , ) n!
5" mK! T : L U& L ' P Q ' s& + D!3 74 ! G.P
! ;N U&
x n+ x +x + ···+ + ··· = x + −x n +
) 19
∞ ) n= ∞ ) n= ∞ ) n= ∞ ) n=
n! n x , an
(a > ), n
an b + n n
xn ,
) )
∞ )
n +
n=
xn ,
n
∞ ) (n!) n x , (n)!
n=
∞ ) n=
n +
+x −x
n ,
∞ ) xn √ , ) a n
xn , an + b n
n=
( + (− ) ) n x , n n n
)
∞ ) (− )n n n n x , n! e
n=
95 <#1 J
45 <#1 $ Q 8 J
F=9=J L wIx %./ & +D" "< L mK! < %! w=+ <"
∞ ) xn ex = n! n=
n
! & =+h. !
24 ^ T3+34 C q < p + i: w>1 +P xp−
+x
+ xq
+
dx =
x +x
p
−
p+q
G d T− x +
+
p + q
−
p + q
5+DX C n < . Sn 4 w>I +P T"& S Sn S + + ···+ + ··· = ! ! n!
e
,5 " n; V8 +P .Px
+· · ·
< x < S +P x + · · · = + −x + x + x
w>J
∞ ) n(n + )(n + ) = n!
n=
16
e
45 <#1 $ Q 8 J
95 <#1 J
1F
'"* [12] Dieudonne, J., Linear Algebra and Geome-
[1] Adams, R. A., Calculus of Several Variables,
try, Hermann, Paris, 1969.
Addison Wesley, Canada, 2000. [2] Adler,
[13] Douglass, S. A., Introduction to Mathemat-
of
ical Analysis, Addison Wesley, Massachusetts,
M.,
Several
Lectures
Variables
on
integration
(Using
Differential
Forms), Internet Version, URL: http://www
1996.
.physics.nus.edu.sg/~phyteoe/teaching /mm4
[14] Dorofeev, G., Potapov, M. and Rozov, N., Elementary Mathematics, Mir Pub.,
[3] Agarwal, D. C., Advanced Integral Calculus,
Moscow, 1988.
Krishna Prakashan Media Ltd., India, 1997. [4] Apostel, T. M., Calculus, 2 vols., Blaisdell
[15] Gelbaum, B. R., and Olmsted, J. M. H.,
Pub., 1969.
Theorem and Conterexamples in Mathematics, Springer Verlag, New York, 1990.
[5] Buck, R. C., Advanced Calculus, McGrawHill, New York, 1978.
[16] Garvan, F., The Maple Book, Chapman & [6] Udriste,
Hall/CRC, New York, 2002.
C. and Balan,
V., Analytic
and Differential Geometry, Geometry Balkan Press, Bucharest, 2000.
[17] Guillemin, V. and Pollack, A., Differential Topology, EPrentice-Hall, Inc., Englewood
[7] Budak, B. M. and Fomin, S. V., Multiple
Cliffs, New Jersey, 1974.
Integrals, Field Theory and Seies, Mir Pub., Moscow, 1978.
[18] Hardy, G. H., A Course Pure Mathematics,
[8] Cain, G. and Herod, J., Multivariable Cal-
Cambridge Univ. Press, Cambridge, 1948.
culus, Internet Version URL: http://www [19] Ilyn, V. A. and Pozniak, E. G., Linear Al-
.math.gatech.edu/~cain/notes/calculus
gebra, Mir Pub., Moscow, 1986.
.html [9] Chen, W. , Linear Algebra, URL: http:
[20] Ilyn, V. A. and Pozniak, E. G., Founda-
//www.maths.mq.edu.au/~wchen/In.html
mental of Mathematical Analisis, 2 vols., Mir Pub., Moscow, 1982.
[10] Chen,
W. ,
Multivariable and Vector
Analysis, URL: http://www.maths.mq.edu [21] Israel, R. B. , The Maple Calculus, Addison
.au/~wchen/In.html
Wesley, New York, 1996. [11] Davis, H. F. and Snider, A. D., Introduction to Vector Analysis, Wm. C. Brown, New
[22] Kay, D. C., Tensor Calculus, Schaum’s Out-
Delhi, 1988.
line Series, McGraw-Hill, New York, 1988.
1I
8b*G
[36] Olver, P. and Shakiban, C., Applied Math-
8b*G
[23] Klambauer, G., Aspects of Calculus, U.T.M.,
ematics, Lecture Notes, Preprint, 2000. [37] Potapov, M. K., Alexandrov, V. V. and
Springer Verlag, New York, 1986. [24] Knopp, K., Infinite Sequences and Series, Dover Pub., New York, 1956.
Pasichenko, P. I., Algebra and Analysis of Elementary Functions, Mir Pub., Moscow,
[25] Kurosh, A., Higher Algebra, Mir Pub.,
1987. [38] Shakarchi, R., Problem and Solutions for
Moscow, [26] Lang, S., A First Course in Calculus, U.T.M.,
Undergraduate Analysis, Springer Verlag, New
Springer Verlag, New York, 1986.
York, 1998. [27] Lang, S., Calculus of Several Variables, [39] Spigle, M. R., Vector Analysis, Schaum’s
U.T.M., Springer Verlag, New York, 1987.
Outline Series, McGraw-Hill, New York, 1959. [28] Landesman, E. M. and Hestenes, M. R., [40] Spivak, M., Calculus on Mnifolds, New york,
Linear Algebra for Mathematics, Science, and
Benjamin, 1965.
Engineering, Prentice-Hall, New Iersey, 1992.
[41] Yaglom, A. M. and Yaglom, I. M., Chal-
[29] Livesley, R. K., Mathematical Methods for
lenging Mathematical Problems, 2 vols., San
Engineers, John Wiley & Sons, Canada, 1989.
Fransisco, 1964.
T[" 54 G T T=c T " 90 = >1) T T#$ L W+H
[30] Loomis, L. H. and Sternberg, S., Advanced Calculus, Jnes and Bartlett Pub., Boston, 1990.
T[" 54 G T> T=c T " 9> = >1) T T#$ L W+H
[31] Maron, I. A., Problems in Calculus of One
T 3 & S d T= T 99 = >1) T T & ^.&
[32] Myskis, A. D., Introductory Mathematics for
T0 3 & S d T= T 96 = >IJ T T & ^.& T _+Q d @ C. T=# = T?<+ 9F = JIJ T T8 + T _+Q d < 2. T=# = T?<+ 9I = >F> T T+D + T" _<H @.B
Variable, Mir Pub., Moscow, 1988.
Engineers, Mir Pub., Moscow, 1978. [33] Nikolski, S. M., A Course of Mathematical Analisis, 2 vols., Mir Pub., Moscow, 1987. [34] Piskunov, N., Differential Calculus and Integral Calculus, 2 vols., Mir Pub., Moscow, 1981. [35] Pogorelov, Moscow, 1987.
11
A.,
Geometry,
Mir Pub.,
)+($ )J T
(αx + β)n ax + bx + c )J TP (x) ax + bx + c
6 TG.P +GQG 8" & U& L
9J TG.P−ε 9J T ! Ld
JF T5& ! & c "<−M 61 T c "<`M 6J T0 c "<`M JF T5& ! & &d 1F TC ! & &d 16 TC ! & ,G 60 T ! ,G %De U& IJ TC ! & .C @7.B 1> TC ! & DO JI T5& ! & 78 16 TC ! & 78 6I T ! ,G 78 1I TC ! & & 1> TC ! & " @ IJ TC ! &
IJ TC ! & "
1) TC ! & _ +DO 1) TC ! & N 1) TC ! & @N 69 T ! ,G @N 6> T ! ,G N 0J TU& & ,.C 99 TU& . & ,.C 0> TL: II TM7; I6 TD 09 TO& ,G 09 T+hH ,G 0> T^+5 ,G 9J T ! ,G 61 T H & &< 6 TS<
8" & U& L )I T< B C ' L ]B " U& L JJ T U& L 6 Te7e S U& L F T2<
) TP
x,
ax + b cx + d
p /q
,···
8" U& L
> Tc+ < c+! Y+34 L T7+ 7.B < L J T SL& \< & Pn (x) )I T 8" & U& L +GQG ax + bx + c 6 TP (sin x, cos x) 8" & U& L +GQG 1 TQ< I6 T B< & :
" ^+Q< F T.+ 0I TU& & F6 TQD & 1 T7D& F T'$ %+& F9 TL VP 8$ %+& 0I T"H 6J TG !+H 6J T " U:
9 9 9 9 9 9
0I TU& }d T% R T% 8! Tc+! T% R
T% 8
Tc+
1J
0Q H1#@
0Q H1#@
FI T]KN 6> TN 1 T5N 01 TQ<_ >9 T .P 0I T'+D8 01 T8 V+.5 IF T B< & :
" ^+Q< IF T B< & :
" ^+< +a ++a 9I T^+5 ,G >> T^+5 ,G +a ++a 0 TQ< P+a ++a U& >1 T & 99 T ! 9) Te7e 9 Te7e c85 90 TQQ]P
k+ 01 T54 01 TQ<_ 01 T8 0> T]KQG J> T+Q< 0I T<& 90 T'+Q&K+P % R >F T >J T & >9 T%&E 9> TC DZ_B 9> TY+34 DZ_B >F T7.B $ 9F T;& $ 1 T>9 T; >9 T< B >6 T! @B 06 T78 >0 T|0 T: 99 TM7; / 90 T'+Q&K+P % R
>I T
>I T ! 90 T'+Q&K+P % 8
90 T'+Q&K+P c+
F) TS V GQ >J TC >J T5+DX >J T. GQ >0 T< e7e 9) T% R 9) Tc+! 9) T% R
9) Tc+
1 T3
,<B J9 T^+5 ,G 60 T< F9 TL VP DZ_B & DZ_B 91 T >6 T^+5 ,G II T! ' .C @7.B U& 9J T +a ' F6 TC @QD 6F T:X '
0I TU& [5 @ 9) T < @ I9 TA74 L M _ +DO ! @QD F1 T O& L F1 T ^+hH L 1J T5& F1 T54 F6 TC J)
0Q H1#@
0Q H1#@
I0 TDN F1 TQ<_ I T" @QD 11 T^+ 7.B < IF T B< & :
" ^+< + J T n @D J) T +a ' U& '
0 TD;/ W. 9J TC +l DZ_B & DZ_B ,: 1 T : V+.5 1I T, +HP C/ J Ts7 ( C ' M7; / J Ts7 ( C ' N+N %./ J Ts7 ( C ' P %./ @+A/ >I TDB !! TDZN ! 0 T,< V+.5 9 T^+< V+.5 I9 T, ! J1 T7+ s& F) T !+H U& %fC DZN& 11 T7+ 00 T
IJ TR SO > T^+5 ,G L M I0 T H U& M I T. U& M 01 T^+G + N F) T + N >) T_ +DO ` ^+ F T !+H U& .++ < ._ B< >I T <
IF TQD & U& @;& 10 TU& 5 : 69 T& U: \< )6 T U& & 8!S< ! >I T+G .Q > TU& V+! &;N DB \< 60 T @D!3 1 T. !
J9 T5& JI T II TC 10 T
< G.P 10 TM7; G.P F TH! I6 T B< & LO
" 0> T : \ S s7 ( @34 0> TL: %:g F6 T P %+4 %D/C C F TN+N > TY+34 T5+DX 9 TS 1 Ts7 ( J TM7; / J TN+N %./ J TP %./ 00 T
,G &
96 T< B % < V @D!3 9> Tc/ ,X @D!3 >J T% @D!3 1 T
F TO& J
0Q H1#@
0Q H1#@
F T^+hH JF T88
0> T. @
9 T !
1 T"
9I T +a ' U& [5 91 T;& $ @+a ' U& [5 9I T +a ' U& ' N ^++5 00 T,G +a ++a 00 T,G DZ_B & DZ_B F6 T+S 0F TQ5 < Q5 06 T ! LX 0 T+GQG @D!3 11 TC @QD ' @D!3 11 TC ! ' @D!3 J TM @D!3 J0 T @Q@ 06 TQ.5 U& < P. 91 T +a ' U& ' c85 ^ : F> T ! ,G @D!3 K+
I6 TD ._ 90 TQQ]P 2e7e @C. F T O& L F T ^+hH L C F TN+N > TY+34 T5+DX 1 Ts7 ( 9 TS C 1 Ts7 ( C >0 TN DB @D!3 I) TN 91 T^+5 ,G DN N @D!3 I TN+N C 3 J TN+N C ' |<_ I6 T @Q@ M I0 T H U& I T. U& I9 T_ +DO ! I6 TV @Q@ &
>) TU ' c85 0I TU& ' N K+ 06 T"d & ,.C 0F TN+N C 0F TY+34 C 0F TS C 0F Ts7 ( C 91 TU& & ,.C J0 T7+ s& F6 TG !+H M+N3 91 T +a ' U& ' . V+!
16 T!P ` & < J) T88 I6 T 3& @;N C W. C 9 TY+34 6 TS 6 T ( J Ts7 ( C W. 0 Ts7 ( C D;/ W. > T +a ' U& ' . S< F6 TC @QD II TC ! ' G.P F6 TC @QD 6F T ! ,G '
< 6F T ! ,G ' M7; II TC ! ' J) T5& @QD ' 88
J0