This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
°Therefore the angle T appearing in (3.4) is negative and, due to the fact that for the bifurcation orbit it has an absolute value of 2-K, T is determined as T = arccos(r) — 2ir, where the arccos is found in the first quadrant. In this way e5(T) = e 5 (0) and e 6 (T) = e 6 (0) as desired. Suppose that e ^ r ) , i = 1 , . . . ,6, Ai and T are known, either by means of numerical computations or by analytic expansions. Then we can recover from (3.5) to (3.8) the vectors ej(r), i = 1 , . . . ,6. In this way we know everything about the local behavior of the solutions. . If v = 0 and tp = 0, then we put 11=0. We consider the order k~3 - l,C(l),xsC(2),xsC(3),C(4),C(5),C(7),C(U),C(16),C(23),
148
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
We should remark that the analytic computation of e^ proceeds in a different way as it will be explained in Chapter 4. It is also true that ei,e2,e3,e5 and e§ are not the same in the numerical and analytic computations. They can differ by a constant factor, but this is unessential. Returning to e^ the only thing we request is that the plane spanned by {e%,e%) coincides with the plane spanned by ( e ^ e j ) , where the superscript a or n refer to analytic or numerical, respectively. 3.1.3
Numerical folds
Computation
of the Unstable
and Stable
Mani-
The local computation of these invariant manifolds is equivalent to the computation of ei and e%The matrix M has been numerically obtained in the course of the computation of the halo periodic orbits (program PO, see 2.3.1). An enlargement of this previous program has been produced under the name PAPUS. It includes all the previous features of program PO, i.e. computation of periodic orbits along a halo family, plus all the variational computations to which we refer in this chapter. The initial vector ei(0) = ei(0) is computed using the power method. A few number of iterations is required because max|Aj/Ai|, for i — 2 , . . . ,6, is less than 10" 3 . The symmetry (3.3) produces immediately the vector e2(0) = e2(0). With the final data for the periodic orbit we start the integration of equation (3.2). As explained in 3.1.2, we proceed to the computation of ei(r)=exp(-AiT/r)i4(T)e x (0)
and e 2 (r) = exp(AiT/T)i4(r)e 2 (0).
A Fourier analysis of the vector ei(r) shows that the symmetry appearing in x, y, z, (i.e. x,z have only cosine terms and y only sine ones) for the halo orbit is no longer preserved. This is easily predictable because ei(0) does not satisfy the symmetry relation: y-component equal to zero. This will be useful for the analytic theory to be presented in Chapter 4. In what follows £,fj,C refer to the first 3 components of e~\ and £, 77, £ to the first three of e\. A rough examination of the Fourier analysis, made for different values of j3, shows several facts that are independent of (3: a) £ and f) have constant components which are close to the values obtained at the point L\ in a linear analysis. The ^-component is rather small. b) The most important periodic term is the first one. The other periodic terms contribute less than 1/4 to the global periodic term. The periodic term is small compared with the constant term. Hence a rough approximation is £ = 00 + ay COS(TW -
(3.9)
Numerical Study of the Local Invariant
149
Manifolds
Therefore the maneuvers should be performed, essentially, in the (x,y,x,y)subspace. We return to this in the next section. In (3.9) u> represents the frequency of the halo orbit. Let a = - In Ai/T. Then we get the components of ei(r) as £
=
exp(er"nj)(a0 + a\ cos(ra; —
7]
=
exp(
£
=
<JLJ£(—aiuism(Tu> —
fj
=
aujTj(—biwsm(T(jj — fa) + • • •),
where • = jf- We recall from Chapter 2 that r is linearly related to the physical time. More concretely, r is the time of the RTBP, i.e., it increases 2ir units in a revolution of the two main bodies. The angle between the invariant manifolds Wu and Ws is also computed. It is equal to the angle between e\ and &2- Using a) and b) we see that it is almost constant in the (x,y)-plane and that its value is, approximately, 2arctan(&o/ao)For instance, for /? = 0.08 the value of the angle is roughly 1 rad. This is not seriously affected by the value of /? nor by the small periodic terms. These small variations are also found when the angle is computed in the phase space. We remark that due to the freedom in the election of sign for the (normalized) eigenvectors, either an angle U(T) or 7r — V(T) can be found. Of course U(T) is T-periodic and even. 3.1.4
Numerical
Computation
of the Remaining
Floquet
Modes
The third mode is obtained starting with £3(0) equal to the tangent vector to the orbit at the initial point. Their components are (0,y,0,x,0,z)t=oThen ^ ( r ) = A(r)e3(0). A Fourier analysis of the vector ez shows that it has no independent terms and the six components have terms only in sin, cos, sin, cos, sin and cos, respectively, as it should be. They agree with the values computed analytically. As explained in 3.1.2, §4(0) is taken as the vector tangent to the family at the initial point. We recall from 2.3.1 that the family is defined through two equations: / 1 (a;,2;,y)o =: if = 0 and f2(x,z,y)0 =: Zf = 0. Using X for (x,z,y)T and F for 1 2 7 ( Z ; / ) the characteristic curve is F(X) = 0. Let G = DxF. Expressions for G are given in 2.3.1.3. Put G
_ ( 9n 3i2 3i3 "\ V 921 922 923 J '
Then, the tangent vector to the family is defined through (gn,gi2,gi3)T
A
{g2i,922,923)T-
150
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
The matrix G is available because it has been used in the process of continuation of the halo family. Then, e4 is defined by A(r)e 4 (0) = e 4 (r) + e(r)e 3 (r), and we have that e ^ r ) _L e~z(r). The fourth mode has independent terms in the first, third and fifth components. Concerning the purely periodic components they have, alternatively, only terms in cosine and sine. As it was mentioned in 3.1.2 e(r) is the sum of a linear function and a T-periodic function. The values of e(r) are rather large. For instance, for P = 0.08 the slope of the linear part is close to 1.5. The purely periodic part is odd and with large coefficients. The dominant term is a sin(rw) term, with amplitude « -3.7. The vectors £5, e§ are computed as described in 3.1.2. Concerning the parity properties shown by Fourier analysis, we obtain that es has components alternatively even and odd in r. The reverse holds for e%. 3.1.5
Results
of the Computations.
Consequences
and
Discussion
All the previously mentioned computations become part of the program PAPUS. First we compute the dominant eigenvalue and the normalized dominant eigenvectors of the monodromy matrix M and of the differential, DP, of the Poincare map P (see Table 3.1). Then, several checks are allowed, using numerical differentiation of P, to see up to which distance from the periodic orbit the linear behavior gives a reasonable approximation. This is done at the beginning of routine VARCOM. The next step is (optionally) to compute the nonlinear character of the stable/unstable manifold. Due to the symmetry, it is enough to compute the unstable one. The computations proceed as follows. An initial distance from the periodic orbit is required. This distance should be small enough in order that the product of this distance by Ai still gives points in a region where the linear and nonlinear manifolds are quite close. However, it cannot be too small to prevent rounding errors (and the fact that the initial conditions for the periodic orbit are not exactly known). For the purpose of selecting this initial factor, it is useful to make several checks as described before. We wish to produce points in the intersection of Wu with y = 0. The initial points are obtained using w = I.C. + V • factor • (1 + n • step), where I.C. means the initial conditions for the periodic orbit and V is the dominant eigenvector of DP. Factor is the small initial factor given, step is related to the relative distance between points in the nonlinear invariant manifold and n ranges from 0 to a given value N. For each value of n, starting at w the full Poincare map is used to produce points on the invariant manifold. We note that when n increases,
MAXIMAL EIGENVALUE COMPUTED FROM THE DIFFERENTIAL OF THE POINCARE MAP AND 0.1727955175697D+4 0.1727955175718D+4 DOMINANT EIGENVECTOR OF THE DIFFERENTIAL OF THE POINCARE MAP: 0.3335358054443D+0 0.8627300388346D-2 0.8684184942643D+0 -0.357077 DOMINANT EIGENVECTOR OF THE MONODROMY MATRIX: 0.3640187581334D+0 -0.1220085535615D+0 0.9415778222749D-2 0.8353988914446D+0 -0.3897114649572D+0 0.5243344313626D-1 FACTOR AND QUOTIENTS OF THE :[INCREMENTS, COMPONENTWISE 0.1706056457947D+4 0..1708579361595D+4 l.E-13 0..1708985018726D+4 0..1746885143570D+4 0.1749283624996D+4 0.. 1746745738708D+4 -l.E-13 0.1725792813808D+4 0..1726044966332D+4 l.E-12 0..1726043272031D+4 -l.E-12 0..1729905550470D+4 0.1730188577433D+4 0., 1729934476372D+4 0.1727741686229D+4 0., 1727769487212D+4 l.E-11 0..1727770186154D+4 -l.E-11 0..1728149260624D+4 0.1728179584292D+4 0. 1728151742688D+4 0.1727894009433D+4 0..1727921902095D+4 l.E-10 0..1727924180497D+4 0..1727985928561D+4 0.1728016433598D+4 0..1727988542722D+4 -l.E-10 0.1727555447147D+4 0..1727809314222D+4 l.E-09 0..1727832397123D+4 0..1728078036054D+4 0.1728355194077D+4 0.1728101176552D+4 -l.E-09 l.E-08 0.. 1726747072081D+4 0.1723982995171D+4 0.1725516556725D+4 -l.E-08 0..1729165608115D+4 0.1731936444599D+4 0.1729397060169D+4 0.1688638986850D+4 0. 1713715887210D+4 l.E-07 0..1715979883257D+4 0.1768189565042D+4 0.1742521410574D+4 -l.E-07 0..1740164233423D+4
0..1709 0..1745 0.,1726 0..1729 0..1727 0..1728 0..1727 0..1727 0,.1727 0..1728 0..1726 0..1729 0..1713 0,.1743
Table 3.1 Output of program PAPUS. Maximal eigenvector computed from the trace using t Poincare map and the monodromy matrix are used. Sun-Barycenter problem. Case L\. fi = 0
152
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
I + n • step can be larger than Ai. Then, to prevent large initial errors, factor is replaced by factor/Ai and, instead of applying P , we apply P 2 . This device is used as many times as required, each time dividing the current value of factor by Ai and increasing by 1 the number of iterates of P . A sample output of program PAPUS is given in Table 3.2. After working with positive values of factor, the negative branch is computed changing sign to factor. The output are linear and nonlinear approximations to Wu, with optional drawings. This computation is carried out by routine WUNL. The next step, done in part of the routine PRECON, computes the six Floquet modes as described before and performs the Fourier analysis. The integration is done with constant step, to get equally spaced (in time) points for the harmonic analysis. Usually 256 steps per revolution are enough. Also the angle v{r) between Wu and Ws and the function e(r) are given. Other magnitudes computed by PRECON are required for station keeping and shall be discussed later. The number of harmonics has been kept at a maximum of 15. The maximal error between the function and the trigonometric sum is also given. Output of this part of the program is given in Table 3.3 (Floquet modes), Table 3.4 (functions V(T), e(r) and p(r)), Table 3.5 (projection factors), Table 3.6 (unitary controls) and Table 3.7 (unitary signed gain factors). They were computed for a halo orbit of the Sun-Barycenter system around the L\ equilibrium point. The value of /? was taken equal to 0.08, that corresponds to the initial conditions x
=
-0.988838492596434,
z
=
0.895742025400000 • K T 3 ,
y
=
-0.896233211995794-10~ 2 .
The half period of this orbit is T = 1.529782262453289 and its Jacobi constant C = 3.000829263532742. The values of the stability indices are: Trx~ 1727.95575441572, Tr2 = 1.992624897950193. This orbit was obtained refining (by the own program) the analytically computed halo orbit using a 15th order theory. For all the Fourier developments that appear in the Tables, first the number of the harmonic is given; for each harmonic, the cosine and sine coefficients are given, respectively, in the first and second lines. The maximal eigenvalue computed from the trace, from the monodromy matrix or from DP, gives relative differences O ( 1 0 - u ) . We summarize results: a) Values from 1 0 - 1 2 to 10~8 in adimensional units, are suitable for the numerical differentiation of the Poincare map. b) The nonlinear Wu has been computed with factor = 1 0 ~ u , step = 50 and N = 20. The results are shown in Figure 3.1. For this Figure the size of the window is (-0.988941,-0.988744) in x and (0.0011178,0.0011242) in z, i.e., roughly 29400 km in x and 950 in z. The quadratic behavior of the
Numerical Study of the Local Invariant
Manifolds
153
error as function of the distance to the halo orbit is clearly seen from the list of results. For points at some 800 km of the halo orbit in the x direction, the differences between the real manifold and the linear approximation are of the following orders of magnitude: 0.5 km in x, 0.05 km in z, 0.3 mm/s in x, 0.15 mm/s in y and 0.04 mm/s in i. Everything is measured in the plane y = 0. Hence, as a conclusion, up to some 1000 km at least, the nonlinear behavior of the local manifolds is not required. c) The Fourier analysis of the Floquet modes (Table 3.3) and of the functions e and v (Table 3.4) is given. Also the plots of v and e are given in Figures 3.2 and 3.3, respectively. The parity properties of the modes have been explained before. They will be useful in the next chapter.
ii = 0 . 0 8 Linear and nonlinear unstable nanifold
Fig. 3.1 Comparison of the linear and nonlinear unstable manifolds of a halo orbit around Li of the Sun-Barycenter system with 0 = 0.08. The size of the displayed window is (-0.988941,-0.988744) in x and (0.0011178,0.0011242) in z, i.e., roughly 29 400 km in x and 950 in z.
154
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
Fig. 3.2 For the halo orbit of amplitude /3 = 0.08, angle between the stable and the unstable manifolds, as a function of time, along a period.
Fig. 3.3 For the halo orbit of amplitude f) — 0.08, behavior of the function e(r), as a function of time, along a period.
NONLINEAR UNSTABLE MANIFOLD 1D-10 STEP/IN.FAC. = 0.5D+02 NUMBER OF POINTS = 20 INITIAL FACTOR CURRENT ITERATIONS AND FACTOR: POINT NUMBER 1 NONLINEAR -0.988838486833D+00 0.895742174457D-03 0.150042697652D-07 LINEAR -0.988838486833D+00 0.895742174475D-03 0.150058823183D-07 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 2 NONLINEAR -0.988838198676D+00 0.895749627359D-03 0.765265805366D-06 LINEAR -0.988838198665D+00 0.895749628270D-03 0.765299998235D-06 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 3 NONLINEAR -0.988837910539D+00 0.895757078546D-03 0.151546493378D-05 LINEAR -0.988837910498D+00 0.895757082064D-03 0.151559411415D-05 POINT NUMBER 4 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0.988837622423D+00 0.895764528019D-03 0.226560150150D-05 LINEAR -0.988837622330D+00 0.895764535858D-03 0.226588823007D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 5 NONLINEAR -0.988837334326D+00 0.895771975776D-03 0.301567555906D-05 LINEAR -0.988837334163D+00 0.895771989652D-03 0.301618234598D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 6 NONLINEAR -0.988837046250D+00 0.895779421821D-03 0.376568717835D-05 LINEAR -0.988837045995D+00 0.895779443446D-03 0.376647646190D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 7 NONLINEAR -0.988836758194D+00 0.895786866150D-03 0.451563627201D-05 LINEAR -0.988836757828D+00 0.895786897240D-03 0.451677057782D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 8 NONLINEAR -0.988836470158D+00 0.895794308767D-03 0.526552290817D-05 LINEAR -0.988836469660D+00 0.895794351035D-03 0.526706469374D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 9 NONLINEAR -0.988836182142D+00 0.895801749670D-03 0.601534715134D-05 LINEAR -0.988836181493D+00 0.895801804829D-03 0.601735880965D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 10 NONLINEAR -0.988835894146D+00 0.895809188861D-03 0.676510889209D-05 LINEAR -0.988835893325D+00 0.895809258623D-03 0.676765292557D-05 CURRENT ITERATIONS AND FACTOR: POINT NUMBER 11
-0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1
NONLINEAR -0 .988835606170D+00 0.895816626338D-03 0.751480820540D-05 LINEAR -0 .988835605158D+00 0.895816712417D-03 0.751794704149D-05 POINT NUMBER 12 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 .988835318215D+00 0.895824062103D-03 0.826444511631D-05 LINEAR -0 .988835316991D+00 0.895824166211D-03 0.826824115741D-05 POINT NUMBER 13 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 .988835030280D+00 0.895831496156D-03 0.901401951407D-05 LINEAR -0 .988835028823D+00 0.895831620006D-03 0.901853527332D-05 POINT NUMBER 14 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 .988834742364D+00 0.895838928498D-03 0.976353171314D-05 LINEAR -0 .988834740656D+00 0.895839073800D-03 0.976882938924D-05 POINT NUMBER 15 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 .988834454469D+00 0.895846359128D-03 0.105129814080D-04 LINEAR -0 .988834452488D+00 0.895846527594D-03 0.105191235051D-04 POINT NUMBER 16 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 .988834166594D+00 0.895853788047D-03 0.112623687688D-04 LINEAR -0 .988834164321D+00 0.895853981388D-03 0.112694176210D-04 POINT NUMBER 17 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 .988833878739D+00 0.895861215255D-03 0.120116937247D-04 LINEAR -0 .988833876153D+00 0.895861435182D-03 0.120197117369D-04 POINT NUMBER 18 CURRENT ITERATIONS AND FACTOR: NONLINEAR -0 0.895868640752D-03 0.127609563566D-04 .988833590904D+00 LINEAR -0 0.895868888976D-03 0.127700058529D-04 .988833587986D+00 POINT NUMBER CURRENT ITERATIONS 19 AND FACTOR: NONLINEAR -0 0.895876064538D-03 0.135101565305D-04 .988833303090D+00 LINEAR -0 0.895876342771D-03 0.135202999688D-04 .988833299818D+00 POINT NUMBER CURRENT ITERATIONS 20 AND FACTOR: NONLINEAR -0 0.895883486615D-03 0.142592944442D-04 .988833015295D+00 LINEAR -0 0.895883796565D-03 0.142705940847D-04 988833011651D+00
-0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8 1 -0.8 -0.8
CURRENT ITERATIONS AND FACTOR: POINT NUMBER 1 NONLINEAR -0.988838498360D+00 0.895741876304D-03 -0.150075893424D-07 LINEAR -0.988838498359D+00 0.895741876324D-03 -0.150058823183D-07
1 -0.8 -0.8
POINT NUMBER 2 NONLINEAR -0.988838786538D+00 LINEAR -0.988838786527D+00 POINT NUMBER 3 NONLINEAR -0.988839074736D+00 LINEAR -0.988839074694D+00 POINT NUMBER 4 NONLINEAR -0.988839362954D+00 LINEAR -0.988839362862D+00 POINT NUMBER 5 NONLINEAR -0.988839651193D+00 LINEAR -0.988839651029D+00 POINT NUMBER 6 NONLINEAR -0.988839939451D+00 LINEAR -0.988839939197D+00 POINT NUMBER 7 NONLINEAR -0.988840227730D+00 LINEAR -0.988840227364D+00 POINT NUMBER 8 NONLINEAR -0.988849516029D+00 LINEAR -0.988845515532D+00 POINT NUMBER 9 NONLINEAR -0.988840804348D+00 LINEAR -0.988840803699D+00 POINT NUMBER 10 NONLINEAR -0.988841092688D+00 LINEAR -0.988841091866D+00 POINT NUMBER 11 NONLINEAR -0.988841381047D+00 LINEAR -0.988841380034D+00 POINT NUMBER 12 NONLINEAR -0.988841669427D+00 LINEAR -0.988841668201D+00
CURRENT ITERATIONS 0.895734421618D-03 0.895734422529D-03 CURRENT ITERATIONS 0.895726965216D-03 0.895726968735D-03 CURRENT ITERATIONS 0.895719507098D-03 0.895719514941D-03 CURRENT ITERATIONS 0.895712047265D-03 0.895712061147D-03 CURRENT ITERATIONS 0.895704585715D-03 0.895704607353D-03 CURRENT ITERATIONS 0.895697122447D-03 0.895697153559D-03 CURRENT ITERATIONS 0.895689657463D-03 0.895689699764D-03 CURRENT ITERATIONS 0.895682190760D-03 0.895682245970D-03 CURRENT ITERATIONS 0.895674722341D-03 0.895674792176D-03 CURRENT ITERATIONS 0.895667252205D-03 0.895667338382D-03 CURRENT ITERATIONS 0.895659780349D-03 0.895659884588D-03
AND FACTOR: -0.765334238858D-06 -0.765299998235D-06 AND FACTOR: -0.151572341618D-05 -0.151559411415D-05 AND FACTOR: -0.226617513205D-05 -0.226588823007D-05 AND FACTOR: -0.301668933296D-05 -0.301618234598D-05 AND FACTOR: -0.376726618033D-05 -0.376647646190D-05 AND FACTOR: -0.451790572033D-05 -0.451677057782D-05 AND FACTOR: -0.526860770336D-05 -0.526706469374D-05 AND FACTOR: -0.601937238277D-05 -0.601735880965D-95 AND FACTOR: -0.677019957931D-05 -0.676765292557D-05 AND FACTOR: -0.752108936385D-05 -0.751794704149D-05 AND FACTOR: -0.827204189522D-05 -0.826824115741D-05
1 - 0 .896 - 0 .896 1 - 0 , .896 - 0 . .896 1 - 0 .896 - 0 .896 1 - 0 , .896 - 0 , .896 1 - 0 .896 - 0 .896 1 - 0 , .896 - 0 , .896 1 - 0 .896 - 0 .896 1 - 0 , .895 - 0 , .895 1 - 0 .895 - 0 . .895 1 - 0 , .895 - 0 .895 1 - 0 .895 - 0 , .895
POINT NUMBER 13 NONLINEAR -0 .988841957827D+00 LINEAR -0 .988841956369D+00 POINT NUMBER 14 NONLINEAR -0 .988842246247D+00 LINEAR -0 .988842244536D+00 POINT NUMBER 15 NONLINEAR -0 .988842534687D+00 LINEAR -0 .988842532704D+00 POINT NUMBER 16 NONLINEAR -0 .982842823148D+00 LINEAR -0 .988842820871D+00 POINT NUMBER 17 NONLINEAR -0 .988843111629D+00 LINEAR -0 . 988843109039D+00 POINT NUMBER 18 NONLINEAR -0 .988843400130D+00 LINEAR -0 .988843397206D+00 POINT NUMBER 19 NONLINEAR -0 .988843688651D+00 LINEAR -0 .988843685374D+00 POINT NUMBER 20 NONLINEAR -0 .988843977192D+00 LINEAR -0 .988843973541D+00
CURRENT ITERATIONS 0.895652306774D-03 0.895652430793D-03 CURRENT ITERATIONS 0.895644831481D-03 0.895644976999D-03 CURRENT ITERATIONS 0.895637354469D-03 0.895637523205D-03 CURRENT ITERATIONS 0.895629875737D-03 0.895630069411D-03 CURRENT ITERATIONS 0.895622395285D-03 0.895622615617D-03 CURRENT ITERATIONS 0.895614913115D-03 0.895615161823D-03 CURRENT ITERATIONS 0.895607429222D-03 0.895607708028D-03 CURRENT ITERATIONS 0.895599943610D-03 0.895600254234D-03
AND FACTOR: -0.902305713095D-05 -0.901853527332D-05 AND FACTOR: -0.977413492201D-05 -0.976882938924D-05 AND FACTOR: -0.105252753758D-04 -0.105191235051D-04 AND FACTOR: -0.112764785333D-04 -0.112694176210D-04 AND FACTOR: -0.120277444163D-04 -0.120197117369D-04 AND FACTOR: -0.127790728749D-94 -0.127700058529D-94 AND FACTOR: -0.135304641633D-04 -0.135202999688D-04 AND FACTOR: -0.142819181236D-04 -0.142705940847D-04
-0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89 1 -0.89 -0.89
Table 3.2 Output of program PAPUS. Sun-Barycenter problem. Ca
The Proposed Method for the On/off
3.2
Control
159
The Proposed Method for the On/off Control
3.2.1
On/off
Control
Using Invariant
Manifolds
In this section we explain, for the RTBP, the proposed method of station keeping using on/off maneuvers. The small modifications to account for the perturbations are more technical than conceptual. The basic idea proceeds as follows: a) Due to errors in the injection maneuver, in the tracking, in the execution of the station keeping maneuvers and in the used model of the solar system, the spacecraft is not in its nominal orbit. b) Local errors change in time, according to the solutions of the variational equations. Modes 3, 5, 6 are neutral, i.e., they do not increase very much in size during a large time span. Mode 2 is stable and we do not care about it. Mode 4 can produce, on the average, departures from the nominal point at a linear rate. This rate is simply the slope of the linear part of function e. However, this effect can be annihilated taking at every moment as nominal point, not the point in the nominal orbit at this exact time, but the closest point in the nominal orbit to the actual point (obtained by tracking). The search for closest point should be done locally, i.e., for values of time near the actual one. This is not relevant for the RTBP, where the nominal orbit is periodic, but has full sense for the quasi-periodic nominal orbits to be introduced in Chapter 7. As a conclusion, the only dangerous mode is number 1. The component of the error along this mode is increased by a factor Ai in one revolution. c) An on/off maneuver acting on a short time, can be considered as a jump of the point in the phase space only in the velocity components. For instance, a constant acceleration of 1/6 cm/s 2 acting during 1 minute produces a change of 10 cm/s in velocity and 3 m in position. For the Sun-Barycenter problem, in adimensional units, these figures are 3.4 • 10~ 5 and 2 • 1 0 ~ n respectively. Hence, we can consider the maneuver as a jump. d) When it is detected that the real point has a significant departure from the nominal one, it is not necessary to return to the nominal orbit. The only thing to do is to cancel the unstable component. This should be done in the best way, i.e., with the minimum possible jump (implying minimum fuel expenditure). At this moment it is not clear what "significant departure" means. It should not be too small because perhaps the departure is only due to tracking errors. Another reason to prevent from being too small is that in this case the maneuvers should be done at short time intervals. On the other hand, it should not be too large because this increases the value of the jump in an exponential way. Delaying 1 month a maneuver of 10 cm/s will
160
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
require to increase it to some 35 cm/s. Other considerations, as operational constraints, also have an important effect on the election of the maneuver epoch. These ideas are developed in the next subsections. 3.2.2
The Projection
Factors
Let 6 = (8x,Sy,8z,Sx,8y,,5z)T be the error vector, i.e., the difference between the actual coordinates and the nominal ones. At the current moment, r, 6 can be expressed in the local basis {^(r)} obtained from the Floquet modes: 6
6-
^Cigi(r). j=i
We are interested in ci, the component along the unstable direction. Incidentally, the components C3 and C4 have also been computed to see the variations along the orbit and along the family. For c\ we have V
det(ei(r) > ...,e 8 (T))
;
When the determinant appearing in the numerator is developed, we found ci = n\(T)Sx + -Kl2{T)8y + ir\ (T)SZ +
K\(T)8X
+ nl(T)6y +
TTI(T)8Z.
(3.11)
The magnitudes TT}(T) are the projection factors. 7T|(T) is the (signed) minor of the ith element in the first column of the matrix appearing in the numerator of (3.10) divided by the determinant of the Floquet basis. Let 7T1 = (7r£,... ,n\)T. Then, the unstable component is the scalar product of 7i"i and 6. As the vector ei(r) changes in time, it is better to use normalization. To get the normalized unstable component we should multiply the previous value of c\ by the modulus of e~\ (r). In a similar way, we can obtain the vectors ?r 3 (r), 7r4(r) and the normalized components. When the projection factors are available, it is interesting to see the effect on them of the tracking errors. A rough computation proceeds as follows: Let dx, dy, dz, dx, dy, dz be the tracking errors; it is supposed that they are bounded by dx,..., dz, respectively, in absolute value. We define p(r) = max^ 1 • (dx, dy,...,
dz) ,
where \dx\ < dx,... ,\dz\ < dz. Of course, the maximum is reached in a corner of the parallelepiped and is obtained taking as sign of the ith component of the tracking error vector the sign of 7T|(T).
The Proposed Method for the On/off
Control
161
In fact dx,... ,dz are usually not bounds of tracking errors but a (or 2a) deviations. Supposing centered normal behavior for each error and independence, the variable p = -K1 • (dx,..., dz) is centered normal with typical deviation a = ((n{nd-xf 3.2.3
A First Approach
(nl)i(dW)1/2-
+ ... +
Towards the Optimal
Maneuvers
We look for the unitary controls, i.e., the value of the controls to be applied when the unstable component is the unity. We call them Si, S2, S3, i.e., the x, y and z controls. According to d) in 3.2.1, we write
p ^ - + (0,0,0,Si,S2,S3)T Mr) I
=
J2ajej(T). ^
We split this system into two different systems taking the first 3 and the last 3 equations.
| i ± = X> AlM ,
A = -g&l+X>^H,
(3.12)
where A = (Ai, A 2 , A 3 ) r . In (3.12), for any vector e, € E 6 we write e 1
ej = I J3 1 \j
.„;+u ^ = ^ ra>3 with eji,ej2 S
In the first equation of (3.12) it is easily seen that e2i, £31, em are linearly independent. Hence 02, 03, 04 can be obtained as functions of a$ and ae- By substitution in the second equation of (3.12) we obtain A in the form
(
aio + a n Q 5 +ai2a6
\
020 + 0210:5 + ^220:6
J ,
030 + 03105 + 03206
/
(3.13)
where ay, i = 1,2,3, j = 0,1,2, are functions of the time. We try to obtain values of 05 and ae such that the following norm of A be minimized: ||A|| = (Af -I- A2) 1 / 2 + IA3I. This is linearly related to the amount of fuel to be spent if we suppose that the spacecraft has a spinning motion of rotation around the z-axis and maneuvers can be done in the (x, y)-plane (selecting the direction by choosing the right orientation) and in the z direction. A little algebra shows that the optimum is one of the following two possibilities (due to convexity reasons): either Ai = A 2 = 0 (which gives d 5 , d6 and, by substitution, A3), or A 3 = 0 (which gives a relation between 05 and ag, that
162
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
substituted in Ai, A 2 produces ||A|| as a quadratic function in ag, if this one is chosen as independent variable). Other types of controls are possible. The only one-axis control (x, y or z) is obtained from (3.13). For instance, the a:-axis control is obtained putting A2 — A 3 = 0 and obtaining a§ and a%. By substitution in A l 5 the unitary control is obtained. Let ip(r) = ci(r)|ei(r)|, where ci(r) is obtained from (3.11). We also introduce the gain function 9(T)
= TAT;,
where ||A|| denotes the minimal norm, either if optimal 3-axis control or any other type of control (1-axis or 2-axes) are allowed. Suppose that the last previous maneuver was done at r = To and that, due to tracking errors, we got some value rp(ro). The function ip(r) is increasing exponentially IP(T) = exp ( -=^(T
- T0)) ip(T0).
Let (A x , A 2 , As)^ be the real maneuver done at r = r 0 and ( A i , A 2 , A 3 )f the theoretical one. The difference is supposed to be A£° - A[° = WAJ0, where W is some "error in the execution of the maneuver" weight matrix. It is supposed that this matrix is known from performance experiments with the control device. Their elements need not be constants and they can depend on the components of A. The error WA[° should be added to tracking errors. Then, the total unstable component at r is ^tot(r)
=
(V(To)+7r1(ro)WA[°)exp^(r-r0; +7T 1 ( 7 ")- f - a t o t ( T - T o ) 2 , a t o t ( T - T o ) j
,
where a to t accounts for the averaged residual acceleration due to unknown and neglected perturbations. We note that Vtot('r) should also be obtained directly from tracking. The comparison can allow to detect systematic errors in the tracking or a better knowledge of a to tTherefore, the cost of the maneuver at the epoch r is: V'totM/flMThe choice of the time r for the current execution maneuver can be done by trying to minimize the average amount of fuel per unit time, i.e. /(r) =
^t(r)(g(r))_ T -
T0
(314)
The Proposed Method for the On/off
163
Control
Let us try to learn something about (3.14) in a simple case. Bound ^(TO)+7T 1 (TO)WAJ° by some amount V> and the unstable component of the residual acceleration effect by a i ( r - r 0 ) +a2(T - r 0 ) 2 . Furthermore, suppose that g(r) is constant (not very unrealistic as we shall see later). By substitution in (3.14) and derivation, we get the following condition for the minimum: ( N $ ( T - TO) - 4>) e N ( T - r o ) + a2(T - T0)2 = 0
(3.15)
where K = lnAi/T. From (3.15), if we put a 2 = 0, we obtain (r - T 0 ) = 1/H. Then, the suitable time, under these simplifying hypothesis, between two maneuvers is at least 1/K adimensional time units. The effect of a2 is to decrease this time. The main result, of this simple approach, is that the maneuvers should be performed when the unstable component is roughly e times greater than the maximum unstable component due to tracking and execution of maneuver errors. Up to now, we discussed local optimization. For long time optimization, one should determine the number of maneuvers, k, and the moments at which they should be done, between an initial time To and a final time r/, such that
] T V'tot(Ti) (0(Ti)) *=i
be a minimum (TO < T\ < ... < Tk < Tf). However, this gives only an upper estimate of the fuel consumption. The true maneuvers should be done trying to minimize the function / ( T ) defined above, where the unstable component at the epoch r is estimated from tracking.
3.2.4
Numerical Controls
Computations
of Projection
Factors
and
Unitary
This is also done in routine PRECON, part of which has already been described. When the Floquet modes are available, the formulas of 3.2.3 are used to generate the projection factors, unitary controls, gains and some auxiliary functions. Then, the results are Fourier analyzed to obtain a compact representation for all time. Usually the results, up to the 15th harmonic, have relative errors less than 1 0 - 5 . The components of the projection factors, related to the tangent vector to the orbit, are alternatively odd and even, while for the tangent vector to the family, e4, they are alternatively even and odd. The projection factors, concerning the unstable direction, have full Fourier developments. We include a computation of the maximal component of the tracking errors, p{r), as described at the end of section 3.2.2. For the Sun-Barycenter system near L\ the following tracking errors have been used:
164
The Neighborhood of the Halo Orbits: Numerical Study and
3 km in the x coordinate 5 km in the y coordinate 30 km in the z coordinate
Applications
2 mm/s in the x coordinate 2 mm/s in the y coordinate 6 mm/s in the z coordinate.
Fig. 3.4 Behavior of the function p(r) for a halo orbit around L\ of the Sun-Barycenter system with /3 = 0.08.
This function is nonsmooth (because it is the maximal projection of a product of segments on a varying line). The maximum is of the order of 2-10 - 7 , in adimensional units. This value will be important for control in the light of 3.2.3. As it will be explained in the next point, of all the possible controls ((x, y, z), (x, y), (x, z), (y, z), (x), (y), (z)) it is enough to study the {x,y), (x) , (y), (z) ones. The values of Ai and A2 for the (x,y) control are given in Figure 3.5, as well as the related gain factor 9{T)
=
(A?(r) + A|(r))V2
in Figure 3.6. For the one-axis controls, the relation between unitary control and gain is easy. For instance, for the (x), case they are Ai(r) and g(r) = 1/Ai(r). Hence, only the gains (with its sign) are given for one-axis controls. Also quotients of one-axis gains divided by full control gain are given (see Figures 3.7 and 3.8).
The Proposed Method for the On/off
Control
165
Fig. 3.5 x- and y-components of the unitary controls. Halo orbit around L\ of the Sun-Barycenter system with 0 = 0.08.
166
The Neighborhood of the Halo Orbits: Numerical Study and
Fig. 3.6
Applications
For /3 = 0.08, behavior of the gain factor.
Fig. 3.7 For fi = 0.06, behavior of the gain factor using x control divided by the gain factor using full control.
The Proposed Method for the On/off
Control
167
Fig. 3.8 For j3 = 0.06, behavior of the quotients of the gain factor using y control (top) and using z control (bottom) by the gain factor using full control.
168
• > *
O
• *
I
I
I
1
I
I I I
^
TH
• *
• *
i
<*
i
• *
i
o
• *
• > *
CO *f O o
•>*<< <* >* •* <* ^ ^
1
• *
• *
• > *
•*
I I
• H
1
• *
•*
I I
I I
1
I I
1
>*•>*<* ^
I I
1
I I
I
1
• *
•=*•
o
^
I
i tH
o o
•*
i
•*
1
• = * •
1
•*
Applications
1
**
•*
• < *
1
"
*
•
*
O t H t H i H t H CN CM CN CM co co 'J" co •* LO o o o o O o o o o o o o o o a o CI Q Q a a C l Cl a Cl Q a a 1^ o N- cn LO C O 001 CO «tf t H »* co CO t H to en 00 00 I CN CN CO oo to to o e n o to cn CO to r- o t H CO co rcn cn t H CO CO t-- •* co 00 en «tf oo o CO 00 CM %f to CO to to CN i~- CM to o en t H cn 00 i H CN o <* t LO t H to to CO LO CN to CM en o o O to to fLO co to r- LO t H CO co CO cn t H cn cn tH tH CN CN co *1< t H t H CO co cn t H LO CO
1
II
1
i
II
• *
1
t*
• *
•*
1
II
1
• *
1
• *
o t H o t H i H t H t H CM CN CN CN CO CO CO CO o o o o o O o O O o o o o a Q a Cl Cl a Cl C l a Cl a C l Cl LO to i- fto 00 cn C O LO *oco t00H CM * LO CN CN 00 • CN CO to t H to • cn M< cn cn «*to LO 00 CO cn CO en CO to o CN >*tCMo CO CO LO r*- LO LO to t H to i»- o CO o CN co CO CM cn CO to i H tLOH 00 LO cn tt HH o 00 00 cn to 00 en t H to CN LO o to t H CO
I
o o o o
•*
II
o o
•*
• *
II
o o o a
*
LO
•
*
•
*
*
to co co cn to t^ CM hcn CM LO 00
o o
o o
I I
o
LO LO LO LO
tO CM t # tO
t-- CM o o LO oo ^ co
00 tH tO (--
co »* o cn cn oo co o
I I I I D Q O Q LO CM CO O tH 00 tO tO
o oo
CM tH CN CN CO CO •* CO O O O O I I I I I I I I I I Q O Q Q Q Q Q O co TH en co CO CN LO tH cn o oo CM cn cn LO CN iH tO CO CO CM ^f tH en tH cn t* cn tH CN o to oo to t-- CM o cn CM LO oo cn CM CM co cn CM co CO LO LO tO LO tH t^ •* CO i H CO tO O t~- CM CO t H *j< LO tH tH CM co to 00 T H
I I
gg tHtHCMCM0000«l'«a,LOLOlOtOt^I^W[U
I I
o o o o o o o o o o o o o o o
II
o o o o o o o o o o o o o o o o o
^ ^<
^J> "S1 LO LO LO LO o t H i H t H CO CN CO CO CO CO o o o o oo o oo o o o oO O o C l Cl a a a a a a a a ci a a Q a Cl iH iH O CM t H oH LO cn to to oo o CM o co CM CM *}* t CO CM LO LO CO to t- oo tH tO CO CM cn «*f- ftH CM r- CN r- to >to cn CO CF> O CO CM tH r t H to o LO CM* COo to en cn o co cn cn to • *tcnH 00 hto en o to to i H • to w cn r- CM toH CM O cn CM CO >* LO en tH cn r- cn cn ^" tH **••Cf CN co o co to t H CO ^ O I D LO o> to CO o TH t H LO CO cn tO CM ^ cn r- CO CM CO LO m i H
oI o oI Io o oI o o o oIoI o o o IoI o o I
tH
CM t H t H •*CN co co »*co •**f LO L0 LO LO to i^ o o o o o o o o o O o o o o o o o Cl Cl Q Cl o Q a a a Cl Cl C l a Cl a a a LO LO t- to CO o *}• ** to t~ N- CN to CN O to cn t H LO LO to ^ o •H CM t H (- CO o <*o CO ttoH ocn oLO oCM CO cn tH CM to CM cn LO cn LO ^ O o CO CM LO to cn to t H 1- o CO •**< < •o tCN-- LO *P tf CO LO 00 00 t H 00 t- tH CN CM o o o o o t o t H LO •* 00 CO CO t~ t H LO LO CM o CO cn LO ^H
1
o o o o o o o o o
<* LO
o o o o o o o o o o o o o o o o o
•* **• •*•
00 LO LO LO CO to CN t~- O *l< CO t
CN t H t H r H CN CM CN CN CO CO co t to < < ^ * • O o o o O O o o o o o > o o o o o o o e> CI Q Q Q a CI Q a CI a a Cl a 1 1 ci 1-a to CN cn to t- o r- CN to t~- i-- LO CO t~- tH •*en i H CM CN o >*00 oo 00 ICM cn CO CM CM LO !• t H-r~ -- en t H to to LO n •*00 t o t~- to ttf O CM 00 o to CM co LO c 00 en LO oo h- t H CO en iH t H cn o 1- h- to i^ f- 'J' CO *j* en c o o t o LO en LO CM en 00 00 LO o i* f- LO o CN tH 00 ^ CN CM cn t H LO to CN to co ^ to CN cn CO
The Neighborhood of the Halo Orbits: Numerical Study and
• *
tH
CN CN CN CN CO CO O o o o • ^
o o o o o o o o o o i
tH
• *
co co to CO co «tf CO en 00 co CO co CM oo LO LO CM CN i-- to o t-- to to r- co CO o t- CO 00 t H en co t H o oo to en 00 i H CN en o t H en to LO to CN en CO LO t H en o t H en t H co Kf t H co LO CM CO co en
a a Q a a Q a CI a
o o o o o o
TH
O 1
<# •>* ^ >#
^<
oo o
CN •iH t H •iH CN CN CN (N CO co CO • * ^f en O o o o O o o O o o o o o o o o o a a a a a a a Q a a Q a Q Q a a a to i H co t~- •iH en CO en t H 00 t H CO 1< O l t H LO i H CO CN o co to >to r- co CN to co to 00 3* t H CO CN o to t H o <J< o LO CO o t H CN CO LO LO LO t H tH o 1- LO en h- CO to CM en CO to CO f- rCN en CO CO LO o • * tHo LO o CO t H CM t •«H CN LO t t o en o CM en en t H CO co •tH en CO CM en co CN CM t H LO O O o
h- CO o O) cs CD en LO t H LO en LO to CO
o
•iH
o o
o
^
<*
a a Q a a a CN ID CO LO t H CN CN cHo LD t CO CN 00 I-- CN t H CN to T H to CO to LO o Ol cn o CN LO r~ O t- CN to o en t H i H •tf LO to to co LO J> LO co to K to 00 oo KCN *CN T-t T H CO I
1
o o o o o o o o o o o o o o o o o
^
1
• *
•!»•
00 o i H o t H i H t H t H CM CN CM CM CO co CO CO o o o o o o O O o o o o o o O Q C l a Q Q o ca Cl Cl Q o Q Q C l Cl iH tH 00 CO o f- 1-- CO to r o o LO CO tH o tH CO !*
I
to r-
r>00 CO
to
tH
Q LO
iH
O
o o o o o o o o o o o o o o o o o
tH tH tH
CM t H t H ^"CN CO CO co >tf •0* LO LO LO LO to o o o o o o o o o o o o o o O o o tH a ca o Q Q Cl a Q a Q Q C I Q Q Q Cl a t~ t H < CN cn LO tf CO cn co >*cn r-- CN t
• H
•>#
• *
o t H T-t t H CO OC M CO CO CO CO t •>*•* LO LO LO o o o o o o o o o o o oO O a a o a C l a Q Cl C l a a ci a O a i— o LO t- o to CO 1" o
o o o o o o o o o o o o o o o o o
D+0
D+0
D+0
D+0
D+0
D+0
D+0
D+0
D+0
D+0
f l ^ I > I O ) 0 1 0 l O l i ( k i > U U ( 0 1 0 l - ' h ' O S SO D SB a i w -j I I I I I I S
M W ^ I S O ) 0 1 0 l 0 1 i & i l » U ( » ) l o l o i - ' i - » 0 3 fO fO O to to e> o t to. j o -~i I I I I S
*»
( * *»
!-»•
00 00 if H* to O) m
t-k
--)
O O
to ^i CO -~i to
!-»•
(-»•
--!
*-*•
*-*•
--!
Mif
a
to CO -J cn to o SJ
--)
D+0
h-k
h-k
o
D+0
ffo/UQ
91/?
l
do
o
h-k O h-k O h-k H k h-k O O h-k O
o a aa aa a i + i +
jOJJUOQ
h-k
O
a a
*>
to h-k to cn h-k oo cn h-k cn oo tn cn -j cn to I-4 cn h-k S3 h-k 00 oo if oo oo -~i tn to co 00 if tn o C3 cn CO co o to h-k tO tn en -4 co to --J oo cn if tO en -4 cn if cn CO OO to oo if to cn to cn -~i 00 h-k if cn
--)
D+0
-J to l-k S3 CO CO h-k if S3 en if -1 S3 O O en o to •f CO CO en en if h-k tn cn 00 S3 en o en S3 CO o S3 S3 S3 tn S3 l-k to •f cn S3 •f to en S3 h-k CO if -^1 to tn to to o cn oo O S3 cn a 13 o a a is a a O o o h-k O h-k O h-k if S3 S3 h-k S3 h-k h-k h-k
<->
P°yi9N
p3S0d0J.J
31/J,
CO 00 cn h-k tn cn en to to -4 to S3 h-k -i -J S3 o to to - j 00 S3 h-k CO -J if cn C3 -N| H k h-k to co to to cn CO ->1 --1 to cn to -~l 00 (X3 Hk cn ^1 to cn to en oo S3 if ^i S3 if if S3 to to o -J cn cn if ^i to 00 cn 00 cn cn o o h-k 00 to S3 o en H* tn S3 CO if o o if if S3 03 00 oo 00 -~1 S3 >i if tn if ->1 en co if O h-k o o en CO (3 a a o a a a o 13 o a 13 O a h-k h-k h-k o h-k O h-k o Hk O O Hk o o o cn if cn if cn if if if if if eo eo eo
-*!
CO h-^ to S3 to ->l if cn o cn cn -J SJ -J to a a a h-k O h-k to S3 to O to tn .f if en S3
Hk
I I I o o oI o o o oI oI o o oI oI oI o oIoI o
!-»•
->!
--!
*-*•
*>
M o -j cn if cn if CO i-^ --I if •f if -J cn to C5 to cn if to if m SI -J if cn m o no to en 00 l-k o> if if H* to m no if cn M h* t3 a a 13 13 o 13 l-^ o t-L o o H^ if if if co if S3 if
I I I I I I I I II O O O O O O O O O O O O O cn S3 --] no to S3 I-' -J t-fc S3 cn i-*cn cn 00 tn CO 00 S3 -J if 00 - j to -J o no (O m cn if if if cn CO o 00 to o o to o to tn cn cn O S3 M- oo -J no cn cn (o tn en h-* CO O -J m to cn o CO if en CO no to cn CO no o to if to to eo f S3 if cn to cn O) cn no if S3 CI CO S3 S3 no if 00 cn to a a a 13 a a o t3 O a t3 o a o i-^ o t-L O H' o t-^ o o i-^ to if to if co CO S3 CO S3 S3 S3 S3 S3
*-*•
to to M- to - j o >-» -J if cn --] 00 IO to to 00 if to i-' t-* (O to oo o to if CO o a a a a O I-' o cn tn cn cn
o o ol o o oi o o ol o o ot o o o o o
!-»•
O O O co ^J eo cn CO t-k C3 cn S3 en c n S3 00 to S3 o en H k if IO S3 cn S3 o a a
l-k
!-»•
O O 1-^ tti c n CO H* 00 S3 cn H* C3 cn CO S3 no
!-»•
I I I I I I I I I II O O O O O O O O O O O O O O l-k S3 i-k 00 to S3 co oo *> >-» to l-k |-fc to if cn 00 cn to cn cn oo oo cn h-k 00 S3 S3 cn S3 n if cn if O -4 tO S3 h-k to en oo ->! ^l c S3 to n 03 -^ if 00 tO S3 • ^ ->1 •^1 cn cn CO en c if to to M o to tn S3 00 00 oo cn if t-k CO CD f o oo en H k o Oto oS3 tn S3 cn CO CO co CO to en o -ifj to if CO if -j to S3 oo tn H k eo tn cn co o o a a a a a a a a 13 a a 13 o o o H-k O h-k O K k O l-k O l-k O l-k O i-k l-k to cn tn co if to if to co to CO CO S3 CO h-k tO to
-~)
D+0
D+0
I I I I I I I I I II O O O O O O O O O O O O O O O O O I-* if S3 S3 S3 if CO en cn M- cn CO CO K-k cn t-k co -j cn CO 00 if S3 cn S3 no to IO CD to cn »-k if o oo S3 CO ->1 CO CO o cn cn to if cn cn to cn CO O cn 00 1-^ to to to cn S3 CO o to o -»i S3 co CO 00 o to cn oo CO if en S3 if cn if h-fc CO oo cn 00 -) O h-* to to 00 00 --I en o C3 S3 S3 H k o CO CO cn OD CO o oo --4 S3 if en to oo o S3 to to eo >-•• o O CO if to i-* -~l o M- o to to O cn en to o a o a a o a a a a t3 a a a o l-k o o o i-* o t-* O !-•• o h* o 1-^ O 1 Mto S3 i-^ S3 h^ S3 H» S3 )->• h-»- t-* I- 1-^ o l-k t-k t-k
->)
*-*•
*-*•
( *
IO 00 -4 no to en to tn h-k o 00 to S3 if 00 --4 S3 h-k CO ->l to h-k en CO cn m if o o a a o h-k h-k to CO CO
ooooooooooooooooo if M- if en cn to oo 00 K* if *-*t-^ •f t-* cn SI l-k H-k -~] CO -j
I O O cn no cn o S3 if if - j S3 - j i-* if CO S3 to a a a t3 o o H* o to cn co en
!-*•
I I I I II O O O O O O O O O O O O O O O !-»• t-k h-k cn h-k -J cn S3 •-* S3 CO tn CO -J cn en t-^ 00 --i o CO cn t-* O 00 S3 to 00 co S3 00 CO cn H* S3 S3 S3 H k cn cn CO o 00 <•> m cn if -J cn 1-^ CO if I-1 cn CO cn to •f o - j en •f 00 f cn cn -J to S3 00 en H* 00 cn cn H* S3 -J cn cn -*l -J CO cn if to to to S3 t-L to c» to to en c> t-* 00 CO •f S3 o S3 cn to o S3 (10 S3 CO cn if o to cn cn S3 cn -J a a a a a a a a a a a o a a o t-^ o t-L o i-»- o t-L o }-L o t-* i-^ t-* CO S3 to CO S3 CO to S3 h-*- S3 h-^ S3 O H^ M-
!-»•
h-^ to •f to CO 00 •f cn -J tn en to o 00 O en if K5 00 en ->l cn to -*i cn cn tn to to
»-»•
D+0 D+0
O O SI cn e n CO 00 h-k no si cn to to if 00 - j en if a a r> o cn if
if CO
a a o o
f if
to to H* en to
>-••
I-* o to en -J C7) if to en to o -J --I C!0 if - J to t-* cn 00 cn CO 00 o 00 1-^ c» to if to oo en oo to oo -J to co en oo o co CO -J -J 00 00 en -~i cn cn --i c> t-^ to o to en en o ^1 to N) to CO h-^ to to C3 co en o tn h-^ o C3 SJ CO to o 1-^ if to CO o if o h-^ --] O en o O en cn -j -1 -J 00 H* 13 a a o a a a a o a o o H* o H^ O h-* o h^ O H* o H1 H* I-*- to 1-^ CO 1-* to 1-^ to i-^ t-1- CO i-* o o
if
^>
»-»•
I I I II O O O O O O O O O O O O O O O O h-k h-t en i-fc IO 00 t-* CO IO I-* IO to to to to tt) 1-^ cn co h* cn if no to to if CO to to to o en 00 to en CO -~l M to SI if O if to to t-*to O 00 CO M - j if CO M cn cn to to 00 if co IO -J en --j to to en -~i en cn t-fc to o to SI o en cn CO if to to oo h-1 if tn cn CX3 o O if l-k i-fc cn Hfc & ->i to t~* (O if M to en en en to -J if to if to co if if to to m o en to - j 00 CO if a a a a o O a 13 O D a o a a a a 13 i-»- o H* O i-' o i-^ O H* o i-* O I-* o >-•• o •-* h^ en to en co Ol CO cn CO .f CO CO CO CO eo to co O f 00 to if CO to
h-k h-k
a
00
S3 -~I oo to to h-k h-k M en to h-k if if --i if co to S3 no ->j h-k en -~i Ol en en to to O) h-k to if h-k if -J -J h-k h-k to
to to if H»- en cn CO m - j to en o --J JO 00 if to to -J 00 -~I 00 to if if en to to h-k if if h-k tO M-~1 to -j if cn (O to h-k to S3
I I I O O O O O O O O O O O O O O h-k CO H k if to 00 CO 00 if if oo cn 00 - j IO if 00 to >-*• to 00 if -~l -~l en en to ->J i-^ to to en en o 00 O CO 00 to S3 h-k if --! to 00 en to to ~ j to if to o ~J if* 00 to 00 1-* O to o O to en }-*• en IO if en h* ~J if -j O en to co to en CO -J co 00 co H* o to en if IO cn en c>ni to to -j co to oo en *-»• to tr> CO cn a a o a a o a a a o o a a 13 i + I-' O h-k O t-* O i-* O h-^ o !-•• O t-^ >-*• h-k tO h-k to h-k IO i-k to h-^ h-k I-L O t-fc t-L
*>
-^
H* en to -4 CO to co CO to to .f if o h-k >-» oo 0> to to en oo -o. en oo en if 00 en C3 to en en to CO if to en oo h-k i-fc to to 00 if to en -J to .f co to en h-k en to to to i-^ oo en 4* to if
ooooooooooooooooo t-^ to ! -*to t-* en if H-k i-* *> to -i to CO cn CO -4
*>
I O O O h-k co to if 00 O to h-k cn O en en 00 to en CO CO to CO ->i en CO to a D o O O o CO to to
CO H* h-k h-k h-k O) O CO CO en if CD CO to1 to CO 00 O I- if Hk (O to -~l to if -J oo o 00 to oo --I to o en ~j 00 CO h-k O D o a a O O h-k o h-k en CO 1-* if h-k
ooooooooooooooooogooooooooooooooooog
n t PO to o to
D+0 D+0
170
^
of the Halo
<*
^<
*
I
I 1=1 to ^co to o r~ cn LO
!--
co ^* cn tH o O i i i a a a OO CO tH lO tH tH cn ^ to r- tH co o LO ^< cn to co •* CN CN CO TH CN
^<
(^ <* > <* *
^ ^* TH O i a tO CO cn co o co o >*
«#
o tH tH tH iH CN co CN CN CO r^ iH tH O tH O tH tH o o o o Q a a 1=1 O a a a a a a T H iH CN t-- LO •tH fo en to CO O t 00 CN o to cn i^ cn • > # in CN co CN LO LO CO OO oo en O c n to in CN LO r~ tH CO tH to to o CN LO CO o s- tH oo t- en LO LO •*• CO rCN to co co cn CO to s CN cn o cn o tH o cn ^J< CN tH CO CO tH tH CN co o o o o o o o o o o O i 1 i
I I
tH O I a to tH cn CO oo CN o CN o I
o
CN CN O tH I I CI Ci CO in «J< tH CN to 00 o ^< cn i>- cn co >* tH
o o I
CN CN CO tH O tH I II ci a CI to co >* tO tH 00 co s «J< tH tH !-i-- cn tH cn ^c to LO CN co cn to o I
CO O I CI cn lO r«tf •* tH in CO o
o
o
o
c o >* >* cn tH o O O i i i i Q Q a a C S * H S to LO co to cn f- oo co cn CN LO o 10 LO oo in cn tH C N r~ * I O O r l r- o o c o t«o
Numerical
<*
o
o
o o o iH o o 1 a a + a + CO *f to CN t-- tH to o co CO cn to CN LO cn co •CO o tH * •5f CN CN
^
i
o
o
Study
^
o
and
o
Applications
• *
1
3
CN CN CN CN co ^ 2 iH O iH O m o o a ( =>a Q a a u LO f- •sf O tH co CO LO LO to cn « * iH CO 00 co in CO CO LO CN o r~ ^i r~ tH to co ^ tr~o CN ^t< c i cn 00 ^ tCOo oo CO X en <* CN LO «* 00 tH LO CN J2
o
^
o
o
>-
o
«*
o
o
o
tH tH CN tH CN iH co r~ iH O iH O tH o o o 1 1 1 1 1 i I 1 a a a a a Q a a T H O CN tH LO m co o to co o CN LO o oo LO tH iH tH LO CN 00 o o ~ f- I-cn • * to LO r- r LO iH r~ to to c n LO tH i^ CO h- cn cn to 'l1 CN • * cn CO CO 00 00 tH CO tH r~ LO CN cn
o O o O o o o o o 1 1 1 1 i
tH T H iH tH iH tH O o a a a a CN r~ to iH LO t~ tH • * CO to to t^ LO o o to r~ LO LO o NlO 00 o r~ 00 CN CN CN tH O
^
o
•*
o
o o o tH tH o iH tH tH o 1 o 1 o 1 Q 1=1 a a1 a + • * I-+ a CO • * c o tH CO CO *r tH CO co CN LO to cn cn T H iH CO LO co CN o iH tH •* o cn r- n r~ • * 00 tH CN c LO LO CO cn o tH CN tH tH t o o
O tH CN O O tH tH CN I CMCN O O tH O tH O IH cn tH O tH I I + I I + I I I I I O CI a Q Q a ci ci CI CI a tH 00 CM ^t« tO CN LO cn in s co to co to cn co o TH O O tH oo oo cn CM •* r- *!• ^< -rH to to CN •»H cn co ^ O CN C N r— r~ oo tH co L O CM CM co to CM 00 iH 00 ^< a> oo •* r~ oo co s •* a> cn o oo ^< o TJ< co to CM •* CN tH S 00 tO tH LO LO tH <1< o o o o o o o o o o o I I I
CO O I Q cn oo o CN to co CO "31
o
CN CO tH O I I o a t- o cn o t o co o co •H t o CN cn in o CO t H
o
o
CM ^ cn tH O O i i i Q Q Q S 00 CM cn o oo t H cn o cn to r~ LO H t H ^ to to cn oo tH to co cn
o o I
o
O H H CN CN CN CO CO CO CO •* >* cn o o o o O tH O tH O tH O tH O tH o o o I I i i I II I I I tH tH O tH + I I + I a a a Q a a a a 1=1 Ct Q Q Q CI CI a a tH cn cn t~ C O L O O S O tH to cn cn r~ CN LO C O O S T H r- •* cn o CN to •* co to LO CN CN O m cn CN O tH i - - > * LO cn to O CO « * C O O) **• to to r- 00 LO CN to o to CN t H to r- to LO LO cn •* cocn s CO tO tH o cn cn en CN CN CN tH t^ oo CN cn CN LO CN CO LO N- lO iH O i lO T H CO O CN r~ CN toCO tH CN CO LO •* LO t o co CO 'J' CN r-- ^ tH 00 tH tH •* ^f tH CN oo co tH t~o CoN o o o o o o o o o o o o o o o CN I CN I I I I I I cn
o
•*
o tH tH O o o O tH tH tH tH o a a a a a •* CO 00 CO 00 o CO LO o tH co o oo o CN LO CO CN r~ o r~ n CN CO to o 00 O) c CN in CN c n o o tH CN o > cn LO 00 LO to cn CN r~ CN tH T H tH LO to fcn cn O o o o o o o 1 1 1
tH tH o o a> tH O tH tH CN tH CN CN CO CN CO on T H O tH O tH O tH o o •tH o o O tH o o o + 1 + i a a a a a Q Q o a a a a a a a a a LO •* oo LO tH CN CN cn to CN to IH cn to to m CN N- O CN o r- CD tH • * cn o tH O in en co CN tH O ) 00 o oo to cn O ) 00 CN s *j< s- cn oo cn CN CN tH CN L O CN C O oo on LO T H CO to co C O r cn o to 00 CN r> L O CN LO cn CO f o cn o> cn LO oo to co • * 0 0 LO LO LO CO O •sf cn LO LO 00 LO M" o 00 o cn OO CN
Orbits:
CN CN CN CO co oo •rH O TH o o o a Q a a a a S- ^p en Ooo o> So iH S LO CN CN LO s Ol CN o CN 00 0> CO LO CN co CN LO CN 00 LO CO S f tH 00 CO to to >* oo tH 01 oo cn oo t-i CO •* iH to
The Neighborhood
<*
01 o T H O I O O in tH I H co CN tH o o o T-« O tH O T H O o 1 1 + a a a a a a a Q Q a a r- 0 0 tO 00 'J' S- sf tH >* Ccn s• * 00 CN CO O cn CM s r~ cn to o S O I D r- cn »* to S- CO rtlON oo co oo <* LO 00 cn O m) CT) tO CO "* CN in LO O ) cn ( £ > t- r- tO H CO > * r - ** LO to LO C N I O I - CO 00 r- to O ) to IN C 0 H 1 - T H (J) LO CN 00 to
o
tH tH I a to r>* CN to oo
o o o I I
O O tH O I + CI a tH o tO CO CN o cn tO ^ co CN cn co CM ^ •* o
D+0
oo f-i
I I
•^
I
o o I I
s 00 LO tO CN oo tH CS
D+0
o o o o o o o o o o o o o o o o o
^
tH
oHo T t"iH tH tH CO tH o
o
^* *<* •* «
>*
tH tH O tH o O tH tH o a a a a i-- CN to LO to s to •5f co LO O CO c n CO s • * • * ^f to CO LO tH o CO co LO o to cn tH cn cn *f "3" oo cn r~ s o o o o o 1 i i
o
>*
o
•* ^
o cn o o o CN CN o o tH O t H O t H O t H I I + + I I a a I + I 1=1 1=1 1=1 a r - r - a a a r - r~ CN CN s - co o to cn 1^- T H co oo LO •*< r~ CN t H t o co cn co • * t o co co t o cn t o tO t H CN f - cn t o t o co cn r~ i>- CN t o LO OO CN CO t H co t o co co t o CN 00 LO t H ran s CN co > * r -
o TH •* LO cn cn <* CN
tH O I CI ^f LO O oo LO *1< cn tH
o o o o o o o o o o o o o o o o o II II II
CO CN co O tH O I I I a a CI tH 00 oo CN ^ L O LO CO oo CO CO cn oo oo co O LO rtH t H r00 t H tH
o o o o o tH tH tH tH CN iH tH CN CN CN co I-tH tH o tH tH o iH iH tH tH o 1 1 o 1 o 1 o 1 1 1 o 1 1 1 o o 1 1 i 1 1 a a a a Q + a a a a a a a a a a CN + a in CN tH a CO t o r- t~ n oo oo oo cn CO o o r- c LO o CN • * t- tH r- CO 00 t-co LO o cn O o s CN CO •>* CO jo < • * to tH 00 oo cn cn cn o co OTLO to r- co co cn LO LO o oo to CO 1>- o cn >tf Ci iH O LO LO to CN to LO oo 00 r- o CN cn to CO iH LO r- co o CN • * co to co CO o to tcn iH TH tH 00 CN to CN 00 CN T H • * o s- CN o tH LO CN tH tH CN CO CN CN CN CO t o c n c o o o o o o o o o o o o o o o o I I I I I I I I
D+0
0} W CD
o a 3 t-,
o
S
U3 o Tt X! O c
&
O t H o O t H t H CO CN O O t H o tH O t H O + 1 1 +I I I I a a Q a CI Q Q Q tH ^ t o i n cn LO en CN co to cn o CN CO CM LO t - CM ^ t H tH t H O S 3 i n oo t # CN • * N- • * tO t o tH CN < * LO co t H LO r~ Oj ^ i H I D 00 t o O ^ CO U O i N i n * LO L O S 0 0 CO CN CO ^ 03 CN tO t H t H 1 -= O O O O O O O O O t O O O O O O O O & O O O O O O O O O O O O O O O O O co I I I I I I I I I S I I I lO f~ PJ S - tti w I O W i g O S K O CS PS E O t H t H C N C M C O C O ^ ^ C L O L O t O t O r - S U U E O t H t H C N C N C O C O ' J ' ^ J ' L O L O t O t O S S U W
o
raonii
ivent
D+0
The Proposed Method for the On/off Control
v 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15
0 0 0 0 0 -0 0 0 0 -0 0 0 0 -0 0 0 0 -0 0 0 0 -0 0 0 0 -0 0 0 0 -0 0 ERROR 0
1971987776D+01 1779525025D-01 6333977335D-16 2797530920D-01 6622447199D-17 1871343839D-02 4237202419D-17 6831993316D-03 1524185447D-16 1443080860D-03 1689526278D-16 3825157524D-04 1049846997D-16 1009585276D-04 1179951257D-16 2627849420D-05 1342581583D-16 6893557690D-06 1331739561D-16 1785084096D-06 2177417256D-16 4621328310D-07 2621940147D-16 1191247283D-07 1147425192D-16 3067128850D-08 2535203973D-16 7884770775D-09 1461843822D-16 2026644941D-09 2480993864D-16 6996409615D-10 ERROR UP TO THE SEVENTH
e -0.3484368439D-08 0.1117282145D-08 -0.3652755474D+01 0.6515830516D-09 0.3384946203D+00 0.4950955891D-09 0.1110959665D+01 0.2499317279D-09 -0.5176442197D+00 0.2074125817D-09 0.4828468981D+00 0.1121794958D-09 -0.2707230420D+00 0.1018316033D-09 0.1992232403D+00 0.6182691884D-10 -0.1244356770D+00 0.5817516173D-10 0.8536356607D-01 0.3962661419D-10 -0.5538068093D-01 0.3720781838D-10 0.3711245472D-01 0.2781958153D-10 -0.2439952256D-01 0.2580787614D-10 0.1622152956D-01 0.2065219618D-10 -0.1071402213D-01 0.1896912545D-10 0.7103651184D-02 0.1329840634D-01 HARMONIC:
171
p 0 -0 0 0 -0 -0 0 -0 -0 0 -0 -0 -0 0 0 -0 -0 -0 0 -0 -0 0 -0 -0 0 0 0 -0 -0 -0 0 0
1320132098D-06 3009465464D-07 1622848706D-07 1187191824D-07 9380017493D-98 9537275933D-09 4033566099D-08 2806285825D-09 1006401493D-08 2353063842D-09 4085392264D-09 6917642048D-09 3724701728D-09 8643876277D-09 8149385183D-09 5322033053D-10 2066799725D-09 1647925141D-09 1231947452D-09 1324337373D-09 1504911767D-09 1616443569D-09 6414353821D-11 1806801192D-09 3995393036D-10 1259512493D-09 2076111850D-09 6525730508D-10 2808544106D-09 6878739215D-11 3806203203D-10 1426022443D-08
0.3557967589D-05 0.3507208554D+00 0.2462591384D-08 SLOPE OF THE LINEAR PART OF EPSILON = 1.467321176828839 Table 3.4 Output of routine PRECON. Fourier coefficients of the functions v(j), e(r) and p(r)). Sun-Barycenter problem. Case L\. /J = 0.08.
co co
o cn o •*
tH tH
tH tH
a
tH
TH
tH
a
a
tH
• *
tH
a
• *
CD LO
o o o a a a
f-
1
LO
i
CN CN CO CO
a
tH
I
tH
1
• *
a
tH
tH
1
• *
• *
1
a
tH
a
a
tH
I
a
tH
1
00
a
tH
tH
tH
00 t H CN CD t H CN CO CO
1
a
a
a
a
a
a
a
a
a
a
a
a
cn co cn CO cn CO cn co cn <*cn o o oo o o o o o o o a a a a a a a a Q Q a t H CO cn *J" CO t H
tH
• *
I
tH
1
1 1 1
tH
tH
O
tH
I
tH
tH
tH
1
tH
iH
tH
1 i
• *
TH
tH
tH
• *
tH
tH
I
tH
1
l
t I
a
a
a
a
o * O L O H O t H O I I I
a
a
O L o * t H O O I I I
^f CD • # cn ^ cn *F o o o o oo o a a a a a a a t- o CO CO O CO cn
tH
• *
>* <#
tH
I
1
tH
CO CD cn • * cn to cn CD o O o O o o o o o o a a a a a CI a a a a CO CN CO CN to o co t H LO t H
tH
tH
tH
tH
• *
• ^
tH
1 1 i
• *
tH
tH
1
• < *
tH
i
tH
**•
tH
1
• *
tH
1
• *
1 tH
1
CN CN CO CO
• *
LO
o a t-
tH
00
^f co *J> co tH
a
co O I in hCn CO cn CD CD CO
CN
o a o CO tH
LO CO CO hW
tH
o 1 a oo *f CN CO CN O CN CN O
o
CO
tH
CN O Q CN • ^
CD
rCN
ao as
H
w
1 1 CI CO Q CD
&
o
<*
* LO oo u CN OS LO H in ^ LO t~ LO o 00 o H o
• *
o
erf erf o •
»* LO LO gg uW
1
<
o o o o o o o o o o o o o o i
00 CO CD LO to CD 00 CN to to N- o t~- r- CO o •*LO oCD to ^ co CO CO CD f- CD o CD 00 co CO to CD •*00 LO CN oo o T to co f- h- cn o tf r~ \n LO o CO LO CN CO CN to f- CO o oo CD LO to oo CN •* *rLO to CO <3< to CN CD r^ cn r- r\n LO > CO tf CO O o CN 00 co r~ co LO cn cn CO r- CN •* 00 CO •# tCN r~ CN co CN cn
cn CN cn CN CD CN CD co CD CO cn o o o O o O O o O o o a a a a a CI CI CI a 00 i* to t H CO • * Q a O co CN co CN LO 00 CO CO t~- *}• CO CO CO co 1 i
1
o
tH
cn CN CD CN cn CO cn tf CD «*CD CO CD •*cn <*cn t^ cn <*cn o o O o o o o o O o o o O o o o o o o o o o 1 1 1 1 i 1 i 1 1 1 1 1 1 1 i i i 1 i 1 i 1 a CI a CI CI CI a a Q Q Q a Q a CI CI a Q Q Q Q tCI • * CD o CD CO CD ••* H CN t H LO CO o CO co o cn t~o oo t* >*to <*CN N- cn CO oo t~- CD CD t H to CD CD t^ t H oo o CN LO CN CN oo co co co CN cn T-i r- CD CD 00 oo ttf CN oo o CD CN r^ O T H < * tr^ LO t H ^ • * CD CN cn t- CO o co to t- to O t H CO to 00 CD to LO CD 00 CN 10 00 ttf CD t H co co co co oo o co cn ^ <*^ H* CO CO ^ CN CD CD t H o o o t H t- >tf t• t-- LO CO cn t H C-- r~ LO tH t H t- t-- OO LO O CN 00 *tf o co co TCNH co tt HH LO toH t H O t H CN LO i H CN t H t- t H t H t H to CO LO CN ^ co t H CN oo o o O o O o o O o o o o o o o o o O o o o o 1
•*LO to CD CD t~ r- oo 00 CD CD o
tH O I Q * * oo
Applications
CN t H CN t H C N 1 H C O 1 H C O 1 H C O 1 H C O 1 H C O 1 H C O O tH O TH O tH O i H O i H O i H O - r H O t H O t H O I I I I I I I I I I I I I I I I I I I Q Q Q Q Q Q Q C I Q Q Q a a c n T - I CN • * rf o O i l O O l L O l D L O O l C O O O M H S C O • * c n CO LO t H CD r o ( - ( O L O < f m o i i £ i c i i H C T S o O t H c n C N CN CO ( O O I O C O O O O C N ^ ^ L O C N T H C N C D > * CO L o n c n i O L O ^ o i N L O t o r o o s O O o t O C I > * LO CO O < * n o ) c O L O i o o L o i o ( D C i i c i L O cn • * t H 1-- t - T H C N C N C N C O t H L O - * i H L O 0 0 C N r ~ - C N CN * CN 0 0 CN CD s c O L O H c o o i o c o s i o O L O L O i - l CO CO CN CO CN H C S O J C S L O r l C O H d H T H H ^
a aa a a a aa a a a
O H tH O tH O iH H O I I I I I I I Q Q ^f oo e n o o r - CN CO ^ LO CN • > * t— r - CN t H LO > * i H LO y-> CN LO CO C - LO CO CN t LO O
The Neighborhood of the Halo Orbits: Numerical Study and
o o + + I + I a a a a a
O O r t O O O tH O T H O + O L O C N L O OO CD c o c o c o LO 0 0 O t o > * CO • # CN st< t o CN CD CN CN CO C D t o LO LO LO CO LO CO t H ( D C N H
o oo 00 rCN
01 M O l c o n
a
o o i H O i r t O M O t , i o n O f O O f O O < i l o < i l o m o < i O O O O O t H O T H O t H O t H O t H O t H O - t H O t H O - r H O + I I I I I I I I I I I I I I I I I I I I I I
oI Io o o o o oI o o o oI o o o oI o o o oI o o o oIo o o oI o o o o CD cn o o I I a a o co CO tH CD tH 00 CD
c N c o o i L o c o c N o o c o a > T - i L O t H t o o c N o r - t a < c o O ' * > * o ^ f t H o o c n o t H < o O O O O C O ^ C O C N C D C O i H L O ^ C D C O C n C O i H L O t O ^ O L O L O C O L O ^ ^ O O C N i H C D O S O O l C f t C O H f O H O l C N ^ T H H S S t O t D O I O t - I O L O C O L O S N L O L O L O H O l L O H O O H S ^ O O C O h - C S C f t N ^ S S L O C D C O S ^ H O J C O I O ' t O O l t H c o h - o O " 3 , C N t D T - i o c N t H r - c N L o ^ , t - - ^ < c o c N c ~ - c o c n « * o ^ t H c o f O c o c o c o c o h - t H c o c o c n t H O C N C N C N c o L o c n , C D C D 0 0 t O C 0 t H l O C D C N t O « J l L O L O C O C N C O i H C N e N t H 0 0 * l ' L O H t O W f O ^ C O ^ L O M r H C N C O P I C N H O l T H ^ T H L O T H r t T H H r l O l H I O H
cn LO L o c o t H c o a ) c n - i H o r- o ^ c o o c n t H t H L o <3- o C N O t O O i H L O 0 0 « a
tH
• *
+ 1 CI a t-- CO CN o LO CO 00 •sf \n ttf CO LO cn CO co O o
LO cn (O CO LO CO o t- co •* o CD CD tH 00 LO cn >tf LO LO CX) Ct) CO CO on to t- cn to 1^ 00 CO CO CD cn <* o «) r- O LO CO CO •*on CN CN CO <*on CO to CO CO cn oo co CN O CO t~ CO CN OO to •* LO LO h- to CN cn LO to CO on o o io r-- LO !•-co >*t•* CO O CO 1- CO CO CO CO LO r- 00 CD O CO M< LO CO rCD LO CN CN *f h- CO sj< CN rto tH ^ LO l~- h- cn LO o cn cr> on to o CO LO r> CO on CN O CN cn o CO CO CD >*co LO h- ^p LO CN to f- co >* CN CN CD CN CX) CD LO CO < * > * CO o o rtCN tH tH CN •*co co LO >*f- CO CO co CN r- CN >*CN CN oooooooooooooooooooooooooooo
t~- CN O LO to
o o o oI o oI o o o oI o o o oIo o o oIo o o o o o o oI o oIo o o
CO CN
o O CO t H CD tH cn T H cn CN cn CN cn CN o O o oo o o o oO o o a a a a Q 1=1 a a a a a o f- t-- • * r~ O CO CO • * o CO CD CO to CO o CN CN CD CO O CN
tH
ARMONIC:
172
3
o o
hi O cn t H B3 tH o o H 1 i + Q Q a O 00 o CO H •>* t H CO 00 LO CN LO CO tH cn
i-) tH
1
1
o o o o o o o o o o o o o
tH
o r- o LO o o o r~ cn LO to 00 ro f~ CN CO CN co <•cn cn o tH
LO CN
O CO o 00 O
D+0
U 00 00 o cn t H cn t H CD CN o o o o o o o O O CO 1 i + i 1 i 1 1 1 erf a a ct a a Q a Ct CI O LO cn CD LO CD LO co *J" t H H CO LO o o CD T H r- t H 00 O CN CN t H LO t- h- LO o co < T* o CN LO co o LO oo LO bh OO co oo t H CD oo CO o tcn f- o t H CO t H t- cn o B tH cn 00 CD LO oo oo oo co a co CN to cn oo CD CN CO CD H O o o o o o o o o
a,
erf o
a
o
t H CD t H o O o CI CI CI CD tLO t H t H CO CD CO O 00 co tH cn 00 to t H 00 LO 00 CO
o o o o o o o o o t H O i H o t H o CN t H CN t H CN t H co t H CO t H CO t H co co tH o T H o tH o tH o tH o tH o tH o tH O tH o tH O tH o tH o tH o tH o o 1 + 1 + 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 CI a a a a CI CI CI a a a CI CI CI a a a o CI CI CI CI a a Q CI tCI LO t* i-- o oo CN o cn t-CD CD CD CN CD r- o o r- t H o t H to CN ! \n * H LO --to t H t H t H CO LO oo o CO CN r^ CO ••* LO O CN CN to co t H cn • CN o LO co > * CN oo r~ oo •sj" o O to •*tco o cn oo cn O CN O oo t H 00 CD o CO CN CO CO h- CO LO o co CO t H tD t H t~- CO t H t H 00 LO CO o CN
tH oo co CN LO CN o oo cn r~ r- t H t H LO cn
O
a
1
D+0
• * CO 00 CN CN tH co "3* t-- r- CN LO t H CN <"S o W | o o O 1 1
H B W u
D+0 D+0
NING THE VECTOR TAN 0.7 ,37742921D+00
o cn TH o i Q Q m ^<
LO
I I I
o o + Q O
O y-t T-t tH o tH O
TH
The Proposed Method for the On/off
TH
TH
LO
I I
LO
I
H
O
O
I
S
I
-H O
Control
I
LO
a a cn o
a o
I
LO
OT
a a a o oo t~ CO o
a CO
•>*
O ( N CO CS tH CS tH CO t H CO tH CO tH CO tH *J" tH • * i H < * tH »tf TH o i H O tH o o o tH O tH o TH O tH O tH O T-t o n o
TH
TH
Q Q Q Q Q Q a a a a Q Q Q Q a a a a a a CO CO cn ( O l O N CS en I-- oo I D LO « * cs CD cn OT co oo o
o TH tH O Q o
LO
LO
I I
LO CO CD t H CS LO • * CN 00 O O O l O ^ r l o o en CO 00 tH h - CO CD i H CO CD O tH CO t~- o CO CD T-t CS I D W ^ O r l cn o cn i H CO <•>
a a a Q a a a a a a a a Q a a a a a a a a a a a a a a a a a a a
t H t H c n t H c n o c n t H O t H O t H O t H o c s o c s o c s o c s o c o o c o o c o o c o o c o O O O O O O O O t H O t H O t H O t H O t H O t H O t H O t H O t H O t H O t H O t H O i + i i i + i i i i i i i i i i i i i i i i i i i i i i i i i i c s L O ^ ' o o f - c o c o o c O L O c n c s c n c O L O O c o c o c o t H c s K o c O T H o t ^ c n ^ ' O L O t ^ ^ O O S O X f O O r a S O I C O O O S I O C N C N C N l O O I O n N K I O I O l O K J l H ^ O l O l f l * S O O l O O O n ^ O C I ,I O M N O I O C H f l O O N O H l O H O U l N ^ l D H C I S H l O tHco^-^cnoocncoo^ coLOLOcotHLor-csoot^coooLooo»i'cncOLOLOi^oocs c s t H o c o o c o c n c o c D L O c n c o o ^ i , c D i - - c s t H T H O ^ L o o o o L O t H o o o o c o o c n c s s s m o i n n H o n o N s ^ o i H o o c - i N H H o o N i o o ^ n T H t N s c N u ) o O L O t H ^ ' ^ i t H t ^ o c o c o ^ ' c o c O L O ' c f c n c o ' J ' c n o t H c D t H c o c O t H t H c n c s t ^ c n cocstHt^tHcotHcncncor-cscDtHLOcD'i'co^'tH^'tHcocococococscstHcstH
cn o o o o tH
^
cs o CS o CS o o tH o tH O t H o
o TH
o <* tH
o co o LO O tH o tH o TH o a cn a> cn t-co LO tH CO a tH 1^ LO tH tH tH OT CS a Q a t~- tH CD o CD O CO 1 - tH CO CS LO t-- co OT cn cs CD OT cs cs CO a OT CO LO
a cs oo •* a LO CO cs
a CO co CO a cn CS cn Q CD •# OT a OT CO OT a *? t~ t~-
a
CS o OT
tH co CO cs •* rTH
tH o a o LO LO o cn CD
>* tH
CO o
a tH o CO CD tH o cs CO
LO o LO o LO o LO o LO LO o t H o tH o tH o t H o O
a cs cs cs CO LO LO tH cs o
CI LO t~CO
a i^ tH cn o o oo LO CO o
a CO CD LO o cn N-
a cn cn LO LO cn 00 n o CD CN OO tH CO CS CO o
*
Q O tH O CO CO •* tH •* o
Q tH a> tH cs hLO
Q LO LO tco cn CO rco o
CI CO cs CO o r-CD
a co o LO tH CS CD cn CD o
o ^< cn •* •*
o
o O 1
Q Q CO cn r - CD co cn 1 t~ tH CD tH cn CN t H
O
o
i
TH a o o 1 1 a a cn CO T C CO co tH i-- • *
1
o
o
^
o
o 1
a Q tH H o CO CO o OT sCN CS co OT CO 00 tH o 1
o 1
•* LO hcs co
o
cn o i a CO cn LO CO tH sf OT
o
o
O
o
•=)<
o
o
1
1=1 OT CO O CO oo CO
o
•* CO tH •*
a oo r~cs t~co cs
o
o
^-
TH
O
o
o 1
o
^< ^ •^
o o o
>* ^^ »* <
o
a a a a CI cn LO CD CD CO LO o o oo co CO t H o CO LO cs o co t ^ OT tH CD • * t ^ LO CO CO tH cs f - t H tH tH t H CO t H 1
o
^
o
a co OT LO tLO fOT tH 1
o
o
oo 00 00 00 t H CO CS •^* cs cs tH cs •* OT • * LO o OT CO CO CN co CO CO CD ^> CS CD CO CO CS •# o OT t H tH cs • * CN cs cs tH CO
O
o
Q a OT oo tH • ^ TH CO CD CS cn LO tH i
tH OT ttH co o
**
CO OT o O 1 1 Q a CO r-CO CD hcs
<*
cs t^ LO tH
o
1
1
^
o
LO LO
o
CO o i a cs t1tH CS o
W W
>
^ cs
o t-t S3 U tH o u 1 CO Q LO w O SB CS H •* CD 00 O
gg Ld u
B5 PS o o
CS H LO ^<* *!• CO cs cs o o &O
t~co CO OT t~-
o
<* ^ ^
a t~ CO co CO LO cs CO LO
OT o 1 1=1 tH co tH CO tH o CO cs
CI a o CO CO CO oo LO t H tH 00 CS LO cn CO LO cn J3 t H tH cs •a!
a tH CN i^ tH LO LO CD tH
o
o
1=1 Q CD o LO LO o co CO CO tH o co a t^ co OT co co *f •* OT
o
co o i Q CN 00 OT [^ O tH r•sf
Q a a CD cs 00 CO tH oo co 1 ^ o oo t-oo oo OT tH CS oo N- K tH tH tH
o
OT o 1 1=1 rcn CD LO co OT fcs
o
>* ^
o O 1
CO o 1 1=1 •* 00 LO o CO LO tH 00
o
1
o
OT O 1 a LO CO tcs LO tH o CO
o
' T-t tH cs cs CO CO
1
O
cs o i a oo cs tH co o cs •*
o
1
OT O 1 a *¥ tH CN OT O r-cs
o
1
CS o 1 Q OT CO rCO tH CD LO
o
o
o
CO >* CO CS CO tH
**•
cs o 1 a f~ hco •*
O
cs cn o o 1 i a a cs CO cs cs LO LO fLO o
t ^ oo oo cn OT o
o
o
<* <* »-
Q cn CO cs tH CO tcn tH o
o
<•
a a a a a a o cn o cn t-CD LO o t-- cn o t H cn CO co co co cn tH LO LO i>- o i>CO CO CD
o o 1
1
O
a CO o cn CD LO co tH tH 00 LO LO o on O cs 00 cs tH o
H o
LO LO tLO t~iH CD CO o
o o 1
o
O o 1 CS o
1=1 cn CO LO cn tH
O
<*
O) tH cn t H o tH o tH o cs o cs o CN o cs o co O CO o CO o co o •sf o CO o o o o tH o tH o t H o tH o t H O tH o TH o tH o tH o t H o tH o TH o
•* co
^< otH o
a a * f CO CO CO 01 r - CO cn oo •* cs i
cn o i Q tH cn cn cs
cn oo LO CD tH <• co t~- co t ^ CN o CO t H cs cn >* CS ^ CS CS tH tH ^ o o o
o o 1
^"
*• <*
cn o o
>* o i
TH
a oo tH LO rLO CO LO 00
^< o
^
cn tH
o o 1
o o
+
a tH 1tcs
o
a Q I-ho CD CD OT CD CS O 00 TH CD tH tH
o
o
<< <*
a a a cs 00 • * tH h CD 1^- tH CO cn o • * LO tH CO tH O) CD tH CO tH
o i
•*
o
1=1 1=1 a o h - cn CO CD LO o cn o CO CO cn o cs CO CD oo LO LO CO cn cs CO
o o cn o i Q CO tH CN CO *f co cs oo O
cn O tH 00 ^ *1" co LO cs t ^ o LO cn OO •«* * •* O o tH CD O CD CN cn co oo •* 00 tH CD CD LO CO <* tH >* o
1 ' ^ <• LO LO CD CD r^
+
a CO t# •* CO CO co CD tH o
a 1=1 a Q a cn cn t~ LO LO o cs cn tH cn cs a> LO CO CO CO CO •=)• CO oo oo s f cs cs LO tH 1~- o • * tH Oi co cn CN t~- cs co
CI tH o oo o CO cs o tH
a CO cn i^ t-CD O CO 1^
o o 1
*»•
o
a cn LO CD LO cs CO cn cs
o
o o 1
Q a 00 c - CO cn o t-cs f t H t-- oo * i " LO st< t ^ co cs CO f r - TH TH o i
a oo CO cn •* rco CO cn
** co 00 tH LO LO ttH o
^
cn oo t^ cn cs tH cn CO o
+
>*
o
o
a a CS cs t ^ r~ tH cs tH tH CO CS
a o CO co CO oo CO ct~o i o oo o oo o o o o i + i a a a a CO CO CO tH cs •sf tH t~- cs cs CS cs o cn LO cs CO O oo cn o tH i ^ LO CO o 00 tH cs tH
•* co tH CS O)
o i
oo o i a LO t~CO CO CO cn tH CS
a 00 cs 00 cs cn i^ oo tH
tH o + a CD cn tH o CO LO iCS o
D+0
o
o
D+0
tH tH cs cs CO CO
a o o LO CD oo LO
o o 1
a tH cn cs a> CD CD CD tH o i
t~t~- o LO •* •>* •* tH o o o
o
IONIC:
a o t-•* o l>OT CO CS
o oI o o o o o oI o o o oI o o o oI o o o oI o o o oI o o o oI o o o o
a CS tH CO CO LO CD CO fo
D+0
o
cn t H tH o o tH
o
D+0
tH o
D+0 o o o tH o tH o tH o tH o tH o CN o cs o cs o CO o co o co o CO CO t H t H tH o TH o tH o tH o tH o tH O tH o tH o tH o tH o TH o t H o o
cn cn o o o Q CO 00 cn cs fLO
O
D+0
Ss
i-i a BJ Ot
D+0
cs o cn oo i-co •4t^
W tH o S3 O H 1 a o tH CO cs H cn S3 • * w cn o o
o CO 1 as a o o H CO o t~•< o tL. LO o S3 cn
> Q
CONCER NING THE ECTOR TAN 1 -0.,87534232 -09 0.1
ECTIO -0.7
174
a o M H
o 3
CN O iH
TH
• *
(•-
LO
co co •*
CO
I I
I I
a aa Q Q in cn f- T H CN CN 00 O ) co o r- co cn O CO
r»-
a a a a a a o a 00 en • * O CO en o i H CO cn cn cn o CO h- i-l o CO co f- CO LO en CO cn co oo o cn en LO CO
i-l LO CN C3 co CN oo o T H cn co to co if if CO i-H to CO 10 LO T-i T H co
* * in •5f
L O in
CN
iH
iH tH
I I
TH
i
1
• *
1
1
I I
T-i
1
I
i
I I
• *
• *
«*
i
O 1
• *
1
• *
•<*
I I
i
T*
I
• *
• *
a
oo *r i H CO o Nen rLO CN
a
o1 o1
•*<*LO
1
1
• *
O 1
I
i
i
t- en in T-i i H CO
o o o o o o
• *
TH
1
I
I
co co
o a i-l r-
LO
Applications
O O o o a Q a a f en CO CO CN
CO 00
en <* i* oo co to LO "3" cn LO co co *f
I
• *
1
i
I
I
O
CO CN CN CO CD CO CN
o
r- t^ CO r- CO o o o o O a a a a Q i-- cn CN co LO TH ej> en CD i-i o in o CO co in CO If o CO to i" m i H If to CO CO to 1>CO
1
o o o
1
m in to in to to r- to f- CO LO oi oI o1 oi o1 o1 oI oi oi O1 o1 a a a a a a a CN a a ioH i-a CD co en o LO T-t CO LO co CN t^ co i H co i H 1 * co •sf oo CN rLO CN CO t^ If " S < o oo cn CN i-i CD i>CN O fCN to en o CO to co in N- T H i-i i H i-l to LO CN O t- o *f cn m t-- LO o i H CO *•rt^ o u< CO co > ^ i H CN T-i CN CO r- T-i <* o o o O o O o o o o iH CO «*> *<•
CN CO CO CO O o o o o o o 1 1 i 1 i i i a a a a a Q Q in CO t~ CN co O cn CO in cn LO o CD in CO LO oo CN t- cn t-- oo LO t- rLO i-i LO CN CN oo CN CN CO CN m ij" CD O T H in co CO LO CO T-i 1-1 M<
1
i
to r-- t-
CO
1
i
1
co en cn o o
i
• *
iH
T-i
1
• *
1
CN CN CO CO 1 * itf
I
m
LO
en LO
i*
o a iH
en rCN to i-l CO CN
I
o a
o cn o o to
a t~
•<* o CO LO iH
M" in
iH 1-1
o co o 1 Q LO CO
CN
co cn o to CO
d co CN
a
1
z> o
u CO
CN
u cn B3 CD H CN co o to O H
fe gol
o o OS OS o o
CN co co co co •tf <* ^ <* in m LO m CD CD to to to to co iso o o o o o o o o o o o o O o o o o o o o i 1 1 i 1 1 1 1 1 i i 1 i 1 1 1 i 1 i i 1 a a a a a Q a o a a a ia* Q a a a a a a a Q 1-1 T-i CO m r>- CN t- CD T H CN o CO m
1
m to o to T-i CN o o o
00
cn iH
in CO
co
a
1
o
CN CN CO
1
o1 O O 1 1 Q o o CO i H i H o o co LO en oo LO CO to CO to CN o ^ CN to i H CN T-i CN m o o o
• *
1
1
CN CN CN CN CO CO co CO ^ >*o^ oLO oin oin oin oCO OCD oCO oto ot- oOO O O O O o o o o o o a a a a a a a a a o a a a a a a O a a Q a LO t~- en t-- o LO t- CO CO T-i m T-i • * CO 00 o • * CO o *i< CO cn co r- CD CN <•o 00 en co LO cn i-i CO co LO o CN en •to ^ t>- CN CN i-i i-i en # CO CO • * •tf in LO f >*T-iT-i cn en cn to tH i-i LO CO CN CO CN T-i ^f 00 •tf in to o oo co cn > * TH CN cn CO ^ f- 00 oo to i H CN CO cn T-i CN o 1 * to tCO OO CO 1- r- ^ CO i-i CN to cn 00 o CO co oo i H cn *m o CN >*to i-l LO 00
O
1
1
lO in CD
r>
*f co CO i-l r - •* CO »tf CN to cn «f •* C N LO i-l
I
CN CN T H CN CO ^ CD h- 00 LO iH -r-i O CN CN 1-- O •* CO CN
oN T H B T H O S ^> *j* cn h- to I H ^f oo coif looiHhoo
N- tO N- CD r- to LO O cn o o o o o I I I I I I I Q a Q a o a a
o oI Io o o oI oI o o oIoI o o oIoIo o oIoIo o o Io o o I o o oI o oIo o iH T H CN iH CN CN CO CN
I
o
1 1
• *
i
• ^
ENTH HARMONIC:
The Neighborhood of the Halo Orbits: Numerical Study and
CN CN CO CN •sf CO If CO O O o o o o O
o o o
iH
• *
a Q Q CN CO CO CN to i-l CO CN LO CN i~- CO LO to O co LO co o CO LO CN
I I
1-1
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
a Q a e> a a Q o LO CN CO LO tO CO CO en i-- i H ID en 1-1 t-- en co • * en LO i- LO C- f- CO IN en o o 00 CO cn LO CN en CO h- CO O a> en CN CN LO co <* -rH CO en CO CO o CO o t-- r-- CO CO i H CO T-i f- CO i H 00
LO O to i-l CN CO CN co CO O i-l to i- CN i* ^f i-l o co co r- CN 00 CN h- CN OO i" CO 00 CN co to O to r- t H CO CO CN CO i H o to r- cn LO •tf CO CO • * co <•> CO CN CN to r- t H CN if
cn
o o T H i-l t H CN CN CN CO CO co CO >* If If If LO LO tO LO to to r- f- to h- I-- K h- r- t-- LO o o o O o o O o o o o o o o o o o o o o o o o o o o O o o o a a aa a a a a a a a a a a 00 i H CN to en CO 00 i H <-> co oo to ^ to to t-- 00 CO o •* CN to to I-- 1-1 • * • * m r- 00 o to CO to CN o CN en o "*r~t- CO h- i-i a Q a oo i n t~ 00 LO f- CO LO LO 00 i* o lO to hen to CN to en i H CN cn to LO LO if 10 o o LO C3 CO CO CO i-l CO CO t H
O
CO lO f~ C- to CO o o o o o OI a o a a Q
a
a O 1i H* o oo o oo CN en CN N- C3 00 en co
o o o o o o oo o o o o oo o oo oo + I II I I I I I I I I I i i i i i a aa oa aa aQ aa aa a
a a a
CN to cn !•- CN CO T H co to LO itf en <• to cn h- a r? LO 00 00 >* LO 00 LO oo o co cn cn en o i-l co C N •* o iH 00 iH tO •* CN i-- ^J< co •* CN cn co en h- o CO CN tO LO •* o cn o co in o co co co oco co in i-l o t-- oiH LO CO CO o LO cn co co o iH CO CN CO LO cn
j i
1 i
• *
o o i H o i H i-l CN o o o o o o o R + + + 1 + 1 1 1 3 O a a Q o a o a m CN r- co i H 00 o to t~- 00 CN m CN CN co t- CO CO LO cn CN to i H in 1-1 ^J< co * 1-1 LO t H > en CO CN ^ CO co 00 CN to en ien to oo i H cn H
Si
o
CJ
O
• *
TH o i-i o 1-1 i H i H i H CN CN CN o o o o o o o o O o o 1 1 1 1 1 1 + a o a a o a i * 1-1 LO CO m cn 1-1 CO •*CN •*LO 1-t CO o CO itf" CN T H in co CN to T-i ^ CO CO cn t-- cn CN co CN T-i CN to O CO CO o CN i H O to i H CN CD to CN o o o O O o O
i
o o
1 CO + + 1 OJ Q a a a a O 't i-i t~ CO fH << to io CN o en i-- in CO NiH < CN • * o Ch CO CO r- co LO N- in t-- in S en LO CN o o iH in r- CN in O
H O CJ
OS O i-i i H CN CN CO CO
w h-j a
^
•*
LO CN O CO LO tO CO ^ CO CO to LO CN h- CO
iH
o
o co o iH
CN CN t--
o o o o a o
t~ CJ> CO LO CN fCO
iH iH iH
a a Q Q o cn CO o cn tH T H CO CO to •* T-i i H lO CO CN LO en f- 00 co t-- m •tf o CO T-t
CN i-l
D+0
w o o O o o o
M Q
D+0 D+0
THE 3265
The Proposed Method for the On/off
Unit, control (x) 0 -0.1383245047D+01 1 -0.3585519946D+00 1 -0.6575653419D-01 2 0.4100338138D-01 2 0.4397466767D-01 3 -0.9088664529D-02 3 -0.1722858077D-02 4 0.1701837508D-02 4 0.2203446502D-03 5 -0.2300745774D-03 5 0.8714367325D-04 6 0.3770136026D-04 6 -0.3509531636D-04 7 -0.3811023273D-05 7 0.8754694998D-05 8 0.7704749281D-06 8 -0.3291676003D-05 9 0.2599492095D-06 9 -0.6707037120D-07 10 0.2290481438D-06 10 -0.7757296750D-06 11 0.2158108737D-06 11 -0.5343750312D-06 12 0.1906472601D-06 12 -0.5360609576D-06 13 0.1762473368D-06 13 -0.4861746063D-06 14 0.1631740879D-06 14 -0.4554375401D-06 15 0.1529849448D-06 15 -0.4252679649D-06 ERROR 0.1015621200D-04 ERROR UP TO THE SEVENTH 0.1231414878D-04
Unit, control (y) -0.7284190957D+00 0.1365036996D+00 0.2644186317D+00 0.2163106855D-01 0.8835943967D-03 -0.3676236561D-02 -0.4125025907D-02 0.1676017351D-02 0.1026454686D-02 -0.3773873506D-03 -0.2738047617D-03 0.8956126243D-04 0.4959809585D-04 -0.1897535371D-04 -0.1185702015D-04 0.4593458659D-05 0.9441414813D-06 -0.5345173234D-06 -0.1426673571D-05 0.5120766559D-06 -0.8286706920D-06 0.2435024688D-06 -0.8559725107D-06 0.2695591304D-06 -0.7680596085D-06 0.2378763155D-06 -0.7158600823D-06 0.2243250188D-06 -0.6654740394D-06 0.2105897953D-06 -0.6223265630D-06 0.1465094412D-04 HARMONIC: 0.2040781484D-04
Control
Gain factor 0.6386305119D+00 -0.1032834300D+00 0.2577307996D-01 0.2600527140D-01 0.1894336456D-02 -0.8111583384D-02 0.3767837278D-03 0.2248154825D-02 -0.8562292551D-04 -0.6159793478D-03 0.2662902900D-04 0.1710385185D-03 -0.7685429183D-05 -0.4713817820D-04 0.1510482890D-05 0.1327972708D-04 -0.8063464473D-06 -0.3540875482D-05 -0.1795060482D-06 0.1118427275D-05 -0.2997814919D-06 -0.1937250898D-06 -0.2413385138D-06 0.1604527051D-06 -0.2306008953D-06 0.5285735660D-07 -0.2118606258D-06 0.7574803007D-07 -0.1977715586D-06 0.6362069222D-07 -0.1848720872D-06 0.4402224538D-05 0.1828484058D-04
Table 3.6 Output of routine PRECON. Fourier coefficients of the unitary controls (x- and ^-components; the z one is zero) and gain factor. Sun-Barycenter problem. Case h\. 0 = 0.08.
175
176
The Neighborhood of the Halo Orbits: Numerical Study and
x-control ~0 -0.5485385294D+00 1 0.2850928612D-01 1 -0.7362748995D-01 2 -0.8868070703D-02 2 0.1655640282D-01 3 0.3347214665D-02 3 -0.5370685104D-02 4 -0.8611518383D-03 4 0.1535465635D-02 5 0.2228048502D-03 5 -0.4463920484D-03 6 -0.6008078988D-04 6 0.1290849449D-03 7 0.1583539634D-04 7 -0.3638049938D-04 8 -0.4505320738D-05 8 0.1091391473D-04 9 0.1050094060D-05 9 -0.2645454153D-05 10 -0.4423642087D-06 10 0.1176117805D-05 11 -0.1627780039D-07 11 0.5240148859D-07 12 -0.1202279253D-06 12 0.3411433989D-06 13 -0.8126887085D-07 13 0.2327284777D-06 14 -0.8378249146D-07 14 0.2405157311D-06 15 -0.7641296194D-07 15 0.2181811031D-06 ERROR 0.5220474750D-05 ERROR UP TO THE SEVENTH 0.1600944008D-04
y-control -0.3059947839D+00 0.1556603154D+00 0.8042545705D-01 -0.3351665833D-01 -0.1302978559D-01 0.9532284887D-02 0.2423733532D-02 -0.2636270034D-02 -0.6310421619D-03 0.7406886174D-03 0.166744725ED-03 -0.2071812826D-03 -0.4393804211D-04 0.5832103880D-04 0.1168503880D-04 -0.1630289971D-04 -0.3341039466D-05 0.4649879087D-05 0.7679830325D-06 -0.1249853937D-05 -0.3495097081D-06 0.4023891154D-06 -0.2928272571D-07 -0.6720338973D-07 -0.1085499753D-06 0.6083508165D-07 -0.7309530275D-07 0.2166268103D-07 -0.7923661283D-07 0.3007673061D-07 -0.7243788669D-07 0.1780136919D-05 HARMONIC: 0.2316279196D-04
Applications
z-control 0.3622247966D-02 -0.1829991513D-01 0.3056056222D-01 0.1367079606D-02 -0.7043851514D-02 -0.3710877619D-03 0.1788979331D-02 0.8899533314D-04 -0.5053576245D-03 -0.2380661893D-04 0.1425262383D-03 0.6068598995D-05 -0.4016329582D-04 -0.1630916590D-05 0.1135286424D-04 0.4307289028D-06 -0.3191127981D-05 -0.1243267113D-06 0.9117926295D-06 0.2858318588D-07 -0.2471105832D-06 -0.1291229159D-07 0.7916759243D-07 -0.8404392390D-09 -0.1355158175D-07 -0.3772795079D-08 0.1200636253D-07 -0.2605011983D-08 0.4274989414D-08 0.2648564908D-08 0.5983854359D-08 0.1441348600D-06 0.4459207106D-05
Table 3.7 Output of routine PRECON. Fourier coefficients of the unitary signed gain factors when control is applied only in the x, y or z directions. Sun-Barycenter problem. Case L\. /3 = 0.08.
The Proposed Method for the On/off
3.2.5
Discussion Rule
of Results:
the Different
177
Control
Gains and the No
Delay
First of all the results obtained are not very sensitive to the values of the z-amplitude P (below P — 0.2 for instance) nor to changes in /J, (for instance from Earth-Moon to Sun-Barycenter systems). We summarize the results about different axes controls and gains: a) The 3-axes control always has zero component in the ^-direction. This is the best possible control. b) The 2-axes controls using the (x,z) or the (y,z) variables always have zero component in the z-direction. c) Concerning the one-axis controls, the a;-axis one is always better than the ?/-axis. The z-axis control should not be used. At some points of the orbit the controllability is lost in the z-axis control. This is the only control for which this happens. For all points the gain is very poor in the z-axis control. d) Comparing the useful controls: (x, y)-plane, z-axis and y-axis, it is found that the x-axis control has an average of efficiency of 0.84 with respect to the (x, y) one, ranging from 0.72 to 0.96. For the y-axis control the figures are average efficiency 0.48 and range from 0.26 to 0.70. Therefore the z-only control is almost as good as full control and the y-only control has a cost that is roughly the double. For the full control (i.e. (x,y) control), the gain factor is rather uniform: the quotient of the maximal to the minimal values is roughly 1.43. We should add that the gain factors refer to the efficiency of a given type of maneuvers to cancel the unitary unstable component. This component is obtained using the projection factors and the local errors. As the projection factors change along the orbit (but in a quite smooth way) the same error in position and velocity has different unstable components. What is dynamically important is the unstable component and not the local errors. This explains the choice of the gain factors. Now we go to the no delay rule. A natural question is to ask whether it is recommendable to wait for a given maneuver trying to reach another epoch with a better gain. Of course the gain can increase but also the unstable component increases. We should look for the function exp((lnAi/T)r)/ f l (r) in every case. It turns out that this function is always increasing as Figure 3.9 shows. Therefore, it is never good to wait for a maneuver except for operational reasons. Short delays are not very important. In the Sun-Barycenter problem (halo orbits near L\ or L2) the unstable component, and therefore the cost of the maneuver roughly doubles every two weeks. This is dramatically changed for the case of small size 1/2 halo orbits in the Earth-Moon problem where this time is reduced to 1.4 days.
178
The Neighborhood of the Halo Orbits: Numerical Study and Applications
.1 = 0.06 log[exponential instability / g a i n factor using full control) It shows that it is never reccorenaable to valt for naneuvers Window in y (,-.1211,8.7965]
Fig. 3.9 Logarithm of the exponential instability divided by the gain factor, using full control. Halo orbit around L\ of the Sun-Barycenter system with /3 = 0.06.
3.2.6
A Second Approach
Towards the Optimal
Maneuvers
Prom what has been said, it is clear that we can restrict ourselves to (x,y), (x) and (y) maneuvers. We suppose that the Floquet modes e;(r), i = 1,...,6 are known. As it has been obtained in 3.2.2, we have TT}(T) = mj(r) • (det("r)) -1 , where rrii is the (signed) minor of the ith element of the first column of the matrix A(T) whose columns are e ^ r ) , . . . ,e 6 (r), and det(r) stands for det(j4(-r)). To get the normalized component we multiply TT}(T) by |ei(r)|. To get the unitary controls in the (x,y) case we put ei(r) + (0,0,0, A1; A 2 ,0) T = J2ajCj(T)> |ei(r)| j=2 and we try to minimize Af + A 2 . The first relation is equivalent to det(r)/|ei(r)| + + A2TB5(T) = 0, and it follows
AI?714(T)
Ai
=
-det(T)m 4 /((mij+Tnjj)|ei(T)|),
A2
=
-det(T)mB/((ml+m§)|ei(T)|).
(3.16)
In the (a;) case, we have Ai = - det(T)/(m 4 • |ei(r)|), A 2 = 0. For the (y) case the formula is similar. The results obtained using (3.16) are the same as that using the formulas of 3.2.3. However, the approach taken here is more compact. It will be used in this form for the analytic computation of projection factors and unitary controls in Chapter 4.
On the Use of Solar Radiation Pressure for Station Keeping
3.3
179
On the Use of Solar Radiation Pressure for Station Keeping
3.3.1
Using Radiation
Pressure:
Applicability
and
Limitations
In this section we discuss the theoretical possibility of using solar radiation pressure for station keeping. We suppose that a device is available such that the cross section of the spacecraft can be changed at will by a considerable amount. We can imagine a couple of (almost) specular rectangles that can rotate around a ^-oriented axis. Of course, the spacecraft should not spin and it is supposed to be attitude stabilized with respect to the three axes. If the rectangles are pointing to the Sun, their cross section is negligible. If the normal to the rectangles, points towards the Sun, the cross section is maximum. The rectangles are supposed to have the same direction, i.e., their normals are parallel. This is done to prevent undesirable torques. They should be symmetric with respect to the center of masses of the spacecraft. The operating procedure is as follows: a) Usually the rectangles (if you wish they can be called the wings) are oriented towards the Sun. Then, the effect can be neglected or can be included in the fixed part of the spacecraft cross section. b) When the unstable component is significant, the wings are rotated in some way (for instance with normals parallel to the rc-axis or oriented in some optimal direction) and an interval of time is spent in this status. During this time the solar radiation pressure exerted on the wings is the force used to perform the maneuver. At the end of the maneuver, when the unstable component is suitable, we return to phase a). See later for the discussion about the final suitable unstable component. Several questions appear: (1) (2) (3) (4)
Is it always possible to perform a radiation pressure maneuver ? What is the optimal orientation of the wings ? What is the required surface of the wings ? Which is the effect of the time interval spent by the maneuver ?
The answer to these questions concerning applicability and limitations is given in the next subsections. 3.3.2
On the Determination
of Optimal
Parameters
Let Pr be the constant of the solar radiation pressure. We have adopted the value Pr = 4.56 • l ( r 6 Newton/m 2 at 1 AU. We suppose that the unstable component is the unity in the normalized ei(-r) vector, and we ask for the required value of s/m (surface of the wings divided by mass of the spacecraft) and the optimal orientation of the normal to the wings, to
180
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
get a minimum value of s/m if the maneuver has to be performed in a time interval At. We assume At is small and that the effect of the motion of the spacecraft during this interval can be neglected. We shall return later to this point. In any case, it is supposed that the normal to the wings is contained in the (x,y)-plane. Let At be the time interval, 7Ti, 7r2, 7T4, TT5 the 1st, 2nd, 4th and 5th projection factors and (x,y,z) the coordinates of the spacecraft. Let 8 be the angle between the x-axis and the normal to the wings and d the distance from the Sun to the spacecraft. We define / i = (x - n)/d, f2 = y/d, e = a r c t a n ( / 2 / / i ) . The value e measures the angle between the (x,y) projection of the spacecraft, seen from the Sun, and the negative x-axis. Neglecting z, because it is small, the angle between the Sun direction and the normal to the wings is 8 — e. Letpi = 7r 4 Ai-|-i7ri(Ai) 2 ,p2 = iT5At+^ir2(At)2. Then, the maneuver condition is 1 + -Prfl^9d2
COS2 (8 - c)(pi COS/? +p2 sin 8) = 0,
m dl where one of the factors, cos(/3 — e), comes from the specular condition and the other from the cross section when the wings are seen from the Sun. The last factor can be written as mcos(/3 — a), where m 2 = p\ + p\ and a = arctan(p2/pi)To get s/m minimal, we should maximize
On the Use of Solar Radiation Pressure for Station
Keeping
181
efficiency of the radiation pressure maneuvers will be poor if the unstable component is directed outwards the Sun. As the results show, m/s even changes sign along the orbit. This means that for some intervals the controllability is lost. Even in the best case it is s/m ss 10 2 . Therefore this case should be avoided. 3.3.3
The "Always
Towards the Sun"
Rule
As pointed out in 3.3.2, the radiation pressure maneuvers require that the unstable component be always directed towards the Sun. To reach this end, we should require several things: a) When the spacecraft is injected into the nominal orbit, one should add some component towards the Sun (for instance, a small change in the x variable). This change should not be too small, in order not to be canceled by tracking and model errors. In adimensional units, values around 3 — 4 • 1 0 - 7 are enough (equivalent to 40 km in x). b) As the unstable component increases with time, a maneuver is foreseen after a roughly computable time. It is recommended to perform the maneuver for unstable components around 2 - 4 - 1 0 - 6 adimensional units. Smaller values imply too frequent controls. Larger ones imply either a too large s/m ratio or a too large time interval for the maneuver. In fact, the unstable component during the maneuver follows a differential equation of the type u — Ku — a\ — a^t, u(0) = UQ. Therefore, in the maneuver condition (see 3.3.2) we should replace 1 by eN*. If UQ increases, t should be increased to reach a final value u = Uf, Uf < «o- Even if u 0 is large enough, in such a way that Nu > oi, the control is not possible and an escape is produced. As a last comment on the subject, we wish to point out that the "always towards the Sun" rule can be skipped in the following way. When the nominal orbit is designed, we can include in the section of the spacecraft, as seen from the Sun, one half of the value of the maximal section of the wings. Then, pointing the wings towards the Sun (and therefore reducing the effective section), will produce a net force towards the Sun, which is able to cancel outwards escapes.
$
••
(0
£
Q W
O
frd
m
en
a
*»
IO • - * CO m l - k f o <71 o cn cn • > ^1 cn CO CO cn cn CO cn cn t o CO CO cn CTl cn no - J o t - k K> CO k - k t o CTl o no -si >->• CO o cn a a o o a
CO *> IO o *> *» CO co o
M CJI CO Cn k j * IO co CO CO w 0 1 - j IO cn to - i - J i-^ O O) I O O) Ol •P» cn o en IO
o
- j
en en CD co cn oo i-k -J cn hti a i o CD
i-k o 00 •> i-k cn cn CD •t» CD a i o --4
I
- j
-4 a i i-k o
~J
co o CD -~i CO co cn a
o
to -J *> CTl cn CD CO -~1 oo -a a i o
I o
-s]
o h-k O to to -j cn i-^ i-k to iO
CO h- 1 o o o to cn to co CO
- j
o
I
- j
o
I
o
to to CO oo to cn cn cn oo to a
CD
I
to CO to IO -si ~j o co O -J a i o oo
o
o t-k o cn cn --4 1-^ co cn a
I
to O oo to -j oo co |-» -s! CO a i o oo
o
-J k-k o co en to oo k& -4 --J a i o oo
o
o
I
I o
o
I o
I
o o cn a i
I
o
o
I
to o cn •> o co to cn to i-L a i o oi
o cn co cn --I to to oi i-k cn k-k 13 i o -si
o
o
I
to o en cn •> •> •> co to o O i o oi
o
cn cn i-k no O CD ~ j cn - J cn t o * > no co t o * • cn t o h-* cn en O - J cn • & IO cn o t o co --4 t o
o o
o
cn co o i-k i-k en *> cn oi cn o i o cn
o
I I o
o
o
cn co -4 oo k> k-k en cn •> o a i o cn
I
o co -si to o j * l-k k-k cn oo o i o cn
o en cn o cn co CO k-k -j cn a i o cn
I
o i-k oi •& to CO 01 -si o en cn a i o cn
o
• >
•> tO o CO O *. --4 kP> to -J o i o en
o
o
i-k k-k o k-k l-k Ol cn en co ,£* o i o •>
o
co cn o co cn cn o i o cn
o
o
- N !
o a a
CO CO CO -J H * M CO -*i O
!-»•
cn cn o •> *> N3 -noj CO
^cn t1-*o cm i-^ -J ^no CO to o
o
cn to co a i o *>
o
co ai cn t3 i o to
*> co en oi cn oi co to •> cn to cn co i-k cn * co en o to oo -si o a ai i i o o o * •>
o
co oo a i o co
CD
I
I o
o
k-k cn i-k en co co *. -si cn cn o cn •> -J o * •?• en to o -si i a o oi *
o
o
o
hCk CD en -4 o CD Ol cn cn cn a i o
I
to j* l-k t O o oi k-k - 4 o co -si • > * o oo •> o to to -j 00 -J to oo -si CO oi cn * cn oo to cn cn -4 K-k k-k to i-k co ai a i a i o o o o o U CO CO CO
i o
i
en en O to cn cn o
o
i
cn i4^ O to oo oo C o
o
•> CO *> -4 i-k IO -4 >> O --1 O cn o co o i-k O D D a I I I i o o o o k-» tO k-k to co l-k >-» cn to ( "
o -4 -4 IO CO 00 co cn to co co a i o co
I I o o
en co t o to oo CD -J i-k CO k-k co CD oo -4 - 4 cn -j e n i-k - g o
o
1 0 M P -si cn it> co t o oo O l I O *
I
i i o o co cn
I
*>
*
-si cn IO h - k - J IO • > CO no cn IO - j h-L Cn - j CD t o t o © k-k o h-k t o t o h-* k - k no CO CO t o o CD h - k en 00 t o CO - J CO h - k l - k CXI C> cn -si Cn CO CO h^ o a O a o a IO o en no CO to IO
o o O o o o o o o CO CO CO CO t o t o t o t o I-* t-*
oo cn --4 cn oo cn en to C D cn co co a a
Ico to >> to -4 cn o
1
I I o o
• >
o o o
cn cn IO en . 1 * t - k - J en - j CD • > t o • > en en cn en -s| t o en no en 1 - k (O co IO - j t o e i CO O a a
en cn M - to cn o o cn oo MCD O 00 co --4 COCO Ol •> to oo CD cn l-k O ( I I O S CD 1-^1 O CO CD en Io cn ifc. en •& co co IO ^ oo co ai co IO h-k a a a a a i i i i o o o cn cn cn o*• cno
o
»-k cn O >P* cn o cn --4 oo cn a i o
o
o
CO --I cn (10 CO CD -si cn to
i-k
a o a a a
i-* --i cn CO -J CO to cn
o o o o cn cn cn c n iS> * •
CTl i-* - j -j cn cn ro CO IO h - k - j *• * • 1-* CO no I-* o cr> co a a
C O >-* --1 Hk cn O 00 M- 00 co CO -J it» O -4 oo cn l-k tO CD oo o CO l<2. cn to o i> 00 cn --i -J --j cn co hF* h-k CD CO CD h>1 CO cn oo i-» h- CO co co i-» a a o i i i o o o -si cn
o
-si t o t o a i cn co t o co i*> - J • > t o Hk t o CD o cn CD oi o o co >> oo cn cn l-k tO O K-k o a i i i i o o o o 00 -J - J -si
o
oo to CD to co i-k cn oo co i-k o i o
o
o o - J -si cn en
co cn CD co co *> to to -J o a a o i i i i i o o o o o -J -J -~j en
o
CO
co CD K> CO CO t o e n -~4 l-k k-k - J 00 co en cn - 4 o CD O 01 o o i i o o t o co
o
co cn o h-k CD 00 i£. O o cn a i o
I o o
CO
cn IO o M cn 4* •F» k - k cn l - k --1 o m cn - 4 CO CO Mo o h-k
-s|
*
*
* *>
*
*»
*
puv fipnfg ;rouawn/y :s%iqj,Q OJVJJ 3i/j fo pooyjoqy6idjj
*.
gyj,
£81
i i i i i i i i I I it I I I I I o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o k - k -si -si co co IO l-k i-k oi i-k t o k - k cn K-k cn i-k oi to cn i-k -si * cn co k-k • > to o o Hk 00 l-k cn co en to cn cn CO cn cn -si CO • > no cn en k-k -si to -si oo cn oi cn CO - 4 oi co l-k k-k k-k 00 en to 00 k-k t o no t o -si CO t - k l-k O en co -4 *• Ol cn H-k oo co cn to to cn CO k-k CO cn t o o co to to o O l-k CD CO o o o t o - j cn o m co co oo oo en cn ^ i 00 * -si l-k -Si co co -si O (XI co • > en • > l - k -si to •> i-k oi oo o k> CO CO h-k f o i-k t o CO -si co —4 cn cn en i - k kpk to co l-k O cn o o co t o CO t o l - k i-k oo to •> o a> o t o - J cn * 00 Ol CD O to -si -si o en CO 00 -s4 CD cn -si o i-k en oo o to oo o o 0 0 -si * co •> < i t o * IO • > t o CO o CD 00 O kP> CD • > t o IO cn to oi oi u o Co cn CO -J cn -si en H* • c o oo i -4 cn • > CO t o oo en co to 00 t o cn CO t o o cn i-k -4 co oo cn cn J 00 k-k o o oi o o l k 00 to co k > t O k-L o cn cn cn o •t* o k-k * * en to cn co a a en t o cn cn en 0 1 * 0 13 o a 13 o o to CD o a i i -J o a O a a a o 13 a cn to a a o o a D D O i i O 13 i i ai ia o o o o o o oI Io oi io o o ai ia o o o o o o o o o o i i i oi io + I + o o o —i en o o Ol cn -si cn Ol - j en —j cn Ol -j en -si cn cn co k& tO o o o k-k tO O Hi. J-k -si c n co to to
o
o
I
-J CD to i-* CD cn CO (-*• !-•• - J O h-^
1-^ 00 --1 cn
o
Ol
o o a o o o o o o o o o o
*
*
Cn M t o t o cn tO h - k t - k en cn tt oo m o - 4 t o •?> co o o en t-k en en • > CO t o • > a O a
I I I I I I I I I I I I I I o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
!OtIlO1^iM*lUUIOi-'i-»OO(DtD00(B-JS01(IlO1tni&i^UUlOIOi-'l-»O
suoifvoijddy
II
3
co Ej"
3" O
P CO
a o
^
9 5'
-^ -)3
•o * p CD Q -i 3 P n
"> S
O
b 3
II ^ ~
T^O CD
^° ^
N
( D ^ 1
e § 2
3 » 3
^g 1
-! O " Y1 3 O fc, P. ^
™ -•
I 3°
C
cog I:
•*•§
D+0
Q
I
I
TH
o I
I
o I
O
I I
o
rH to CN CO TH
o
TH O <* LO CO CN
O
o
O
I
• *
o I
I I
o
o
o I
I
TH
o
o I
• *
o I
• *
o
r-
cn oo
•5t>
o
o I
to cn
•* o
o I
T-H
o
o
o I
<* a> cn co
I I
O
O I
O
I
O
I I
I
I
• *
O
•"J 1
• *
O I
• *
O
O
I I
I
O
o> CN
Keeping
o
o I
I
TH
TH
o
o
oo o
I
o ooo
CN rH CN
o co co o
CN *j> CO CN
s in
rH O i O i a a a LO rH CD O CO 00 O LO I D O rH CN CO CO O LO CO
r- h- 1>- f- 00 oo oo oo en cn cn o o o o o o o o o o o cn o cn oo I I I a aa a a aaa «
cn •>* co co oo
cn
O I i i a CD rH •*< N CO N- rH O CO CO
^- **oo o
I I I I I a a OO CO CN CO I H CO rH rH rH •* CO O ) or H r- CO LO 1-1 rH CO O C N CD 00 • * h- • * T-i CD L O C N T-t
CO LO f- CO i-H rH O cn S O l r l 00 LO LO CN CN 00 OO
O
1
• *
I
I I I I I a a 00 CO CO CO CN i-H -rH CN rH O o- O Cn rH rH 00 CD LO ^ 00 rH 00 00 LO i-H hrH 00 T-i C O rH
O
• *
1
O I
T^
I
I
I
rH
co
00 to f-
o o
in 00
^
a
o
to
C O LO ^ LO LO CD LO f- to i-- to rN- f- o - 0 - t - LO oo oo oo ooo oO Oo oo oo o o o o o I I I I I i i i i i i a aa a aa aa o Q Q O a a o cn r— t-- to co o rH 00 oo CN • * cn CN CN O C N cn co to *a< co to 00 rH r H CO cn co CN f - r H Tj< t- co oo o ico cn tO CN h - LO LO cn CN co <* oo t-- o tO LO o oo 0 0 CO - ^ CN • * O co cn cn cn o L O O f- r H CO « 0 0 r l CN C n r H CO LO • * 0 0 • * o t o co o co co CN LO LO cn f- oo ^ oo CO CO • * f - t o o • * o cn co LO • * cn rH cn cn cn t o • * co o o co o co co CO LO cn cn CN co •rH t o r - * ? CN f cn cn CN foooi s CNSrt I - - CO
rt-i LO CD cn O O I I
I I I I I I a o a a a . * *j< L O rt 00 00 r H • * LO O LO O CO T H cn CN t O T-i CO t-i CD LO
O
a a
LO LO cn LO O
• *
T^
• *
I I
I>1
% .£ m u
CO
3 O
^r <3 T, u a>
c
<*H
t-H
S
•
Q,
g r-1
o
°3 X CO
CO l O
O) « f
° § g
s
-M
a.
CO " CCJ. 3 > >-, CL 0 ) H
§b3° i S ii
|1§
m
o
»
2
o u a os a,
*-Z CJ 'S <* O.
a O o
tu
'3 °
bO <8 a &
•2XJ
3
3 XJ
LH
a> *^
u
. 3
—1
U
o
-3
XI a>
1
ime
On the Use of Solar Radiation Pressure for Station
o I
o I
o
co cn r-
cn •* oo
s ens
cn
o
^ ^<
•* <•
cn cn
LO CO CD CD co co o O O O o o I I i I I I i i a a a a a a a a co o oo co o lH< LO O t - co CN r H 0 0 • * o CN co oo LO co oo CO CO r H LO CO CO Cn r H CN CD CO cn CN rH LO r H 'i1 LO ^ CN CO cn CD 0 0 r H CN CD OO 00 o> CO CN CN CN r H
co oo i^
LO o I i Q a CO oo CN r-- LO >* O o LO f cn o •>* o CO >* LO LO
a Q
CO CN •* C O LO
Q r> a
en r-cn co co cn
t- CN CO O CO LO I-H f- CN C O
• *
I I
ect e Sun,
TH
TH I-H
o
o
o I
I I a Q 00 00 CD cn O cn 1 - - co CO ^ rH LO O CN r H LO t-- cn
o cn co •>*
o I I Q a i-H CN f - i-H LO CN CN LO co cn co CO o 00 co oo
Q
i-H r H r H C N
Q
o oI o I o I o I oI o I o I o I o I
O
O O I I
«•>
O O I I
LO LO CD LO r I S * C N cn rH >* in rico rH t-- 00 co cn <3< 0 0 O LO I-H cn cn rH 00 to rH CN LO LO to L O hoo co to L O cn co t--
O
to CD o t- cn LO o cn CN r-CN 00 00 CN rH cn cn co o LO co h- CO • * co C N oo >* cn << rH
O O O I I I
• *
II
•rH CN CN CN CO CO CO CO
W
O r H r H C N C N 0 0 C 0 ' * < ' L 0 L 0 C 0 t 0 t ~ - t ~ - 0 0 0 0 c n C n O O r H r H C N C N 0 0 C 0 ' l ' ' * L 0 L 0 p 5 T H r H r H r H r H r H r H r H r H r H r H r H O
I
Q LO fCO LO LO CN 1-- CO CD LO CO CN CO r H I-- •t-i 00 i-H •=)• rH CN CN LO r H
LO CN !~rH tO •* LO
o o o o o o o o o o o o o o o o o o o o o o o o o o o o
cn r~-
o o o I I I a a Q oo CD CN r H rt o co cn CN -rH CD cn r - CD oo CO i-H co •*? r H co •* « * CN cn
o o I I
T-i T-i O (N CN CN 00 CN <* oo LO
D+0
184
3.4 3.4.1
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
Globalization of the Invariant Manifolds The Computation
of the Global Stable
Manifold
In 3.1.5 it is explained how to compute the intersection of the stable and unstable manifolds of the halo orbit with the y = 0 hyperplane. Using again the symmetry, it is enough to compute the unstable manifold. To compute the full manifold (outside of a neighborhood of the halo orbit) it is enough to pick up an interval of the unstable manifold on y = 0 such that the image, under the Poincare map, of the extremum nearer to the periodic orbit, be the other extremum. Taking this set of points (in fact a lattice in it) as initial condition, the forward flow of the restricted three-body problem produces the full manifold. More precisely, the initial conditions on Wu can be taken in the form Q + ee\, where Q is the fixed point of the Poincare map (i.e., the intersection of the halo orbit with y — 0) and e\ is the normalized dominant eigenvector of the differential of the Poincare map at Q. The parameter e should be taken in a range [eo, Aieo). eo is chosen small enough, in such a way that Q + coAie^ be very close to Wu. Let z be a parameter in [0,1). We take as initial conditions Iz — Q + eo exp(z • lnAi)e^. As — e\ is also a normalized dominant eigenvector, one should be careful with the right choice of the sign of e. One of the signs will produce orbits which approach the Earth and the other will produce escapes. For every value of z, we can study the behavior of the orbit starting at Iz by forward integration in time. The orbit approaches the Earth and after that goes far away. Next encounters in future time are possible. The nearest point to the Earth is located as a function of z. For every z in [0,1) this is carried out for a given halo orbit. In this way we obtain the minimal distance from Ws to the Earth in the first close approach.
3.4.2
Results
of Interest
for the Transfer
Orbit
First we perform the preceding computation for a periodic halo orbit near the nominal one used for the ISEE-C mission. A value /? (^-amplitude) equal to 0.08 has been used. For this halo orbit, e0 = —3 • 1 0 - 1 1 the minimal distance is reached for z = 0.629. The distance has a value of 11327 km and the velocity with respect to the Earth is 8 396.8 m/s. The inclination of the osculating orbit at this point is 6°.3. The effect of the size of the halo orbit is the following: when the parameter /3 is decreased the minimal distance from Ws to the Earth increases. Further computations show that for /3 = 0.2 the minimal distance is 6514 km and the related velocity is 11099 m/s. By slightly changing j3 we can find a minimal distance to the center of the Earth which coincides with the distance to which the ISEE-C spacecraft was injected into the transfer orbit. For the ISEE-C, the distance was 6 564.1 km and the injection velocity was 10990 m/s. Taking /? = 0.199, we get 6 562.2 km for the distance
Globalization of the Invariant
Manifolds
185
and 11057 m/s for the velocity (the related value of z is 0.672). However, in our program the mass of the Moon is included in the mass of the Earth. Performing the corresponding reduction (this produces an error because the mass of the Moon has been considered in the computation of Ws, but is not considered now) we get the same value 10 990 m/s. The inclination of the osculating orbit at the computed point is 15°.7, in good agreement with the real value adopted for the ISEE-C. As a conclusion, we have that changing the target orbit (the z-amplitude is « 300000 km, but the ^-amplitude is roughly the same as that used for the ISEE-C mission) the transfer can be done using the stable manifold. No corrections along the transfer are required, except small maneuvers to take care of errors of injection. The traveling time will be the same as that used for the ISEE-C mission. When the spacecraft approaches the target orbit, the station keeping can start. This produces an important saving in the fuel consumption of the spacecraft. A sample of results is given in Table 3.10. However, as the Moon is not taken into account, the results are of little practical interest. But we remark that the result will be true, with slight modifications, for the transfer to the real quasiperiodic nominal orbit. The "stable manifold" (to be suitably defined in this case in Chapter 8) will give an easy way for the transfer to the target orbit.
PARAMETERS FOR THE TRANSFER ROUTINE: INITIAL FACTOR = -l.D-11 NUMBER OF DIVI INITIAL AND FINAL POINTS = 7,9 RMAX = 0.015 RMIN = 0.005 RCOL = 4.D-5 POINT NUMBER 7: TRAVELING TIME = 0.6641289026D+1 MINIMAL DISTANCE = 0.12431 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.11034911484D-3 0.55783047699D-4 -0.12907410606D-4 -0.10096032449D+0 -0 INCLINATION OF THE OSCULATING PLANE = 0.2092816307 POINT NUMBER 8: TRAVELING TIME = 0.6356371431D+1 MINIMAL DISTANCE = 0.80333 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: 0.78979405977D-4 0.11915747345D-4 -0.85911427879D-5 -0.39040885533D-1 -0 INCLINATION OF THE OSCULATING PLANE = 0.1222328160 POINT NUMBER 9: TRAVELING TIME = 0.6082963533D+1 MINIMAL DISTANCE = 0.23542 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.23286855011D-3 -0.28399167254D-4 -0.19795385982D-4 0.21373455225D-1 -0 INCLINATION OF THE OSCULATING PLANE = 0.2164371110 PARAMETERS FOR THE TRANSFER ROUTINE: INITIAL FACTOR = -l.D-11 NUMBER OF DIVI INITIAL AND FINAL POINTS = 77,79 RMAX = 0.015 RMIN = 0.005 RCOL = 4.D-5 POINT NUMBER 77: TRAVELING TIME = 0.6441150658D+1 MINIMAL DISTANCE = 0.7599 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73304424297D-4 0.18279072013D-4 -0.82653272814D-5 -0.68945870849D-1 -0 INCLINATION OF THE OSCULATING PLANE = 0.1130816660 POINT NUMBER 78: TRAVELING TIME = 0.6412795539D+1 MINIMAL DISTANCE = 0.7584 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73698173176D-4 0.15902199248D-4 -0.82231771890D-5 -0.59412473593D-1 -0 INCLINATION OF THE OSCULATING PLANE = 0.10863954310 POINT NUMBER 79: TRAVELING TIME = 0.6384531866D+1 MINIMAL DISTANCE = 0.7727 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.75565492639D-4 0.13824089025D-4 -0.83314370560D-5 -0.49302639148D-1 -0 INCLINATION OF THE OSCULATING PLANE = 0.1120997344 PARAMETERS FOR THE TRANSFER ROUTINE: INITIAL FACTOR = -l.D-11 NUMBER OF DIVI INITIAL AND FINAL POINTS = 775,778 RMAX = 0.015 RMIN = 0.005 RCOL = 4.D-5 POINT NUMBER 775: TRAVELING TIME = 0.6426962395D+1 MINIMAL DISTANCE = 0.757
POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73320649688D-4 0.17045087345D-4 -0.82254702143D-5 -0.64276708517D-1 -0. INCLINATION OF THE OSCULATING PLANE = 0.10989459527 POINT NUMBER 776: TRAVELING TIME = 0.6424127276D+1 MINIMAL DISTANCE = 0.7571 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73367058676D-4 0.16809755174D-4 -0.82220069805D-5 -0.63317918649D-1 -0. INCLINATION OF THE OSCULATING PLANE = 0.10948377441 POINT NUMBER 777: TRAVELING TIME = 0.6421293006D+1 MINIMAL DISTANCE = 0.7572 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73427963514D-4 0.16577931149D-4 -0.82200459502D-5 -0.62351695015D-1 -0. INCLINATION OF THE OSCULATING PLANE = 0.10915199497 POINT NUMBER 778: TRAVELING TIME = 0.6418459627D+1 MINIMAL DISTANCE = 0.7574 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73503414601D-4 0.16349485504D-4 -0.82195871853D-5 -0.61378445451D-1 -0. INCLINATION OF THE OSCULATING PLANE = 0.10890026213 PARAMETERS FOR THE TRANSFER ROUTINE: INITIAL FACTOR = -l.D-11 NUMBER OF DIVIS INITIAL AND FINAL POINTS = 7761,7762 RMAX = 0.015 RMIN = 0.005 RCOL = 4.D-5 POINT NUMBER 7761: TRAVELING TIME = 0.6423843803D+1 MINIMAL DISTANCE = 0.757 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73372496169D-4 0.16786416460D-4 -0.82217432713D-5 -0.63221621697D-1 -0. INCLINATION OF THE OSCULATING PLANE= 0.109447019949 POINT NUMBER 7762: TRAVELING TIME = 0.6423560344D+1 MINIMAL DISTANCE = 0.757 POSITION AND VELOCITY WITH RESPECT TO THE EARTH: -0.73378078578D-4 0.16763113109D-4 -0.82214945890D-5 -0.63125252461D-1 -0. INCLINATION OF THE OSCULATING PLANE = 0.10941105791 Table 3.10
Output of program PAPUS concerning transfer to the Earth using the stable manifol
188
3.5
The Neighborhood of the Halo Orbits: Numerical Study and
Applications
References [1] R. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin, 1978. [2] E. Fehlberg. "Classical fifth, sixth, seventh and eighth order Runge-Kutta formulas with stepsize control". Technical Report TR R287, NASA. [3] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer Verlag, 1983. [4] P. Hartman. Ordinary Differential Equations. John Wiley & sons, 1964. [5] S.S. Lukjanov. "Control of a spacecraft motion in the vicinity of a collinear libration point of the circular three-body problem by means of light pressure" Cosm. Res., 19, 518-527, 1980. [6] S. Smale. "Differentiable dynamical systems". Bull. American Mathematical Society, 73, 747-817, 1967. [7] V. Szebehely. Theory of Orbits. Academic Press, 1967.
Chapter 4
Analytic Solution of the Variational Equations. Analytic Computations for Control Parameters
Trying to go as far as possible in the analytic approach to the problem, this chapter is devoted to redo the computations numerically performed in Chapter 3 in a fully analytic way. In the same spirit as the analytic theory for halo orbits in Section 2.2, all the relevant magnitudes are expressed as series in the x- and z-amplitudes, a and p\ and in the angle XLOT along the orbit. The coefficients of the series are numbers which depend only on the mass parameter, n, and on the equilibrium point, L\ or L2. The main task will be done using routines for the formal manipulation of series. The algorithms are designed to perform this task in an efficient way. The numerical results of the previous chapter give a hint for the types to be expected for the series representing the Floquet modes. Checks against the numerical results of Chapter 3 are done for the Floquet modes as well as for the projection factors. Some difficulties are present due to resonances between modes when the zamplitude goes to zero. This produces problems of convergence. They are discussed and their importance is analyzed.
4.1 4.1.1
Analytic Solution of the Variational Equations The Analytic
Method
It is useful for several reasons to know the local behavior near the periodic orbit. Here we give the method to obtain analytic expansions (depending on the amplitudes a and (i of the orbit) of the unstable and stable eigenvectors, the eigenvector related to the complex eigenvalue, and the vectors tangent to the orbit and to the family at any point of the orbit. From the equations of motion for the RTBP as used in Section 2.2 we get immediately the variational equations u2£," - W
- (1 + 2c2)i = Mxi + Myr] + MZQ = XR+
w V + 2w<£' + (c2 - 1)7? = (Nx£ + Nyrj + NZQV=1 189
y/^lXI,
= YR + V=1YI,
(4.1)
190
Analytic Solution of Variational Equations.
w2C" + c2( = Px£ + PVT) + PZQ = ZR +
Control
Parameters
V^IZI,
where' = ^ Mx = dM/dx, ...,PZ = OP/dz. The functions Mx,My,... ,PZ are known periodic functions of n = Awr of period T (the period of the halo orbit). The function u> is known as a function of a and /3. We shall also use w — COT. Let e = (£,77, (,£,fj, C) T . Then (4.1) can be written e' = A{r\)e, with A a T-periodic matrix. As we know from Section 2.3, for moderate amplitudes of the halo orbit only one of the eigenvalues of the monodromy matrix is greater than one in modulus. This is true till orbits numbers 8, 9, 8 and 7 of Tables 2.13-2.16, respectively. Even before these orbits are reached the analytic theory for the halo orbit is no longer valid. From our knowledge on the form of the Floquet modes acquired in Section 3.1, for the unstable eigenvector e\ = (£, 77, ()T we look for an expression of the type:
£ = evw(G + V=lH), r, = euw{J+y/^lK), C =
vu,
e (L +
(4.2)
y/=lQ),
where v = J2i ,->o vijalft with Vij = 0 if i or j is odd, and G, H, J, K, L and Q are power series in a,/3 and 7 — exp(«Ao;r) of the types (a), (b), (a), (b), (c) and (d), respectively (see subsection 2.2.3). Besides the results of Section 2.2, the reasons for this choice are (as it is easy to show by induction) that G, H, J and K are even functions in /3, while L and Q are odd functions in /3 and 1/ is even in both a and The freedom in the normalization of e\ allows us to take the time-independent term of G equal to one, i.e. J2i j Gijoofft — 1- This implies Gij0 = Si0SjoBy substitution of (4.2) in (4.1) and from the terms without a,/3 nor 7 of the first two equations we get "00 = \ ((<* - 2) + [(ca - 2) 2 + 4(c2 - 1)(1 + 2c 2 )] 1 / 2 ) , and T
-*ooo —
^o2o ~ (1 + 2c2) 7, • 2^oo
When the terms of order n — 1 are available we obtain the terms of order n = i+j with I A; I < n, solving the following systems: / 2is0o — 2 Jooo — 2i>oo A ( vij \ V 2i/00Jooo + 2 ul0 + c2-l J \ Jij0 J
_
( XRijQ \ \ YRij0 J '
. ^,
191
Analytic Solution of the Variational Equations
/
\
Vi 2Xi/ook
-2Xv00k i>i
-2i/ 0 0
2i/0o
—2Xk
v2
2Xk
2VQQ
2Xv00k
2\k
—2Xk
\ I Gijk \
— 2VQQ
Hijk
-2Xu0ok
i>2 J \ Kijk J
X2k2 + c 2 2Xi/00k
-2Xv00k ulQ
\
(4.4)
I -K'ijk
Jijk
for k ^ 0, where i>\ = VQ0 - X2k2 - (1 + 2c 2 ) a n d i>2 = vl0 ^oo
/ XRijk Xlijk
\ YIijk J X2k2 + c 2 - 1 a n d
Lijk
2 2
X k + c2
ZRijk Zlijk
(4.5)
T h e determinant Dx of (4.3) is equal t o i / 0 0 1 ( 3 ^ 0 + ^ 0 ( 2 - c 2 ) + (c 2 - l ) ( l + 2c 2 )) which is always different from zero if c 2 > 1. T h e determinant of (4.4) has t h e following expression D2 = b8k8 + b6k6 + b4ki + b2k2, where b2
d(36cl - 3 2 c 2 ) ,
bi
d(9c22 - 8c2) + A 2 (7c| - Uc\ - 8c2 + 16),
be
d(6c22 + Ac2 - 12) + X2{-2c\
h
2
d(3cl - 5c2 + 3) + X (-5c
3 2
- 2c\ + 22c2 - 20), + 16c?, - 14c2 + 4),
and d = (c2 — 1)(1 -f 2c 2 ). For all c2 between 4 and 8 we have that b2,64, be and b8 are positive numbers, so the determinant is different from zero. In the same way, the determinant D$ of (4.5) can be written in the following form £> 3 =fc 4 (A 2 (2-c 2 ) + (C2-1)(1 + 2c2)) + fc22AVoY • c 2 ) + c | + ( c 2 - l ) ( l + 2c 2 ). It is easy to see that D3 is different from zero for values of c2 > 1. The second Floquet mode is obtained from the first one using the symmetry (x,y,z,t) ^ (x,-y,z,-t). Explicitly if e i ( r ) = ( £ ( T ) , T K T ) , C ( T U ( T ) , 7 K T ) , C(T))T , then e 2 (r) = (£(—r), - r ? ( - r ) , C ( - r ) , - ^ ( - r ) , 7 ) ( - r ) , -((-T))T. It is, of course, of the type e~vwg2(T), g2 being T-periodic. The third vector e 3 to get a local basis is the tangent vector to the orbit. Let 631,632,633 be their first three components. The remaining ones are obtained by time derivation 63^+3 = 63^, k = 1,2,3. This vector is obtained by derivation with respect to r of the three components x, y and z, of the orbit. We get k lXu)y^/kaijkal(3J-f i~,
e3i
e 32
=
-Xoj^kbi:jkQiPi^k,
(4.6)
e33
where a,ijk,bijk,Cijk are coefficients of the development of x,y and z, respectively (see Sections 2.2 and 3.1). As the ^-amplitude, /?, is a parameter for the halo family,
192
Analytic
Solution of Variational Equations.
Control
Parameters
let e\ be the vector obtained from the halo orbit by derivation with respect to /?. Putting eli,el2isl3 for the first three components we get
du 1 = e4i + r — - e 3 i , dp u
dw 1 = e 42 + T— - e 3 2 , dp a; = ] > > * ( i a ' - 1 ^ ' ^ + i a ^ - 1 ) 7* + r ~ ( v ^ A w £ =
. (4.7) fcW*
dw 1 43 + T 3 ^ - e s s dp w
e
In the above expressions % is obtained by derivation of the relation given by A = Ydijtfpi. The vector e4 is defined having as first three components e 4 i,e 4 2,e 4 3 as defined by (4.7). The remaining part of e\ is a multiple of e^. We should remark that e4)fc+3 = ei}k + %ue3k ^ or ^ = 1?2,3. Notice that the vector e 4 (r) defined in this way is not collinear with the vector e 4 (r) defined in subsection 3.1.4. However both couples (e3,e 4 ) and (eJ3,e4) define the same two-dimensional plane. We turn to the last couple of Floquet modes. Let 115 = e& + ieg be the complex eigenvector associated to the eigenvalue A5 — r + is. We consider iw
u5 = e ^
Yrijk cos(k\w) + V-~lJ2uijk sin(fcAw) \ Y Sijk sin(fcAw) 4- \[-\ Y Vijk cos{k\w) , Y Ujk cos(k\w) + y/^1 Y wijk sin(fcAu;) /
where ip is a parameter. In order to get the coefficients r^k, Uijk, s^k, v^k, tijk, Wijk and V which depend on a and j3, we write these series as power series in a, f3 and 7 and we look for a solution of the variational equations of the following form u5 = &iw^
where tp — YijXj^ij^ft Satisfy ±iijtk
+ V=i an(
— tli,j, — ki &i,j,k
^
=
tne >
(4.8)
coefficients of the series R,S,T,U,V
~^ i1jt — ki -Li,j,k
=
J-i,j, — kj Ui,j,k
=
and W
Ui,j, — ki *i,j,k
=
Vij:-k and Wijtk — —Witjt-k- It has been checked by induction that the series R,S,T,U,V and W are series of types (c), (d), (d), (c), (a) and (b) respectively, and the coefficients tpij of tp are equal to zero if i or j is odd. As a normalization the time-independent term of T is taken equal to 1, so Tijo = SioSjQ.
Analytic Solution of the Variational
Equations
193
By substitution of U5 in the variational equations we get LJ2C
-
wV +
2WT)'
-
(1 + 2c2)£
2w£'
+ +
( c 2 - 1)77
2
u C"
c2C
= = =
XC + XD, (YC + YD)V=1, ZA + ZB,
(4.9)
where XC, YC and ZA are the part in cosine of the first, second and third equations respectively, and XD,YD and ZB contain the corresponding parts in sine. From the terms with i = j = k = 0 of the third equation we get ^00 = —\/c2Let us suppose that the terms of order n — 1 = i + j with \k\ < n — 1 are known. Equating the terms with % + j — n, \k\ < n, in the first and second equations we get the following system /
-f/>i -2Xip00k 2ipoo \ 2Xk
2\ip00k $1 -2Xk -2^oo
2^oo 2Afc -2Xipook
2Xk \ ( Rijk 2ipoo Uijk V -2Xip00k ijk J \ Sijk i>2
where ipi = tpQ0 + X2k2 + (1 + 2c2) and V>2 = —ip{ If fc 7^ 0 we obtain from the third equation - ^ 0 - X2k2 + c2 -2Xt/j0ok
2Xipo0k ^00 + A2fc2 - c2
\
)
( XCijk XDijk YCijk
^
V YDijk
J
,(4.10)
X2k2 + ca - 1.
-* ijk
wijk
ZAijk ZBijk
(4.11)
and equating the time-independent terms of order n in the last equation of (4.9) we get the coefficients of ip in the following way
ipij =
ZA
ijO
2
The determinant Dt of system (4.11) equals A2fc2(4c2 - X2k2), so it is different from zero in the cases of interest. The determinant of (4.10) has the expression D8
=
A 8 fc 8 -(2c 2 +4)A 6 fc 6 + (c2 + 2c 2 +6)A 4 fc +(-36cl + 34c?. + 2c2 - 4)A2fc2 + c\ - 2c2 + 1.
For c2 between 4 and 8 and any value of fc, D5 is different from zero. For fc = 1 it is negative, and for fc = 2 it is relatively small. This is due to the almost resonance with the halo orbit. This fact produces a slow convergence of the series. We shall return later to this point.
194
Analytic Solution of Variational Equations.
4.1.2
Description
Control
Parameters
of the Program to Do the Analytic
Computations
In the analytic computation of the projection factors and the unitary controls, the first three components of ei, e$, e^, e$ and e$ are written in the following form (G vw
e1=e
+ ^r=\H\ J + yf=\K
/ ^TlA ,
e3 =
\ L + ^TlQ )
\ B
I ,
e4 =
\ V=1C J
D\ y/^lE
\
,
FJ
iwip
e5 = e
V sf=iw J
where G, H, J, K, L, Q, A, B, C, D, E, F, R, S, T, U, V and W are power series in a and p of types (a), (b), (a), (b), (c), (d), (b), (a), (d), (c), (d), (a), (c), (d), (a), (d), (c) and (b) respectively. The functions v and ip are power series in a and /?. We note that all the series involved in the analytic computation of ei,e3,e4,es and ee are power series in a, j3 and 7 of types (a), (b), (c) or (d), or power series in a and j3 of the same type of to = a>oo + ]C» j>o i+j>2 uijaiP^ with Wy = 0 if i or j is odd. The series above are computed in the program ANAVAR up to a given order n. In this program one has to read, first, the results of program ANACOM (through subroutine LECT12). The series A, B and C are computed in the subroutine CE3 by derivation of x, y and z with respect to r, that is, A
=
£fcojiifca\0V,
B
=
-^khjka'F^,
C
=
^fcc^aW-
We note that we do not need to multiply these series by Aw (which is a constant) in order to get the direction of e$. The subroutine CE4 computes the series D,E and F of e\ in the following form
E = /V/*)£iW+1/?'~V-/W)£iW_10i+V, F
=
/2(a,/?)^jcij,ai+1^-17fc-/1(a!/3)E^^ai-1^+17fc,
where
4 | | = /~+ E «,j>0,i+j>2
f2(a,P)
a da
i,j>0,i+j>2
Wf'
Analytic Solution of the Variational
Equations
195
with //• = f?j = 0 if i or j is odd. Some auxiliary subroutines, DEAAC and DECAA, are used to get series
Y.iaijka'-1^1^
= £)(* + l ) a i + i , i - i , * a W ,
from a given series A = Yl ^ijkQ-lPj'yk- We note that if the initial series A is of type (a) ((b), (c) or (d)), then the final series will be of type (c) ((d), (a) or (b)). In order to solve the variational equations it is necessary to compute the partial derivatives of the right-hand side of the restricted three-body problem (M, TV and P) with respect x, y and z, along the halo orbits. The series M, N and P are power series in x,y and z (see 2.2.3.2) whose coefficients are computed by the subroutine FMNP. In the partial derivatives of M, N and P (Mx,My, Mz,Nx,Ny, Nz,Px,Py and Pz) some extra monomials appear for order n > 2. We get the extra monomials multiplying the monomials of P by y. The series Mx,My,Mz,Nx,Ny,Nz,Px,Py and Pz for the family of halo orbits are computed in the subroutine DMNP according to Table 4.1. The numbers (i,j,k) in the table represent the monomials xly^zk. The monomials of M, N and P are listed in column 1. Columns x, y and z contain the partial derivatives of the series in the right part with respect to x, y and z respectively. The table shows how the monomials of degree n of the partial derivatives can be obtained from the monomials of degree n — 1 of M, N, P and the extra ones (noted by (*)). The exponents of x and y of these monomials up to a given degree are generated by the subroutine PONENT following the same order used for M, N and P and adding for each degree the extra terms at the end. The computation of ei,es and e$ is done in a recurrent way. The terms of order n of the series involved can be obtained from terms of order less than n. The subroutines PE1E2 and DE1E2 compute the terms of order n of the right-hand side of the equations when order n — 1 is available. In this step some auxiliary subroutines (PASPRO, MIXX, MIXT, ABAC) are used to compute the products of the different types of series (series in a and /?, or series in a, /3 and 7) which appear in the computations up to a given order. Also the subroutines PROD and SUM developed for program ANACOM are required. For each term of order n of G, H, J, K, L, Q, R, S, T, U, V and W, systems (4.3), (4.4), (4.5), (4.10) and (4.11) are solved. The solution of (4.4)and (4.10) is computed by the subroutine LINEAR. In that routine the solution of a linear system is computed using Gauss method. The series G, H, J, K, L, Q and v are written to some output channel, A, B, C, D, E and F to a second output channel, and R, S, T, U, V, W and tp to a third output channel.
196
Analytic Solution of Variational Equations.
order of the derivatives
[(1,0,0) {(0,1,0) 1(0,0,1) "(2,0,0) (0,2,0) (0,0,2) {(1.1.0) 1(1.0,1) '(3,0,0) (1,2,0) (1,0,2) '(2,1,0) (0,3,0) .(0,1,2) (2,0,1) (0,2,1) (0,0,3) "(4,0,0) (2,2,0) (2,0,2) (0,4,0) (0,2,2) .(0,0,4) (3,1,0) (1,3,0) .(1,1,2) (3,0,1) (1,2,1) (1,0,3)
1
2
3
Table 4.1
4.1.3
Results
1
X
Control
y
Parameters
z M N P
[(1,0,0) M
\[(0,1,0) {(0,1,0) 1(0,0,1) "(2,0,0) (0,2,0) (0,0,2) [(1,1,0)
[(1,0,0)
[(1,0,0) ^[(1,1,0) (2,0,0) (0,2,0) (0,0,2)
1(1,0,1) 0(0,1,1) "(3,0,0) (1,2,0) .(1,0,2)
N P M
11(1,0,1) N 0(0,1,1) (2,0,0) (0,2,0) .(0,0,2)
P
'(2,1,0)
(2AD (0,3,0) .(0,1,2)
(2,1,0) i (0,3,0) .(0,1,2) (2,0,1) (0,2,1) (0,0,3)
11(0,0,1)
(3,0,0) (1,2,0) (1,0,2) (* (1,1,1)
M
(0,2,1) (0,0,3) N (* 1(1,1,1) (3,0,0) (1,2,0) (1,0,2)
P
Scheme for computing the derivatives of M, N and P.
and Numerical
Tests
The results of program ANAVAR are an intermediate step for the analytic computation of projection factors and unitary controls. A sample for the L\ case in the SunBarycenter problem is given at the end of the section. We restrict the sample to order 5. Besides the series G, K, H, J, L, Q, A, B, C, D, E, F, R, S, T, U, V and W, the series corresponding to v (written as TV in the output) and if: (written as P in the output) are given. Furthermore the values of Jooo(JO), voo(NU0) and tpoo(PSO) are written. We remark that it follows from (4.1) that if the analytic theory is available up to order n, then Mx,..., Pz are available up to order n — 1 and this is the higher order for the solutions of the variational equations. For the applications we have run the program ANAVAR up to order 13. The CPU time for this run was 470 s under VAX
Analytic Solution of the Variational
197
Equations
11/785. In order to perform some checks a complementary program PROVAR has been developed. This program reads the results of the subroutine ANAVAR, the amplitudes a and /? of a given orbit, and computes the Fourier coefficients of the first three components of e±, e%, e,j, es and e&. These results should be compared with the output of the routine PRECON as given in Section 3.2. Taking care of the suitable normalizations the comparison shows the following facts:
a) The analytic first mode agrees perfectly with the numerical results. The relative error is O(10~ 7 ). b) The agreement is also 0(1O - 7 ) for the tangent vector to the orbit. This is not true for ei for which the relative error is of the order of 1 0 - 2 . However, as it has been stated before the analytic and numerical fourth modes are computed in a different way and it is not required that they coincide. The only thing to be required is that they span the same plane together with e3-
c) Concerning modes 5 and 6 the situation is much worse. The relative errors between numerical and analytic results for ft = 0.08 are roughly 1/4. This is improved when /? increases. The reason for this will be explained in 4.1.4. However the induced error in the projection factors is smaller as we shall discuss in 4.2.4. d) From the values of the traces of the periodic orbit Ai and T can be computed (see Section 3.1). Furthermore the period of the orbit and the value of the function u> are available (using results of program TESTAN, Section 2.2). From this information it is possible to obtain numerical values of u and ip. The agreement with the analytically obtained v is excellent (relative error less than 10~ 8 ). For ip the relative error is worse (in the range 1 0 - 3 to 10 - 4 ) as it can be foreseen from c).
4.1.4
The Resonance Convergence
Between
Modes and the Related Problems
of
The difficulties associated to es and ee are easily explained. For /? = 0 the halo orbit is reduced to a planar Lyapunov orbit. At this point a bifurcation is produced. Concerning the eigenvalues of the monodromy matrix, M, we obtain Ai 3> 1 (unstable mode), A2
198
Analytic Solution of Variational Equations.
Control
Parameters
The vector associated to the Lyapunov family, — {x(a, P, r),y(a, /?, r ) , z(a, P, r),x{a, P, r),y(a, P, r),z{a, P, r ) ) r at /? = 0, a = a* such that A(a*, 0) = A2 — C?, and r = 0, is not an eigenvector of M (it is, however, an eigenvector with eigenvalue 1 of the differential of the Poincare map when we restrict it to y = 0). To see this it is enough to check that the period changes in the Lyapunov family at a = a*. This follows from fj(a*,0) ^ 0, easily obtained from the expression of w. Therefore, in the Jordan decomposition of M the block associated to the eigenvalue 1 has nonzero out of the diagonal elements. On the other hand when j3 —• 0, e\ goes to a solution of the variational equations, because e\ - e 4 contains the factor %, and % = ^% + %, where % = - f f / § £ • But both | £ and ^ | go to zero when P does. A similar thing happens with e 5 and ee- When /? -> 0 the rotation exp(iipcoT) has a period going to the period T of the bifurcating orbit. Therefore es and e§ tend to be solutions of the variational equations. If they were independent together with e% we would obtain 4 independent periodic solutions e3(r),e4(r),es(r) and e§{r) of the variational equations. This would imply 4 independent eigenvectors of M with eigenvalue 1, which is an absurdity. Another way to explain the difficulties is that when ft goes to zero the six Floquet modes go to the following forms: e\ — ( - , —,0, - , - , 0 ) T , e-i = (—, —,0, —, - , 0 ) r , e 3 = ( - , - , 0, - , - , 0) T , e 4 = (0,0, - , 0,0, - ) T , e 5 = (0,0, - , 0,0, - ) T , e 6 = (0,0, - , 0,0, —) T , according to the type of their elements. Hence e^,e^ and e§ cannot be independent. We remark also that at the branching orbit e ^ r ) can be chosen as •^ (x(a,0,r),... , i ( a , 0 , r ) ) | a = a » , which is of the form ( - , —,0, - , — ,0) T , showing that the continuity is lost. As an additional illustration we mention that for the L\ case in the SunBarycenter problem using a 15th order theory it is obtained a* = 0.1391564 for P = 0, with a relative error of 10~ 6 at most. The rotation exp(itpu>T) should be the identity, i.e. \tp\uT = 2TT, but XOJT = 2?r and this implies |V>| = A = 2.086453455. By substitution of the given x and ^-amplitudes for P = 0 in the expression of V> given by program ANAVAR we obtain \tp\ =
2.015210551 + 0.036494495 + 0.008557552 + 0.004297167 +0.002718250 + 0.001908684 + 0.001433824 + . . .
up to order 12 (the last available term). The given partial sum amounts to 2.07062 . . . still far from the correct sum. This is due to the fact that we are in the boundary of the convergence region. The formulation given for the analytic Floquet modes is not valid for P going to zero. The convergence is lost. The discussion above shows also why the results improve when /? is increased within the domain of convergence of the analytic halo orbits.
Analytic Solution of the Variational
CASE HU = NN = JO =
uo (1 (1 (1 (1 (0 (0 (2 (0 (2 (0 (2 (0 (2 (0 (2 (0 (1 (1 (1 (2 (0 (3 (1 (3 (1 (3 (1 (3 (1 (3 (1 (3 (1 (3 (1 (3 (1 (2 (0 (2 (0 (2 (0 (2 (0
LI 0.3040357143000000D-05 5 -0.5345736537149110D+00 = 0 . 2532658995564170D+01 0.1808611697444885D+00 0 1) 0.4954206606046848D+00 0 1) 0.5425752192716954D+00 0 1) 0.8125982118531568D+00 0 1) -0.1859120783228149D+00 1 1) = 0.3209366083928439D+00 1 1) -0.4086103589925799D+00 0 2) = 0.2721328431881468D-01 2 2) -0.1153760845415829D-02 0 2) = -0.2768883474794640D-02 2 2) = -0.1285266335620483D+01 0 2) = 0.116 527573121993D+00 2 2) -0.3319434138362190D+00 0 0) = 2 0) = -0.3914010804067391D-01 -0.7942773196008624D+00 0 2) = 2 2) = -0.5261469961823192D-01 1 0) 0.5185860051066978D+00 1 2) = -0.1488253921689322D-02 1 2) = -0.4253708300612538D+00 0 0) = -0.2666495570309598D+01 2 0) = -0.8130751988271776D+00 0 1) = -0.6618019259405915D+00 2 1) 0.1614746070884018D+00 0 3) 0.6174773316028679D+00 2 3) = -0.5658168201740319D-01 0 1) = -0.5820048510573394D+00 2 1) 0.1546860035983995D+00 0 3) = -0.5827049941730015D+00 2 3) 0.3206072489608153D-01 0 1) = -0.8427549935317539D+00 2 1) = -0.2917903581005164D+00 0 3) 0.1491333699495434D+01 2 3) = -0.1392762380010141D+00 0 1) = -0.2124739872197645D+01 2 1) 0.4222133120050080D+00 0 3) 0.1644494147705355D+01 2 3) = -0.3987904255676670D-01 1 1) = -0.1064334312196404D+01 3 1) 0.9058192731774575D-01 1 3) 0.2317018812855133D+00 3 3) = -0.1459057497588900D-01 1 1) 0.1622000980453661D+01 3 1) = -0.4263374444908390D-02 1 3) 0.6738814464777059D+00 3 3) = -0.2805815701422004D-01
G (4 G (2 G (0 G (4 G (2 G (0 K (4 K (2 K (0 K (4 K (2 K (0 H (4 H (2 H (0 H (4 H (2 H (0 J (4 J (2 J (0 J (4 J (2 J (0 J (4 J (2 J (0 L (3 L (1 L (3 L (1 L (3 L (1 Q (3 Q (1 Q (3 Q (1 N (4 N (2 N (0 G (5 G (3 G(1 G (5 G (3 G (1 G (5 G (3 G (1 K (5
0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 1 3 1 3 1 3 1 3 1 3 0 2 4 0 2 4 0 2 4 0 2 4 0
2) 2) 2) 4) 4) 4) 2) 2) 2) 4) 4) 4) 2) 2) 2) 4) 4) 4) 0) 0) 0) 2) 2) 2) 4) 4) 4) 0) 0) 2) 2) 4) 4) 2) 2) 4) 4) 0) 0) 0) 1) 1) 1) 3) 3) 3) 5) 5) 5) 1)
Equations
199
0.1106160271738590D+01 -0.9874814112100292D-01 0.2524723144624028D-01 -0.1384821346687992D+01 0.2013713197634864D+00 -0.6614618582184655D-02 -0.1860984947130167D+01 -0.7008416740860990D-01 0.2508330093138730D-01 0.1126246755465649D+01 -0.5529635117522212D-01 -0.2069439938165449D-02 0.3196632678030173D+01 0.4516856158246034D+00 -0.1586460315180400D-01 -0.2525494671579871D+01 -0.3257946306542989D+00 -0.8399921469441334D-02 -0.1947235892604816D+01 -0.5942958087732516D+00 -0.1713810039912929D-01 0.2654866341211914D+01 -0.8987387206716629D+00 0.9448759178972720D-02 -0.2437335461152137D+01 0.1012950290895219D+00 0.2767392063167708D-02 -0.1877939180544048D+01 0.5942485479930130D+0 0.4584653142886637D+00 -0.4810641361738689D-01 -0.4783142393577762D+00 0.3618425013715348D-01 -0.1948949152483246D+01 0.9102471081467338D-02 -0.9890326895369906D+00 0.6273388172443814D-01 0.4414210812583315D+01 -0.1707571462182482D+01 -0.2382403359865240D+00 0.9473018680448164D+00 0.2124743478531757D+01 -0.1590522083296336D+00 -0.3962175242726377D+01 0.2054716940517980D+00 -0.1405041844135964D-01 0.2497016085109489D+01 -0.4143726090839239D+00 0.1677515525928288D-01 -0.1080773346389202D+01
200
K(3 K(l K(5 K(3 K(l K(5 K(3 K(l H(5 H(3 H(l H(5 H(3 H(l H(3 H(l J(5 J(3 J(l J(5 J(3 J(l
Analytic Solution of Variational Equations.
2 4 0 2 4
0 2 4
0 2 4 0 2 4 2 4 0 2 4 0 2 4
= = = = 3) = 5) = 5) = 5) = 1) = 1) = 1) = 3) = 3) = 3) = 5) = 5) = 1) = 1) = 1) = 3) = 3) = 3) = 1) 1) 3) 3)
0 -0 0 -0 0 -0 0 -0 0 0 -0 -0 0 -0 -0 0 -0 0 0 -0 0 -0
2301929754722930D+01 1318069927535936D+00 3965741803619705D+01 3433369099237444D+00 1144026973024185D-01 2365512354924140D+01 2193156513250643D+00 2361543782279740D-02 1961184786006026D+01 3350878672363064D+01 6970255954520934D+00 4660929776898495D+01 7755389806700120D-01 2065290953211215D-01 6301170592670368D+00 2261881293230590D-01 1289172710224523D+01 2598428402696061D+01 6621283666156592D-01 5737518111597422D+01 1284997910180245D+01 3113740608597905D-01
Table 4.2
J(5 J(3 J(l L(4 L(2 L(0 L(4 1,(2 L(0 L(4 L(2 L(0 Q(4 Q(2 Q(0 Q(4 Q(2 Q(0 Q(4 Q(2 Q(0
0 2 4 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
5) 5) 5) 1) 1) 1) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3) 3)
3) 5) 5) 5)
Control
= = = = = = = = = = = = = = = = = = = = =
0 -0 0 0 -0 0 -0 -0 -0 0 -0 0 -0 0 -0 0 -0 0 0 -0 0
Parameters
4122849529758202D+01 3233770865005978D+00 1891895583537684D-02 1829591690211440D+01 6911803355110367D+00 8241147375488192D-01 1153060210102002D+00 1088370871514493D-01 3223078000668421D-02 9563393525623444D+00 1052980120423679D+00 2258228174168213D-02 2885012772216766D+01 1581734599200697D+01 5359117841731795D-01 2263275322521081D+01 9881675839618288D-01 2089890835512201D-02 1608823538605654D+01 1519579468554130D+00 2504263005975283D-02
Output of program ANAVAR: Series G, K, H, J, L, Q and N.
CASE LI MU = 0.3040357143000000D-05 NN = 5 A(l 0 1) = -0.5000000000000000D+00 B(l 0 1 ) = 0.1614634048091902D+01 C(0 1 1) = 0.5000000000000000D+00 D(0 1 1) = -0.1740900545935829D+01 ECO 1 1 ) = -0.5621834591619539D+01 F(l 0 1 ) = 0.1596559878224751D+02 A(2 0 2) = -0.9059647953966096D+00 A(0 2 2) = 0.1044641164074320D+00 B(2 0 2) = -0.4924458751013136D+00 B(0 2 2) = -0.6074646717326298D-01 C(l 1 2) = -0.3468654604858686D+00 D(l 1 0) = 0.3042958344362914D+02 D(l 1 2 ) = 0.1812751255969184D+00 E(l 1 2) = 0.3654306030270019D+01 F(2 0 0 ) = 0.3322748864122144D+02 F(0 2 0 ) = 0.3623149617156789D+01 F(2 0 2) = -0.5537914773536906D+01 F(0 2 2) = -0.6038582695261314D+00 A(3 0 3) = 0.1190730292670741D+01 A(l 2 3 ) = -0.1240280779397711D+00 B(3 0 1) = -0.1422540573647265D+01
B(l B(3 B(l C(2 C(0 D(2 D(0 D(2 D(0 E(2 ECO E(2 E(0 F(3 F(l F(3 F(l A(4 A(2 A(0 A(4 A(2 A(0 B(4
2 0 2 1 3 1 3 1 3 1 3 1 3 0 2 0 2 0 2 4 0 2 4 0
= = = = = = = = = = = = = = = = = = = = = = 4) = 2) = 1) 3) 3) 3) 3) 1) 1) 3) 3) 1) 1) 3) 3) 1) 1) 3) 3) 2) 2) 2) 4) 4)
-0 0 -0 0 -0 0 -0 0 -0 0 -0 -0 0 -0 0 0 0 0 0 -0 -0 0 -0 0
2158462883436975D+00 1328551164323901D+01 3452974106658828D-01 5971431377509674D+00 2856580507897597D-01 6073575647603767D+01 1938807546315024D+01 1505642659652701D+01 1439470323978127D+00 4825667498956720D+02 5509395511523980D+01 3890700238651595D+01 4007523004923090D-01 8386650348280846D+02 6073575647603767D+01 6355831835269535D+01 4739487204510206D+00 1740504692726970D+01 6340969703409752D+00 3033404962522150D-01 2380288950983845D+01 3433410181667700D+00 1044482786814066D-01 1920413210888131D+01
Analytic Solution of the Variational Equations
(2 2 (0 4 (4 0 (2 2 (0 4 (3 1 (1 3 (3 1 (1 3 (3 1 (1 3 (3 1 (1 3 (3 1 (1 3 (3 1 (1 3 (3 1 (1 3 (4 0 (2 2 (0 4 (4 0 (2 2 (0 4 (4 0 (2 2 (0 4 (5 0 (3 2 (1 4 (5 0 (3 2 (1 4 (5 0 (3 2 (1 4 (5 0
2) 2) 4) 4) 4) 2) 2) 4) 4) 0) 0) 2) 2) 4) 4) 2) 2) 4) 4) 0) 0) 0) 2) 2) 2) 4) 4) 4) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3)
-0.6225734964700858D+00 0.2823240295501348D-01 -0.2149425545202692D+01 0.8477528693038016D-01 0.3828093871732036D-02 -0.1170523568832721D+01 0.7616528299315740D-01 -0.9575567391552400D+00 0.66633454627i0728D-01 -0.1429861478737300D+03 0.2741822741841397D+02 0.2585046898688398D+02 -0.1973446876442709D+01 -0.2806047726966592D+01 0.2642067037839506D+00 -0.9664478465891418D+01 0.3012100291825212D+01 0.6130383992403205D+01 -0.2698209650126737D+00 0.3624378103724396D+01 0.2351991270108950D+02 0.2771527104985947D+01 0.1040228368475635D+02 -0.2465222311819647D+01 -0.5399091896018933D+00 -0.7643983354294898D+01 -0.9047520718626013D+00 0.5800110876896068D-01 -0.3865079685081630D+01 -0.2867484743873657D+00 0.8520015196563276D-02 0.4218232987432908D+01 -0.6962957668752185D+00 0.2759161522420977D-01 0.1933414620390834D+01 0.3162370152105307D+01 -0.5127782166626836D+00 -0.4655072221683606D+01 Table 4.3
B (3 2 B (1 4 B (5 0 B (3 2 B (1 4 C (4 1 C (2 3 C CO 5 C [4 1 C [2 3 C [0 5 D [4 1 D [2 3 D 10 5 D (4 1 D (2 3 D (0 5 D (4 1 D (2 3 D [0 5 E [4 1 E [2 3 E [0 5 EA 1 E 12 3 E :o 5 E [4 1 E [2 3 E 10 5 F [5 0 F :3 2 F :i 4 F [5 0 F :3 2 F :i 4 F :5 0 F :3 2 F :i 4
3) 3) 5) 5) 5) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3) 3) 3) 5) 5) 5)
201
0.6700886128974591D+00 -0.2668103509925653D-01 0.4084912368638145D+01 -0.3420311256853099D+00 0.2101353670495661D-02 0.1504757774670548D+01 -0.2084652732826900D+00 0.3160803736521231D-02 0.1710903312716945D+01 -0.1779327700550720D+00 0.3455285189639480D-02 0.1651995555280459D+03 -0.3909107758910032D+02 -0.6488713483997862D+00 -0.2912812528032309D+02 0.3479335711693285D+01 -0.1504227162383318D+00 0.5793625143247275D+01 -0.7497913633448329D+00 0.1921370320283125D-01 0.1736097556034969D+03 -0.7460319916155322D+02 0.5269810361186367D+00 0.2502583178147209D+02 -0.6208969443204541D+01 0.7559703408175591D-01 -0.9854266966338632D+01 0.6608516167547436D+00 -0.1463299100868062D-02 -0.5484936724358469D+03 0.3303991110560918D+03 -0.1954553879455016D+02 -0.1737063209804607D+02 0.2702709559846036D+01 0.8809916763057747D+00 0.1092623833842276D+02 0.1356656157547936D+01 -0.1374792111909475D+00
Output of program ANAVAR: Series A, B, C, D, E and F.
202
Analytic Solution of Variational Equations.
CASE LI NU = 0.3040357143000000D-05 NN = 5 PSO .2015210551475635D+01 R (0 1 1) = 0.3555491785032116D+00 S (0 1 1) = 0.5255626768139885D-01 T CI 0 1) = 0.3809615156516177D+00 U CO 1 1) = -0.1404090194763038D+00 V CO 1 1) = -0.7568030245445969D-01 W (1 0 1) = -0.7359068222738914D+00 R Cl 1 0) = 0.6441981072035151D+01 R CI 1 2) = -0.3062419937854517D+00 S Cl 1 2) = -0.5219158068158726D+00 T C2 0 2) = 0.6285867060601335D+01 T CO 2 2) = -0.6084152806466143D+00 U Cl 1 2) = 0.1395961323514941D+00 V [1 1 0) = -0.2117024583273942D+02 V Cl 1 2) = -0.5658888325104418D+00 C2 0 2) = -0.5879787771943789D+01 2 2) = 0.5511133843024713D+00 P C2 0 0) = -0.1884607948507593D+01 p CO 2 0) = 0.5784555513222096D+00 R C2 1 1) = -0.2520868634389511D+01 R CO 3 1) = -0.3009517595629857D+00 R [2 1 3) = 0.1176239384641776D+01 R [0 3 3) = -0.1321691221902800D+00 S [2 1 1) = -0.1774713159145644D+01 S 3 1) = -0.8778949980093376D-01 S '2 1 3) = 0.9467348674210815D+00 S 0 3 3) = -0.7252745407458637D-01 T 3 0 1) = 0.7596710720570268D+01 T 1 2 1) = -0.2753522637026878D+01 T C3 0 3) = -0.2629753886402562D+01 T : i 2 3) = 0.1915882425249975D+00 U [2 1 1) = 0.1484314328242942D+02 U 0 3 1) = 0.2815014518882014D+00 U 2 1 3) = -0.8321961824412727D+00 U 0 3 3) = 0.1111956535336291D+00 V 2 1 1) = 0.3546362444227999D+01 V 0 3 1) = -0.7844145060429415D-01 V 2 1 3) = 0.1027382163945612D+01 V 0 3 3) = -0.6471472028380583D-01 3 0 1) = -0.7749764260123540D+01 '1 2 1) = 0.4961099472286703D+01 3 0 3) = 0.2142242059317589D+01 1 2 3) = -0.9176029847319209D-01 R 3 1 0) = 0.3407320374101070D+03 R 1 3 0) = -0.2880451202609797D+02 R 3 1 2) = -0.1246336480202328D+03 R 1 3 2) = 0.1492055902854416D+02
w w:o
:o
w w
w
w
R (3 1 R (1 3 S (3 1 S (1 3 S (3 1 S (1 3 T (4 0 T (2 2 T (0 4 T (4 0 T (2 2 T (0 4 U (3 1 U (1 3 U (3 1 U (1 3 V (3 1 V (1 3 V (3 1 V (1 3 V (3 1 V (1 3 W (4 0 W (2 2 W (0 4 W (4 0 W (2 2 W (0 4 P (4 0 P (2 2 P (0 4 R (4 1 R (2 3 R (0 5 R (4 1 R (2 3 R (0 5 R (4 1 R (2 3 R (0 5 S (4 1 S (2 3 S (0 5 S (4 1 S (2 3 S (0 5 S (4 1 S (2 3 S (0 5 T (5 0
4) 4) 2) 2) 4) 4) 2) 2) 2) 4) 4) 4) 2) 2) 4) 4) 0) 0) 2) 2) 4) 4) 2) 2) 2) 4) 4) 4) 0) 0) 0) 1) 1) 1) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3) 3) 3) 5) 5) 5) 1)
Control
Parameters
-0.8607979272709691D+00 0.1006934154338758D+00 -0.3773381277887974D+03 0.4756770192837946D+02 -0.1766479262595035D+00 -0.2283219966606174D-01 0.1662716353540178D+03 -0.6641099044983831D+02 0.4500285091427183D+01 0.3106669147459936D+01 -0.5423695146083907D+00 0.3625147633799059D-01 0.1093650099999283D+03 -0.1440517625497601D+02 0.3059639853883218D+00 -0.5670851991686953D-01 -0.1067418792384887D+04 0.9415184466574465D+02 -0.3934835584384589D+03 0.4768001949048987D+02 -0.4435142700523801D+00 -0.1975654230817772D-01 -0.1663922527299533D+03 0.6118475272623466D+02 -0.4496328528469434D+01 -0.2411124653263710D+01 0.3294513828473766D+00 -0.2937009781187618D-01 -0.2282111404838287D+02 0.2921448970812386D+02 0.3695779392844654D-01 0.2150438086724619D+03 -0.6590496494955985D+02 0.2144188095182672D+01 -0.1634258486416097D+03 0.1163615729347325D+02 0.9733005473734387D+00 0.1695781593531514D+01 -0.3148490901413368D+00 0.1319209990100450D-01 -0.1550847853342221D+03 0.1556266473971390D+02 -0.4377869017458173D-01 0.1364372235741325D+03 -0.2413457558005557D+02 0.5809887125398270D+00 0.1866478057223303D+00 -0.1156596518968369D-01 0.4650915051162774D-02 0.1939972742018780D+03
Analytic Solution of the Variational
T(3 T(l T(5 T(3 T(l T(5 T(3 T(l U(4 U(2 U(0 U(4 U(2 U(0 U(4 U(2 U(0 V(4
2 4 0 2 4 0 2 4 1 3 5 1 3 5 1 3 5 1
1) = -0 .7486472009796719D+02 1) = -0 .1518360174505468D+01 3) = -0 .5972778963315799D+02 3) = -0 .1305861216545816D+02 3) = 0,,3433561905330682D+01 5) = -0,.3857414624873869D+01 5) = 0,.8161216523564926D+00 5) = -0,.6011513530854667D-01 1) = 0,.3691358793918864D+03 1) = 0..1199206195889770D+02 1) = -0..2193661921934581D+01 3) = 0..1933598445433581D+03 3) = -0..1383982907802805D+02 3) = -0..9745127192809568D+00 5) = -0..6674366804966338D+00 5) = 0..1953597789783172D+00 5) = -0..1049664507793955D-01 1) = 0..1435713470020519D+03 Table 4.4
V(2 V(0 V(4 V(2 V(0 V(4 V(2 V(0 W(5 W(3 W(l W(5 W(3 W(l W(5 W(3 W(l
3 5 1 3 5 1 3 5 0 2 4 0 2 4 0 2 4
1) 1) 3) 3) 3) 5) 5) 5) 1) 1) 1) 3) 3) 3) 5) 5) 5)
Equations
= = = = = = = = = = = = = = = = =
203
-0 .1149683923639975D+02 0,.6362304069589682D-02 0 .1623055282719583D+03 -0 .2449836391865280D+02 0-.5807053480503643D+00 0,.7402539997217207D+00 -0..2975398610385267D-01 0,.3840862333939001D-02 -0..1990943048800168D+03 0..2051878845660479D+03 -0..8412254952370170D+01 0.,6028832948482691D+02 0..2224735767139009D+02 -0..3624685475206499D+01 0.2817258365076908D+01 -0. 4094066183775335D+00 0.3897495165605431D-01
Output of program ANAVAR: Series R, S, T, U, V, W and P.
204
Analytic Solution of Variational Equations.
4.2
Analytic Computations for Control Parameters
4.2.1
Control
Parameters
The General Method to be Used
The analytic solutions of the variational equations being now available, we wish to obtain the analytic expressions of the projections factors and the unitary controls. Using the approach given in Section 3.2, all the computations depend only on the Floquet modes. Analytic expressions for them were partially given in the last section. The first step is to obtain the full components of the six Floquet modes. Using the notation of 4.1.1 the first three components of the unstable solution of the variational equations is exp{vw)(G+ \/^\H,J+ ^f^\K,L +^/^1Q)T with w = LOT. From this the full solution follows exp(vw) [G + V^H,
J+V^1K,L
u{vJ - XKl) + y/^lw{pK
+ T/^IQ,UJ(VG
+ XJl),u{vL
- XH1) +
lw(i/# + AG1),
- XQl) + V^lco(isQ + XL1)]
T
In this formula (and through this section) the number 1 after the name of a series means the derivative with respect to ri = XOJT. The first mode ei is obtained from the previous expression deleting the factor exp(vw). In a similar way we obtain the remaining modes. The expressions are + \T:iK,L-V:-iQ,u(-vG
e 2 = [G-V^lH,-J +V^lu(isH u{-vL
+ XGI),OJ{VJ
+ XHl)
- XKl) + ^\{-vK
+ XQl) + y/^loj(vQ
+
- XJ1),
XLl)f,
(4.12) r
e3 =
[v^^,5,v^C,-AwAl,y^AwJBl,-AwC*l] ,
e 4 = [D,^f^E,F,^J^Xu}Dl where
v
e5
=
e6
=
+ yB,<J:-iXuFl
+ y^f^A,-XujEl
+ ip
icf,
, <9A du = A— - , [R,V^lS,T,Vzlto(XRl-^U),to(-XSl-^V)yV:ilio{XTl-ijW)]T, [V^IU, V, y/^lW,u^R
- XUl),V:zluj(ipS
matrix containing the vectors e\, / b+a a +b d+c M = a+b b+a \ c+d
e-fi
+ \Vl),u(\l>T
- Aiyi)] T .
is
a+b b c c d\ b+a a d d c b c+d d a a c b+ a d d a +b b c c d c b b a) d+c
(4.13)
where, for shortness, only the type of the series appears and not the full expression. Furthermore the underlined letters refer to series with independent term coming
Analytic
Computations
for Control
Parameters
205
from the normalizations already described. We note that in (4.13) the first two columns have mixed terms, i.e., terms of different types. Each one of these columns has been split into two parts. This splitting is crucial for what follows and is unique except by permutations (i.e., we can exchange the full left-hand side of the first column with the right-hand side one, and the same for the second column). Each one of the elements of (4.13) is a series of one of the four known types. What we need for the control parameters is the determinant of (4.13) and the (signed) minors of M, rrii,i — 1 , . . . , 6. The elements m*, i = 1 , . . . , 6 are of types d + c, c + d, b + a,c + d, d + c and a + b, respectively, and the determinant is of type c + d. Here, as in M, the different elements are broken as a suitable sum to make easier the computations.
4.2.2
On the Fast Computation
of the Involved
Parameters
To compute the determinant of a matrix such that their elements are power series, some of them without independent term, only products and sums are allowed. For the determinant of an n x n matrix, (n — l)n! products are required in principle. Each one of the products is time consuming if the series are truncated at high order. To obtain a fast computation of m,, i — 1 , . . . , 6 and det(M) we proceed as follows: a) First we compute the I
J = 15 2 x 2 minors obtained from the columns
5 and 6 of M and the 15 2 x 2 minors corresponding to columns 3 and 4. Each minor requires 2 products. The total number of products at this step is 60. b) The next step is the computation of the I
I = 15 4 x 4 minors obtained
from columns 3 to 6 by using Laplace rule and the previously computed 2 x 2 minors. Each 4 x 4 minor requires I
J products. The total number
of products is 90. c) The minors m* are again computed using Laplace rule. For instance, for mi we write: d a a b a d d c mi = (b + a) b c c d c b b a
•Hb+a)
~{c + d)
a d d c d a a b -{a+b) b c c d c b b a
a d a c
a d d c a d d c b c c d c b b a
d d a a d d b b
c a d d b d a a + (d+c) c a d d a b c c
206
Analytic Solution of Variational Equations.
Control
Parameters
where, as usual, we only put the type of the elements. The five 4 x 4 minors in the above expression are of types c, b, c, d and a, respectively. We have broken e2 in such a way that now the five products obtained from the left part of e2 are of the same type, and the same is true for the right part. In the example, and putting only the types, we have b-c — c-b + b-c — a-d+d-a
= d
and
a-c — d-b + a-c — b-d + c-a = c.
In this way it is easy to obtain separately the two components of each m;. The types of rrii were given in 2.1. This step requires 5 x 2 x 6 = 60 products. d) To obtain the determinant we write (for the types) det(M) =
(b + a)-(d + c)-{a
+ b)-(c + d) + (d + c)-(b + a)
- ( a + b) • (c + d) + (b + a) • {d + c) - (c + d) • (a + b). If we take either the first term of each factor or the second term of each factor we obtain series of the same type: c. The remaining products are of type d. The number of products in this last step is 24. Therefore the total number of products is 234, a quite moderate amount of work. We remark that if the Gauss method is used to compute each of the minors (for instance with numerical entries) we require 44 operations (product or division). The total amount is then 6 x 44 + 10 = 274. The minors rrii have lower degrees 2,2,4,2,2 and 4, respectively and the lower degree of det(M) is also 2. 4.2.3
Description ters
of the Program
to Obtain the Control
Parame-
A program under the name of CONA has been developed to perform the previously mentioned computations. The starting point are the first three components of Floquet modes numbers 1,3,4, 5 and 6, and the functions v(a, /?) and ip(a, j3). All these elements have been computed by program ANAVAR. It is also required to know the constant A and the functions A and u) obtained in the program ANACOM. There are two steps in the program: 1) The first step is the computation of the full components of the 6 Floquet modes. The components of modes 1 and 2 consist of two series each. The remaining components consist of just one series. To obtain the full components we apply the formulae (4.12). We remark that some of the series (the underlined ones in (4.13)) have independent term. Therefore we are dealing with series of the form ^2 C(i,j, k)aiP^k, with 7 = exp(irwA) where the couple (i,j) = (0, 0) is allowed. Elementary modifications
Analytic
Computations
for Control
207
Parameters
of the routines PRODT and SUMT of program ANACOM produce the routines PR0DT0 and SUMTO to be used now. It has been quite useful to produce a routine, C0P0 which copies one series to (from) another series or element of an array of series. Each series is represented by a list of coefficients and its type ((a), (b), (c) or (d)) as usual. The computation of derivatives with respect to T\ = TOJ\ is done by routine DERO. Several products of "long" series of the form shown before by "short" series, of the form Yl ^(w)" 2 */? 2 ' 7 are required. This is done by the routine MIXTO where first a "short" series is expanded to a "long" one. The computation of function
u(a,p)
= £
wya^'
it follows that Ai = „ § ^ and U\ = 4 | £ are short series. Then tp = Aa/?u;iAi. The derivatives Ai and uii are computed by routine DERS. Then ui\ is expanded to a long series and multiplied, by Ai using MIXTO. The product wiAi is a short series in expanded form. This is multiplied by a, (3 and A in routine PRABL. As wi Aj is a type (a) series, a/JwiAi is of type (c). The conversion is easily done because an element in a2*/?2-7 in u>iA.x is stored in the place (m 3 + 3m 2 + 2m + 12j)/12, where m = 2i + 2j. The element in a2l+1 j32^+l in a/?wiAi is stored in the place (2m 3 + 3m 2 - 2m + 12(2.7 + 2))/24, where m = 2i + 2j + 2. One should be careful because elements in wiAi of degree n will produce elements of degree n + 2 in a/3u>iAi and must be skipped if the degree is too large. 2) The second step is the computation of minors (of size 2 x 2 , 4 x 4 , 5 x 5 and 6 x 6). This is done using the algorithm given in 2.2. The only routines we require at this step are C0P0, PR0DTO and SUMTO. This step is carried out in routine D56. The final result are the 5 x 5 minors of the first column and the determinant of the Floquet modes. In the output the full expression of the first Floquet mode is also included because, as explained in Chapter 3 (3.2.6), it is required for the projection factors and unitary controls. In fact it is only required for the normalized projection factors given by wj = mi • ( d e t ) - 1 • |ei|, because then Ai = —n\/ ((7f|)2 + {K\)2), A 2 = -7f5V((7f])2 + ( ^ ) 2 ) .
4.2.4
Comparison with Direct Numerical
Computations
At the end of this section a short sample of results is given. As mentioned earlier, the first mode contains components of types b,a,a,b,d,c,... (see (4.13)). These are the successive elements in Table 4.5, each one as coefficients of power of a,f) and 7. Similar conventions are used for the 6 minors (see the end of 4.2.1) and the
208
Analytic Solution of Variational Equations.
Control
Parameters
determinant. As the system is conservative, the determinant should be constant for every halo orbit, i.e., only 0th order harmonics should appear. This is not true in the results, but we must take into account that the relation A ( Q , / 3 ) = A has not been used in the final expression of the determinant. When a couple (a, /3), for which the mentioned relation holds, is substituted in the expression of the determinant, this one is almost constant. It has harmonics of positive order (cosine terms) but with relatively small amplitude (a few thousandths). We remark also that from (4.13) it follows that the dominant terms in the determinant have the factor a/3. Hence, for small amplitude halo orbits, some numerical difficulties are foreseen. However they do not appear in the usual range of /?. To present in a short form the comparison with the results of program PAPUS concerning projection factors and gain (in the (x, y) maneuvers) we have drawn the corresponding functions for two revolutions. In the figures given at the end of this section the results are shown for /3 = 0.08 and 0.16 in the Sun-Barycenter problem. Together with the numerical results of PAPUS and the analytic ones of C0NA we also display the refined values for /? = 0.08, to be explained in Chapter 8. From the pictures it is easily seen that for /3 = 0.08 the relative errors in the ff1 vector and in the gain are a few hundredths, while for 0 = 0.16 they are a few thousandths. These errors are, at most, of the order of magnitude of the random errors we have been using in the simulations of the control maneuvers, to be described in Chapter 9. In this chapter we also present the results of the simulations for a fully analytic station keeping. In 1.3 we have mentioned the bad agreement between the analytic and numerical results for the Floquet modes numbers 5 and 6. To make clear what is happening we have done the following check: For a given point in the halo orbit we have two Floquet bases at our disposal (the numerical and the analytic one). We can express each one of the vectors of the analytic basis in the numerical one. The results are: a) For ei,e2,e3 the agreement is excellent: the ith analytic vector only has component in the ith numerical one (except rounding errors O(10 - 7 ) at most), for i — 1,2,3. b) The vector e 4 has an important component in the third numerical vector, moderate components in the fifth and sixth and small in the first and the second. c) Vectors e 5 and e6 have important components in the third numerical vector and moderate components in the other vectors. Of course, in a) and b) the vectors e4,e 5 ,e 6 have important components in the respective numerical vectors. As in ff1 the important things are the first mode and the subspace spanned by the remaining vectors, the influence of the bad determination of e4,e5 and eg is lowered.
Analytic
Computations
for Control
Parameters
209
ANALYTIC EXPANSIONS OF THE PARAMETERS REQUIRED FOR CONTROL, HALO CASE ORDER = 5 UNSTABLE VECTOR -1 0 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+00 -0.842754993531759D+00 -0.139276238001011D+00 0.OOOOOOOOOOOOOOOD+00 -0.158646031518040D-01 -0.839992146944134D-02 -0.697025595452094D+00 -0.206529095321125D-01 0.226188129323050D-01 1 0 0.100000000000000D+01 0. OOOOOOOOOOOOOOOD+OO -0.661801925940591D+00 -0.565816820174031D-01 0.OOOOOOOOOOOOOOOD+OO 0.252472314462402D-01 -0.661461858218465D-02 -0.159052208329633D+00 -0.140504184413596D-01 0.167751552592828D-01 1 0 -0.534573653714911D+00 -0.391401080406739D-01 -0.212473987219764D+01 -0.398790425567667D-01 -0.171381003991292D-01 0.944875917897272D-02 0.276739206316770D-02 0.662128366615659D-01 -0.311374060859790D-01 0.189189558353768D-02 -1 0 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+00 -0.582004851057339D+00 0.320607248960815D-01 0.OOOOOOOOOOOOOOOD+OO 0.250833009313873D-01 -0.206943993816544D-02 -0.131806992753593D+00 0.114402697302418D-01 -0.236154378227974D-02 -1 1 0. OOOOOOOOOOOOOOOD+OO -0.425370830061253D+00 0.673881446477705D+00 0.OOOOOOOOOOOOOOOD+OO -0.989032689536990D+00 0.158173459920069D+01 -0.988167583961828D-01
0.542575219271695D+00 -0.128526633562048D+01 -0.291790358100516D+00 0.OOOOOOOOOOOOOOOD+OO 0.319663267803017D+01 -0.252549467157987D+01 0.i96118478600602D+01 -0.466092977689849D+01 0.415259155139893D+01
0.OOOOOOOOOOOOOOOD+OO 0.116052757312199D+00 0.149133369949543D+01 0.OOOOOOOOOOOOOOOD+OO 0.451685615824603D+00 0.325794630654298D+00 0.335087867236306D+01 0.775538980670012D-01 -0.630117059267036D+00
0.180861169744488D+00 -0.408610358992579D+00 0.161474607088401D+00 0. OOOOOOOOOOOOOOOD+OO 0.110616027173859D+01 -0.138482134668799D+01 0.947301868044816D+00 -0.396217524272637D+01 0.249701608510948D+01
0.OOOOOOOOOOOOOOOD+OO 0.272132843188146D-01 0.617477331602867D+00 0.OOOOOOOOOOOOOOOD+OO -0.987481411210029D-01 0.201371319763486D+00 0.212474347853175D+01 0.205471694051798D+00 -0.414372609083923D+00
0.812598211853156D+00 -0.794277319600862D+00 0.422213312005008D+00 -0.194723589260481D+01 0.265486634121191D+01 -0.243733546115213D+01 -0.128917271022452D+01 -0.573751811159742D+01 0.412284952975820D+01
-0.331943413836219D+00 -0.526146996182319D-01 0.164449414770535D+01 "0.594295808773251D+00 -0.898738720671662D+00 0.101295029089521D+00 0.259842840269606D+01 0.128499791018024D+01 -0.323377086500597D+00
0.495420660604684D+00 -0.115376084541582D-02 0.154686003598399D+00 0.OOOOOOOOOOOOOOOD+OO -0.186098494713016D+01 0.112624675546564D+01 -0.108077334638920D+01 0.396574180361970D+01 -0.236551235492414D+01
0.OOOOOOOOOOOOOOOD+OO -0.276888347479464D-02 -0.582704994173001D+00 0.OOOOOOOOOOOOOOOD+OO -0.700841674086099D-01 -0.552963511752221D-01 0.230192975472293D+01 -0.343336909923744D+00 0.219315651325064D+00
0.320936608392843D+00 0.162200098045366D+01 -0.280581570142200D-01 -0.194894915248324D+01 0.627338817244381D-01 -0.535911784173179D-01 0.208989083551220D-02
0.OOOOOOOOOOOOOOOD+OO -0.426337444490839D-02 0.OOOOOOOOOOOOOOOD+OO 0.910247108146733D-02 -0.288501277221676D+01 0.226327532252108D+01 0.160882353860565D+01
210
Analytic
Solution of Variational Equations.
-0.151957946855413D+00 1 1 0.000000000000000D+00 -0.148825392168932D-02 0.231701881285513D+00 0.594248547993013D+00 -0.478314239357776D+00 -0.691180335511036D+00 -0.108837087151449D-01 -0.105298012042367D-00 1 0 0.253265899556417D+01 -0.506373718181529D+00 0.155804727440972D+00 0.728478058099669D+00 -0.150227010218387D+00 0.577187343313840D-01 0.533516074414575D-01 0.932923804472644D+00 0.227911926359752D+00 -0.193479754114853D+00 -1 0 0.000000000000000D+00 0.000000000000000D+00 -0.640641079902468D+01 -0.706904354893229D+00 0.000000000000000D+00 0.201604270857720D-01 -0.764785118561426D-01 -0.196235412499067D+01 -0.112616488375175D+00 0.232288643309602D+00 -1 0 0.000000000000000D+00 0.000000000000000D+00 -0.966112459962440D+01 0.168418415094630D+00 0.000000000000000D+00 0.777703744038109D-01 0.178549532540246D-01 -0.116914319016461D+00 -0.212388959520230D+00 0.137557752828591D-01 1 0 -0.135389277287267D+01 0.171565501956938D+00 -0.717845597162893D+01 -0.301679646580134D+00 0.567219596349565D-01 -0.526978849827665D-01 0.242800208409208D-01 -0.835983575352494D-02 -0.154577527560710D+00 0.294277822899310D-01 1 1 0.000000000000000D+00 0.177126363662744D+01 -0.363124496342260D+01
Control
Parameters
0.250426300597528D-02 -0.185912078322814D+00 -0.106433431219640D+01 -0.145905749758890D-01 0.458465314288663D+00 0.361842501371534D-01 0.824114737548819D-01 -0.322307800066842D-02 0.225822817416821D-02
0.518586005106697D+00 0.905819273177457D-01 -0.187793918054404D+01 -0.481064136173868D-01 0.182959169021144D+01 -0.115306021010200D+00 0.956339352562344D+00
-0.673998272494953D+00 0.432842607242743D+01 0.789093132464872D+00 0.677233216059789D+01 -0.130176482283584D+02 0.175700280942576D+02 0.115784151625806D+01 0.239014835374731D+02 -0.369968547038112D+02
-0.475507946336915D+01 -0.415355383647811D+00 -0.777093553240463D+01 -0.104341628615520D+01 -0.100857698549691D+01 -0.220901644690856D+01 -0.266223786823187D+01 -0.185802533912045D+01 0.552408506176867D+01
0.175151642239731D+01 -0.496023433736832D+01 -0.631144475803597D+00 0.000000000000000D+00 0.202295507854446D+02 -0.179536779331749D+02 0.157878024655170D+02 -0.468839624075968D+02 0.365666375408371D+02
0.000000000000000D+00 0.407480561959568D+00 0.764205284564742D+01 0.000000000000000D+00 0.530752245126898D+00 0.250573424568921D+01 0.137700293081030D+02 0.214975006555647D+01 -0.591871744838563D+01
0.295017993954095D+01 -0.331736739864111D+01 0.122714375613312D+01 0.000000000000000D+00 0.910404826857448D+01 -0.174891490018958D+02 0.445801668556014D+01 -0.315871410958222D+02 0.370196320899194D+02
0.000000000000000D+00 -0.226568881273650D+00 0.881768844473083D+01 0.000000000000000D+00 -0.413441716970738D+01 0.705342652558683D+00 0.924233445809208D+01 0.876870069466651D+01 -0.281810444023493D+01
0.102436202189546D+01 -0.200681906185476D+01 0.209922558981633D+00 -0.697357753701957D+01 0.182624694797808D+02 -0.155723853186334D+02 0.135300713621047D+02 -0.501817185303616D+02 0.351194290810479D+02
0.170124072936740D+01 -0.121700799300537D+00 0.781230344183521D+01 -0.593164025051652D+00 -0.134030109746995D+01 0.718038818524312D+00 0.282451469783100D+00 0.536761321954160D+01 -0.310696337960156D+01
-0.114047119305413D+01 -0.464359011581622D+01 0.138673164989853D+00
0.131340151080716D+01 0.251359490716884D+00 -0.722209722160079D+01
Analytic 0.124243060707266D+01 0.704287582884577D+01 -0.524938514405512D+01 -0.112617369161528D+00 0.131858195895152D+01 -1 1 0.000000000000000D+00 -0.108352960427970D+01 0.315701747977191D+01 0.000000000000000D+00 -0.649680412772595D+01 0.954681233929422D+00 -0.275266986061919D+00 -0.148335466634831D+01 MINORS -1 1 0.OOOOOOOOOOOOOOOD+OO -0.151455459366213D-14 -0.137026993680817D+01 0. OOOOOOOOOOOOOOOD+OO 0.397137150300560D+01 0.582359759881045D+03 -0.109859148532478D+03 0.139391156045965D+01 1 1 0.OOOOOOOOOOOOOOOD+OO 0.143522323027123D-14 -0.168706093929012D+00 -0.338333884629264D+04 -0.650786476968026D+00 0.216944144630744D+04 -0.707200171761561D+02 -0.387570337158193D+00 1 1 0.OOOOOOOOOOOOOOOD+OO -0.268479978445897D-14 -0.132023718264934D+01 0.638386273071464D+03 0.330378893167362D+01 0.141725252898068D+04 -0.625457756895754D+02 0.110464591032274D+01 -1 1 0. OOOOOOOOOOOOOOOD+OO 0.283320096891614D-14 -0.811672700015922D+00 0.OOOOOOOOOOOOOOOD+OO 0.185976406325590D+01 -0.382154813055468D+04 0.106880079160730D+02 0.722759897732445D+00 -1 0 0. OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO 0.108321786805821D-15 0. OOOOOOOOOOOOOOOD+OO 0.464038114689835D+00
Computations
for Control
Parameters
211
0.783719691379984D+01 -0.431922930539726D+00 0.254370590642196D+00 0.741202463573805D-02 -0.204058191093420D-01
0.558867186983263D-01 0.172038701603975D+02 0.120819743497864D+02 -0.143615956911870D+02
0.424926090057802D+00 0.681095554214881D+00 -0.162389410479740D+00 -0.995096999929633D+00 0.460870544777004D+00 -0.155081573761328D-01 -0.117331659508570D-01 0.299008841133168D-01
0.OOOOOOOOOOOOOOOD+OO -0.312903367800989D-01 0.OOOOOOOOOOOOOOOD+OO 0.369544141165548D-01 -0.722171725405909D+01 0.609993087741313D+00 0.140513891401758D+02
0. OOOOOOOOOOOOOOOD+OO 0.914234547673684D+02 0.149415234192236D+00 -0.630959793747229D+03 -0.433041247747244D+00 -0.465674777865388D+01 0.129279741462377D+01 -0.330356222297392D-01
0.OOOOOOOOOOOOOOOD+OO -0.717387325089227D+00 0.OOOOOOOOOOOOOOOD+OO 0.517485869898476D+02 0.389160200710921D+04 0.119376167845610D+04 -0.100049372990490D+02
0.OOOOOOOOOOOOOOOD+OO 0.275454107285173D+03 0.183958356356978D-01 -0.661072335553477D+03 0.709622325158910D-01 -0.146404070443865D+02 0.262979655321866D+00 0.427184889628613D-02
-0.439379469626167D+03 -0.219262579827908D+01 -0.208206851328277D+05 0.137148469621858D+02 0.140183461258137D+05 0.125224552725064D+04 0.319507859157373D+01
0.OOOOOOOOOOOOOOOD+OO 0.171065300622894D+03 0.143959626155371D+00 -0.374515741463518D+03 -0.360247556840933D+00 -0.461845652597413D+00 0.935439096195555D+00 -0.971726819105999D-02
0.788177450133445D+02 -0.455868586891861D-01 0.410569095022475D+04 -0.207361596264845D+01 0.689626889064416D+04 0.119025180763064D+04 -0.931330853053706D+01
0.OOOOOOOOOOOOOOOD+OO -0.488183115224217D+03 0.885053837222893D-01 0.657383701358575D+03 -0.202790031065674D+00 0.687025214310611D+00 0.668774361621462D+00 -0.182508526891491D-01
0.OOOOOOOOOOOOOOOD+OO 0.885053837222893D-01 0.OOOOOOOOOOOOOOOD+OO -0.274581586877134D+01 -0.227489003750351D+05 -0.117721182702471D+04 -0.509335755357864D+01
0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO 0.518361578535528D+02 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO
0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOD+OO -0.131961766259766D+03 0.551989115486356D+00
212
Analytic Solution of Variational Equations.
-0.601892960988937D-01 0.378497346460280D+03 -0.139443294887495D+02 0.250355954637660D+00 1 0 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.384083248177705D-15 0.138736751412112D+01 0.688445305181666D+00 -0.523845187889477D-02 0.106659012678644D+04 -0.121698532514425D+02 -0.304479083437008D-01 1 1 0.000000000000000D+00 0.605821837464852D-15 -0.568212834832062D+00 -0.953708786672230D+03 0.772979855714525D-01 -0.192741133924676D+03 0.165373274440876D+01 -0.449906998293943D-01 -1 1 0.000000000000000D+00 0.598009679279682D-15 -0.171321461605415D+00 0.000000000000000D+00 0.157733380149887D+00 0.492677091781588D+03 -0.171596768023156D+02 0.522915139789056D-01 -1 1 0.000000000000000D+00 -0.111866657685790D-14 -0.101209635228405D+01 0.000000000000000D+00 0.766296227861854D+00 -0.503353010159490D+03 -0.198594487726374D+02 0.130785468329751D+00 1 1 0.000000000000000D+00 -0.113328038756646D-14 0.417033941252438D+00 -0.513142129796986D+03 -0.754164029203628D+00 0.802487307568476D+03 0.126412172820186D+02 -0.234416859890363D+00 1 0 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.278475957007121D-15 0.547790885607190D+00 -0.809109431562565D-02
Control
Parameters
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00
0.256831318093476D+04 0.358883782301608D+03 -0.229598568041279D+01
0.000000000000000D+00 0.000000000000000D+00 0.139124535239862D+03 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.158961622848531D+03 -0.213934610882802D+03 0.480412399971907D-01 0.727281933886191D+04 0.438587228961811D+03 0.279234267292885D+00
0.000000000000000D+00 -0.225139933249004D+02 0.619583422994942D-01 0.447139579094357D+02 -0.842862877342883D-02 -0.507347637466270D+01 0.391988830575143D+00 0.436771620981848D-03
-0.121988644769968D+03 -0.727167360825521D+00 -0.593249919112045D+04 -0.110012627300423D+02 -0.701173416912637D+03 -0.252388579614980D+02 0.375869801185505D+00
0.000000000000000D+00 0.670494787691698D+02 0.186810172363236D-01 -0.166548942601069D+03 -0.171993629152561D-01 0.218633088572070D+00 0.214274793807920D+00 -0.435829476414996D-02
0.000000000000000D+00 0.186810172363236D-01 0.000000000000000D+00 0.144168853662054D+02 0.305898554703444D+04 0.191081382373625D+03 -0.113004504868181D+00
0.000000000000000D+00 -0.614477913304919D+02 0.110359725072768D+00 -0.197119867627952D+02 -0.835575000742569D-01 -0.367316624882559D+01 0.723294840768583D+00 -0.268136434335982D-02
0.000000000000000D+00 -0.529870119305743D+00 0.000000000000000D+00 -0.137513231922346D+00 -0.283324984660872D+04 0.125195419898568D+03 -0.973901992238996D+00
0.000000000000000D+00 0.970437182454245D+02 -0.454736853845667D-01 -0.602704435706455D+02 0.822345962761911D-01 -0.192632384502494D+01 -0.395461514915795D+00 0.913593349587341D-02
-0.652119155464124D+02 -0.277221639508547D+00 -0.314731475877946D+04 -0.101076451692409D+02 0.465930302219873D+04 0.109322743765263D+03 0.138143117743076D+01
0.000000000000000D+00 0.000000000000000D+00 0.226791624809684D+02 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.627647161054614D+02 0.371031143278801D+00 -0.589628627898442D-01
Analytic 0.642935360087567D-02 0.172953679245870D+03 0.123833294418754D+01 -0.233316669292475D-01 -1 0 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.183725590031283D-15 0.000000000000000D+00 0.169890511142578D+00 -0.257875535845191D-02 0.302019443820539D+03 -0.244531827974051D+01 0.274563975666184D-02 DETERMINANT 1 1 0.000000000000000D+00 0.593912671327162D-14 -0.146665066606660D+01 -0.543890619857743D+04 0.293828776049668D+01 -0.897823788773588D+01 -0.535707752391015D+01 0.654422547727651D+00 -0.726937369764287D+00 -0.212866155128093D-01 -1 1 0.000000000000000D+00 0.000000000000000D+00 -0.277555756156289D-16 0.000000000000000D+00 0.555111512312578D-16 -0.115463194561016D-12 0.133226762955018D-14 0.954097911787243D-17 -0.726937369764287D+00 -0.212866155128093D-01 Table 4.5 Output of explanations.
Computations
for Control
Parameters
213
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00
0.122016441420395D+04 -0.146666064423079D+02 0.213972035325640D+00
0.000000000000000D+00 0.000000000000000D+00 0.391506219149131D+02 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.514927149949368D+02 0.236494689525658D-01 0.205808934594104D+04 0.861730976626764D+02 -0.251799465844185D-01
0.000000000000000D+00 -0.439995199820012D+01 0.159924659267497D+00 0.853995946780794D+01 -0.320393042323791D+00 -0.247976440510047D+02 0.111397957023344D+01 -0.147196977453509D-01 0.000000000000000D+00
-0.702179056925392D+03 -0.363459484812910D+01 -0.332417627345543D+05 -0.396918885457232D+02 0.171586701684228D+04 0.267869920652504D+03 -0.476363182685990D+01 -0.127611229098999D+02 0.195217103873552D+00
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 -0.124344978758017D-13 -0.383995017167159D-17 0.000000000000000D+00 0.286229373536173D-16 -0.108420217248550D-18 0.000000000000000D+00
0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+00 0.133226762955018D-14 -0.113686837721616D-12 0.159872115546022D-13 0.111022302462515D-15 -0.127611229098999D+02 0.195217103873552D+00
CONA, Sun-Barycenter
, case L\. See the text for
214
Analytic Solution of Variational Equations.
Control
Parameters
Fig. 4.1 First projection factor (top) and gain of the (x,y) maneuvers (bottom). Two revolutions are shown. The three lines correspond to numerical results (dots), analytic results (points) and refined values (see Chapter 8). Sun-Barycenter problem, case L\, z-amplitude /3 = 0.08.
Analytic
Fig. 4.2
Computations
for Control
Parameters
Plots similar to previous figure for /3 = 0.16.
215
216
4.3
Analytic Solution of Variational Equations.
Control
Parameters
References [1] R. Abraham and J. E. Marsden. Foundations of Mechanics. Benjamin, 1978. [2] E. W. Brown and C. A. Shook. Planetary Theory. Dover, 1964. [3] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer Verlag, 1983. [4] P. Hartman. Ordinary Differential Equations. John Wiley & Sons, 1964. [5] S. Smale. "DifFerentiable dynamical systems" Bull. Am. Math. Soc, 73, 747-817, 1967 [6] V. Szebehely. Theory of Orbits. Academic Press, 1967.
Chapter 5
The Equations of Motion for Halo Orbits Under the Effect of Perturbations and Near Triangular Points
In this chapter we concentrate on the real problem for the motion of a spacecraft taking the solar system as a perturbation of the restricted three-body problem. First, we expose the general method to be followed, how to decide about the terms to be retained and the reference systems to be used in the sequel. As a result we have a final model to be used in the computation of the quasi-periodic orbits. This semianalytic task (analytic theory with numerical coefficients) will be carried out in Chapters 6 and 7. Then we go to the more technical part: to obtain the final equations of motion. They are (in form) slightly different in the case Sun-Barycenter, where the barycenter plays a special role, and in the Earth-Moon case. As a first step the Lagrangian is expressed in ecliptic coordinates. Then we perform a change to normalized coordinates, i.e., suitable coordinates which are well adapted to the halo orbits. After some manipulations with Lagrange's equations we reach the final equations of motion. The same steps are applied later to the triangular points. Finally we have done checks of the obtained equations to be certain that no mistakes are introduced in the computations.
5.1 5.1.1
Analysis of the Perturbations Description and Justification of Dynamical Coherence
of the Method.
The
Problems
We consider two models of the solar system acting on the spacecraft. The first one is the real model. The second one will be the adopted model. This one has to be given in analytic form, because afterwards we shall look for quasi-periodic solutions (to a certain degree of approximation) in an analytic way. We request that the residual acceleration along the orbit be small. The residual acceleration is defined as the difference between the true acceleration acting on the body and the acceleration acting when only the terms contained in the adopted 217
218
Perturbed Equations
of Motion: Halo and Triangular
Cases
model are considered. If the analytic solutions of the adopted model were exact then this difference would be equal to the difference between the true acceleration and the one obtained by differentiation of the solution twice. An extra residue is introduced due to the fact that only an approximation of the solution is obtained. As the solution is not known we compute the residual accelerations in the first way along the halo orbit which is a rough approximation of the quasi-periodic solution. The differences due to this approximation are not relevant. Let ar be the residual acceleration. Several norms can be computed to estimate the importance (the weight, as denned in 5.1.2) of the different terms. The norm of interest for space missions is the L\ norm. It gives the average acceleration required for a continuous control designed to balance exactly the errors of the model. Therefore it measures the fuel consumption or Av required per unit time. As a complementary information the L2 and L^ norms have been obtained. Some checks are also made about the average of the residual acceleration (not in norm). In several cases an increase of one unit in the weight of the terms has been obtained due to cancellations along the time. However this has not been taken into account. As a last remark we note that some terms with a very small residual acceleration can produce large deviations in the quasi-periodic solution. This is the case when small amplitude and very large period periodic forcing terms are present. The adopted procedure has been to skip these terms from the solution and to cancel their effect through rather small additions to the maneuvers. An important point to be reminded when we deal with analytic theories for the motion of the planets and Moon is the lack of dynamical coherence. Let fi(t) be the function giving the position of the ith body of the solar system and rrij the mass of the jth. body. Then the function
should be identically zero. However this is not true and some residual acceleration is present in the analytic theory. Fortunately in the analytic model we use, the values of a\{t) are small and can be neglected. However this effect has been considered in the checking program. Their importance is much greater for the Earth-Moon problem because we have used as model a truncation of Brown's theory and not a coherent approximation to the real motion. 5.1.2
Determination of the Magnitudes ferent Weights
to be Associated
to the Dif-
The analytic solutions up to a given order in a, /3 are available from Chapter 2 (item 2.2.4). Therefore the acceleration up to a given order can be obtained analytically. The parameter describing the orbit is an angle ranging from 0 to 27r. Then, for
219
Analysis of the Perturbations
the same parameter we can compute two different accelerations which give the magnitude of the terms included in an approximation and not in the other. For a given order we can also compute the residual acceleration as the difference between the one obtained analytically and the acceleration at the same point when the restricted three-body model is used. Only odd order terms need to be computed because the even order terms following the ones of odd order do not improve the solution (see Chapter 2). The magnitude of the terms of a given order is the weight associated to this order. We note that for the orbits of interest the amplitudes of x and z are, roughly, 0.15 and 0.08, respectively, for L\ and Li halo orbits in the Sun-Barycenter case. This means that for individual terms and disregarding the coefficients going from one order to the other the importance of successive terms decreases by a factor around 10. However when the full number of terms and their coefficients are considered, the reduction going from one order to the next one is smaller. A program has been produced to compute the residues analytically (TESTRANA). Tables 5.1 to 5.4 give the magnitudes of some weights for different ^-amplitudes, /?, in the L\ and L2 cases for the Sun-Barycenter and Earth-Moon problems. All the results are given in adimensional units (i.e., the units of the RTBP). We recall that for the Sun-Barycenter system 1 adimensional unit of acceleration 5.93 mm/s 2 and for the Earth-Moon system it is 2.72 mm/s 2 . Weight
p
0.04 0.08 0.12 0.16
17
15
13
11
9
7
5
3
0.61E-9 0.79E-9 0.11E-8 0.17E-8
0.56E-8 0.69E-8 0.96E-8 0.14E-7
0.51E-7 0.60E-7 0.80E-7 0.12E-6
0.47E-6 0.52E-6 0.64E-6 0.90E-6
0.43E-5 0.47E-5 0.54E-5 0.69E-5
0.40E-4 0.43E-4 0.47E-4 0.54E-4
0.36E-3 0.38E-3 0.41E-3 0.46E-3
0.24E-2 0.24E-2 0.25E-2 0.27E-2
Table 5.1 Weights for the h\ case of the Sun-Barycenter problem. Weight 15
13
11
9
7
5
3
0.74E-8 0.89E-8 0.12E-7 0.18E-7
0.65E-7 0.75E-7 0.98E-7 0.14E-6
0.58E-6 0.63E-6 0.72E-6 0.10E-5
0.51E-5 0.52E-5 0.56E-5 0.65E-5
0.45E-4 0.45E-4 0.46E-4 0.50E-4
0.39E-3 0.41E-3 0.44E-3 0.48E-3
0.25E-2 0.25E-2 0.26E-2 0.28E-2
13 0.04 0.08 0.12 0.16
Table 5.2 Weights for the L2 case of the Sun-Barycenter problem. Weight
p
0.04 0.08 0.12 0.16
15
13
11
9
7
5
0.12E-7 0.18E-7 0.33E-7 0.71E-7
0.14E-6 0.20E-6 0.34E-6 0.63E-6
0.17E-5 0.22E-5 0.34E-5 0.58E-5
0.21E-4 0.26E-4 0.35E-4 0.54E-4
0.26E-3 0.29E-3 0.35E-3 0.46E-3
0.31E-2 0.33E-2 0.37E-2 0.44E-2
Table 5.3 Weights for the L\ case of the Earth-Moon problem.
220
Perturbed Equations
of Motion: Halo and Triangular
Cases
Weight
7
p
17
15
13
11
9
0.04 0.08 0.12 0.16
0.15E-6 0.17E-6 0.21E-6 0.27E-6
0.10E-5 0.11E-5 0.13E-5 0.17E-5
0.66E-5 0.69E-5 0.78E-5 0.99E-5
0.43E-4 0.44E-4 0.47E-4 0.57E-4
0.28E-3 0.29E-3 0.31E-3 0.34E-3
Table 5.4
5
0.18E-2 0.11E-1 0.19E-2 0.11E-1 0.20E-2 0.12E-1 0.21E-2 0.13E-1
Weights for the L2 case of the Earth-Moon problem.
For the Sun-Barycenter problem the importance of the different weights is similar for L\ and £2- This is quite different for the Earth-Moon problem. This is due to the fact that the value of 7, the distance from the equilibrium point to the secondary, changes much more in the Earth-Moon problem when we go from the L\ case to the L2 one. Furthermore, for a given value of /? the z-amplitude a is larger in Earth-Moon L2 case than in Earth-Moon L\ case. This means that the domain of convergence of the halo orbit theory is smaller in the Earth-Moon, L2 than in the Earth-Moon, L\. Therefore, the coefficients increase faster in the L2 case. When the weight is increased by two units the reductions in the magnitudes of the residual accelerations are: 8 to 9 for the Sun-Barycenter problem (both L\ and L2); 11 to 12 for the Earth-Moon problem Lx case, and 6 to 7 for the L2 case in the same problem. In Chapter 7 an assignation of weights to coefficients will be used. It is such that the addition of one unit to the weight means a reduction of e = exp(l) in the magnitude of the coefficient in the Sun-Barycenter problem, and a reduction of exp(0.8) in the Earth-Moon problem, L2 case. The Earth-Moon problem L\ case, is not analyzed. Comparing the L2, Earth-Moon problem with the L\,L2, Sun-Barycenter problems, we conclude that to reach the same precision the theory should be developed, in the first case, to a weight 4 units larger. 5.1.3
The Reference nates
Systems
and the Related
Changes
of
Coordi-
Both for the purpose of comparison of numerical results and to obtain the equations of motion in a suitable way we have introduced two systems of reference. The first one is the natural extension of the coordinate system used in the RTBP. We call it the adimensional system. We denote by e and a the coordinates of a point in the ecliptic and adimensional systems of reference, respectively. We go from one system to the other via a transformation of the form e = kCa + b,
(5.1)
where A; (change of scale factor), C (orthogonal matrix) and b (translation) must be computed.
Analysis of the
221
Perturbations
We note that we start with some given origin of coordinates. As the positions of the planets are given, according to Newcomb's theory, with respect to the Sun, this one is taken at the origin. When we have selected a given model, b means the position of the center of masses (c.o.m.) of the two bodies with respect to the c.o.m. of the solar system. This last c.o.m. depends on the selected model. In this way the indirect effects of the perturbing bodies, due to their effect on the Sun, are taken into account. Of course, k, C and b as they appear in (5.1) are functions of time. From now on, when we refer to ecliptic coordinates, we understand that they are centered at the c.o.m. of the solar system. This is taken as an (approximate) inertial frame. We denote by Rp and Rs the positions of the primary and the secondary in the ecliptic system and by Rps the position of the barycenter. Vs will denote the velocity of the secondary with respect to the primary. Since the barycenter is fixed at the origin in the synodic system, it follows that b = RpsBecause in the adimensional system the primaries are fixed at the points (fi, 0,0) and (/i — 1,0,0), where fi is the mass parameter, it follows that k = \\RP — Rs\\. Let c\, C2, cz denote the three column vectors of the matrix C. We have taken Cl =
Rp — Rs —k—>
_ Vs A (Rs - Rp) >=\\VsA(Rs-RpW
C
_ C2 = C 3 A C l
_ -
, '
.
(5 2)
The determination of c\ is trivial if we ask for the primary being at (fi, 0,0) and the secondary at (fi — 1,0,0). We have selected c
222
Perturbed Equations
of Motion: Halo and Triangular
Cases
systems the unit of time is the same one. It is defined in such a way that the mean time that the secondary pends to perform a revolution around the primary equals 2n in the new units. For the cases Sun-Barycenter and Earth-Moon this is equivalent to ask for units such that the frequency of the mean longitude of the Sun and the Moon, respectively, becomes equal to the unity. At this point a problem of coherence appears. We wish to express the equations of motion as a perturbation of the RTBP. If we consider the primaries in both problems, Earth and Moon or Sun and Earth-Moon barycenter, the Kepler relation n2a3 = G(mp + ms) should hold. In this relation n is the mean motion of the related mean longitude and a is the mean distance between the primaries. It turns out that this relation is not satisfied. Then we have modified the mass of the more massive primary, m p , to recover Kepler's third law. The remaining part of the mass (and, when required, the radiation pressure effect) is considered as a perturbation. 5.1.4
A Program for the Simulation of the Solar System Computation of Residual Accelerations
and the
The program SSI simulates the motion of a spacecraft in the solar system by integration of Newton's equations. The model of the solar system is selected by the user. It produces graphical output that can be represented in ecliptic, adimensional or normalized coordinates referred to any equilibrium point in the Sun-Barycenter problem or the Earth-Moon problem. Other main goal of the program is to compute the residual accelerations, along a halo orbit of the restricted circular three-body problem, when the influence of the selected model of the solar system is taken into account. By comparison of several models of the solar system, it is possible to estimate the order of magnitude of the effect of the planets, on the motion along a halo orbit, and for each planet, the order of magnitude of the effect of its different elements. For the simulation of the motion of a body in the solar system, several models are taken into account for each of them. For all the planets, except for the Earth-Moon barycenter, the models considered are the following four: a) b) c) d)
Newcomb's theory, Circular motion on the ecliptic plane, Elliptic motion on the ecliptic plane, Osculating model.
In the last three models the elements are taken at an osculating epoch TAU. The value of TAU is a parameter and can be easily changed. In the runs we have used the epoch January 1st year 2000 (Julian Day = 18 262 with the modification of the Julian Day used in the programs). The periods are the tropic ones at the osculating date.
Analysis of the
223
Perturbations
For the motion of the center of masses of the Earth-Moon barycenter, to the above models we have added the following: e) f) g) h)
Osculating with linear variation of the eccentricity, Osculating with linear variation of the argument of the perihelion, Osculating with the above two variations, Newcomb's theory with the periodic perturbations in longitude, radius vector and latitude due to the effect of the planets, also given by Newcomb, i) Same as h) with several periodic perturbations which can be selected and varied during the execution of the program.
The osculating epoch is also TAU. The rates of the linear variations in e), f), g) are computed at the same epoch. The computation of the elements of a planet, as well as its first and second time derivatives, is performed by routine UPLNET. For the Earth-Moon barycenter the third derivatives are also computed. The periodic terms for the Earth-Moon barycenter, models h) and i) are computed by routine NEWPER. We remark that the routine NEWPER requires the mean anomalies of the Earth-Moon barycenter and the perturbing planet. Hence, models b), c), d) are not allowed for planets because in b) the mean anomaly is replaced by the mean longitude with only linear variations, and in c), d) the mean motion includes the time derivatives of to and fl. We remark that when the Sun-Barycenter system is studied, the mass of the Sun has been modified in order that dynamical coherence be obtained. The remaining part of the mass of the Sun (as well as the radiation pressure "mass") is considered as another perturbing body located at the place of the Sun. The mass of the Earth is modified in a similar way when the Earth-Moon system is studied. The computation of a generic Keplerian element, a, at a given epoch T, is carried out for Newcomb's model using the relationship: aT = a0 + axT + a2T2 + <j3T3, where the coefficients, CTJ, that have been used are those given by Escobal. For all the other models, first of all the elements and its first derivatives are evaluated at the epoch r = 1 — 1 — 2000 and the ones that are taken are the following: b) Circular plane motion: a, where
e = 0,
i = 0,
fl = 0,
Mi = MT + ClT + CJT,
w = 0,
M = M0 + Mit,
M0 = MT + fir + UJT - MXT.
c) Elliptic plane motion: a, where
e = eT,
i = 0,
O = 0,
Mi = M r + fir + uiT,
u> =
LOT
+ Or,
M0 =: MT - MXT.
M = M0 + Mit,
224
Perturbed Equations
of Motion: Halo and Triangular
Cases
d) Osculating: a, where
e = er,
i = iT, ft = ftT, u—u>T,
Mi = MT + ftT + w r ,
M = M0 + Mit,
M 0 = MT - M^T.
e) Osculating with linear variation of the eccentricity: a,
e = e 0 + e i i , ft =
ftr,
u> = u>T,
M = M0 + Mit,
where e\ = eT, eo = eT — reT. f) Osculating with linear variation of the argument of the perihelion: a, e = eT, i = iT, ft = ftr, w = UJQ + u)\t, M = M0 + Mit, where wi = 6JT, UJ0 = uT — TLJT, MO = MT — (MT + ftr)r. g) Osculating with linear variations of the eccentricity and argument of the perihelion: The same as f) and the eccentricity as in e). We note that for the Earth, models c) and d) coincide. To perform tests of the results given in Chapter 2, 2.3.7 the model c) has been used with the same value of the eccentricity used in Chapter 2, i.e., e = 0.0167. We recall that there the independent variable was the true anomaly. To get the velocity with the time as independent variable, and taking into account that the origin of the independent variable is at the passage through the pericenter, we should multiply the physical velocity by (1 + e) 1 / ' 2 (l — e ) - 3 / 2 . For the motion of the Moon the following models have been used: a) The theory of Brown as given by Escobal. b) The same theory deleting the linear variation of the argument of the perihelion of the Earth and using osculating linear expressions for the remaining four arguments. c) Same as b) suppressing all the periodic terms. d) Same as b) including several periodic terms which can be selected and varied during the execution of the program. Once the Keplerian elements of a planet have been computed, its ecliptic coordinates (position and velocity, acceleration and overacceleration if they are needed) can be computed by means of the routine EPHPLA. Given the position of the planet by: =
cos ft cos w — sin ft cos i sin LJ a(cosE — e) [ sin ft cos w + cos ft cos i sin LJ sin i sin to
+
- cos ft sin CJ — sin ft cos i cos u> a(l — e 2 ) 1 / 2 sinE [ - sin ft sin OJ + cos ft cos i cos u sin i sin UJ
Analysis of the
Perturbations
225
the routine computes the velocity, acceleration and overacceleration of the planet by differentiation of the above formula, and taking into account that the derivatives of the elements have already been computed by subroutine UPLNET. The residual accelerations are computed in the following way: For points in an analytic halo orbit the analytic acceleration is computed. For the selected points (equally spaced in the angle of the halo orbit) the acceleration exerted by a given model of the solar system is computed. To do this we transfer from the adimensional coordinates to the ecliptic ones. Then the acceleration is computed according to Newton's law and it is transformed back to adimensional coordinates. The transformations are done, using the formulas given in 1.3, by routine TRANS. We remark that the transformation of accelerations requires the overacceleration of the secondary with respect to the primary. Then the acceleration obtained numerically is compared with the one obtained analytically. This gives the residual acceleration. In fact, two different models are considered simultaneously. Then, not only the acceleration due to each one of them is compared with the analytic acceleration, but a comparison between both models is done. In this way we can easily detect the influence of changes in any element (for instance, the effect of considering e — 0 or not, i = 0 or not, etc.). The computation of the residual accelerations is done by routines RESIDU and RESIDUS. The routine RESIDUS computes the L\,L2 and Loo norms of the three residual accelerations along a halo orbit started on a given day. Then, the routine RESIDU looks for the maximum value of these three norms when the starting epoch of the halo orbit is changed. The results are given for a prefixed set of z-amplitudes of the halo orbit. To carry out the simulation of the motion of the spacecraft in a given model of the solar system, several possibilities are offered: To compute and draw an orbit, only compute and store, draw a previously computed orbit, etc. For each simulation the input and output systems of units can be chosen at will. The available systems are: ecliptic coordinates, adimensional coordinates for the Sun-Barycenter system or Earth-Moon system, and normalized coordinates for one of both systems and for any of the equilibrium points. Outputs of these simulations are scattered along the forthcoming chapters. Other possibilities offered by this program are the computation of ephemerides and several checks of the analytic computations of the ephemerides (for instance evaluation of velocity, acceleration and overacceleration by numerical differentiation, etc.). At the end of this section we give samples of the output concerning residual accelerations.
226
Perturbed Equations of Motion: Halo and Triangular
5.1.5
The Adopted Model for the Motion Cases Under Consideration
Cases
Near Halo Orbits in the
The runs done using the program described in 5.1.4 allow us to detect the weights of the different terms for the residual accelerations. As a general rule terms producing residual accelerations of weight greater than or equal to 12 are skipped. The adopted standard amplitude of z has been 0.08. No large differences appear in the range of interesting z-amplitudes. However see the comments at the end of the description of the adopted model concerning some higher weight terms. First we discuss the different effects of a perturbing body (for instance, a planet) on the spacecraft. Besides the direct terms there are several indirect terms. The first of them is the effect of the Sun. This is taken into account through the displacement of the Sun by means of the change of coordinates. The indirect effects due to global perturbations (direct and indirect) on the Earth-Moon barycenter are of two types: secular and periodic. The first ones enter in the mean motions of the barycenter, mean anomaly and argument of the perihelion. The second ones enter through the periodic terms of Newcomb's theory (or any other planetary theory). In order to keep the longitude mean motion of the different models of the Earth constant (this gives angularly coherent models) in the change of coordinates, the scalings in the velocity and acceleration to go to adimensional units, have been determined taking as period of the Earth, in any model, the true tropic period. Therefore, the mass of the Sun has been changed as explained in 1.4 to get a coherent model. Similar changes are done in what respects the Earth-Moon system. First we explain the results for the Sun-Barycenter system L\ case. As a result of several runs of the program SSI the following weights have been obtained: a) Mercury can be considered in an elliptic planar motion (global weight 10; eccentricity 11). The same is true for Mars. b) Venus can be considered in an elliptic motion (global weight 8; eccentricity 11) with inclination (weight 10). c) Jupiter can be considered in an elliptic motion (global weight 8; eccentricity 10) with inclination (weight 11). d) Saturn can be considered in a circular planar motion (global weight 11). e) No other planets have been considered with weight less than 12. See g) however. f) The Moon has global weight 6. In fact this weight is the difference between the effect of the Barycenter and the effect of Earth+Moon. In Brown's theory the angles should be considered with linear variation in time, except the argument of the perihelion of the Earth, whose variation can be neglected. The periodic terms to be retained are the first six in longitude (of weights 8,10,10,11,11,12), the first four in latitude (of weights 9,11,11,12) and the first four in parallax (of weights 9,11,11,12). As a conclusion the adopted
Analysis of the
227
Perturbations
model is: Longitude = £ + 22639.580 s i n / - 4586.438 sin(l-2D)
+ 2369.899 sin(2D)
+769.021 sin(2Z) - 668.944sin(Z') - 411.614sin(2F), Latitude = 18461.480 sinF + 1010.180 sin(Z + F) -999.695 sin(F -I)-
623.658 sin(F - 2D),
Parallax = nt + 186.5398cos/ + 34.3117cos(Z - 2D) +28.2333 cos(2£>) + 10.1657 cos(2Z). g) The global weight of the Earth is 1 (according to the scale of weights of 5.1.4, the weight of the Sun would be —2). The weight of the effects of the eccentricity is 5. In the mean anomaly linear terms in time are enough. The linear variation of the argument of the perihelion has weight 10. The effect of the periodic terms in the motion of the Earth (indirect periodic effect of the planets) appears in longitude, latitude and radius vector. The effects on the latitude are small but they have to be considered if terms up to weight 11 or slightly higher are kept. There are terms with relatively large values of the amplitude and for which jrip + iriE is small. These terms are large because of the resonant effects. To these ones we apply the last remark in 5.1.1. The list of terms and weights up to order 10 is the following: Terms in the longitude: mean motion ny — TIE 2ny
— 2TIE
nE 2nE -
nj nj
3riv — 3TIE
2>ny — 4 n £ 2UE — 2UM nE - 2nj 2nE - 3 n j 2 n y — TIE 2nv— 3 n s 4ny
— 4TIE
5nv — 5riE 2>UE — 4TIM
2nE nj SUE — 3 n j nE ns
weight 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9
mean motion ny 3 n y — 5TIE
4 n y — 5UE 5 n y — 7TIE 6 n y — 6TIE 7nv — 7TIE 8 n y — 8TIE
ns ~
nM
3riE — 3TIM 2TIE — 3njvf 4TIE — 5UM 4TIE — 6n.M 5n_E — 7TIM
-
nj
2>nE -
2nj
ns - 3nj 3nE 2>nE 2nE -
^nj ^nj 2ns
weight 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
228
Perturbed Equations
of Motion:
Halo and Triangular
Cases
Terms in the radius vector: mean motion
weight
mean motion
weight
2ny
7 8 8 9 9 9 9 9 9 9
2 n y — TIE
10 10 10 10 10 10 10 10 10
— 2TIE
nE - nj 2nE - 2nj ny — nE 3riv — iriE 2>ny — 4TIE Any
— ATIE
2UE — 2TIM
nE - 2nj 2nE - 3 n j
2ny
— 3TIE
5nv
—5UE
6nv —6nE 3UE — AriM 2nB - nj 3UE —2nj 2>TIE —
nE -
ns
3nj
There are no terms of weight less than or equal to 10 in the latitude. There are only three terms of weight 11: the ones of mean motion ny - 2UE, 3ny — AUE and nE -
2nj.
In the previous list nv,nE,riM,nj,ns refer to the mean motions of Venus, Earth, Mars, Jupiter and Saturn, respectively. Of course, several other terms have to be retained, at least the ones giving weight 11 and 12. An exhaustive run of all the terms given in the routine NEWPER shows that 100 terms have to be retained if we only skip those giving a residual acceleration (Li norm) less than 0.275 • 10~ 6 . The index of these terms in the routine NEWPER are 1, 5, 6, 10, 11, 12, 14, 15, 16, 17, 20, 21, 22, 24, 25, 26, 28, 29, 32, 35, 36, 38, 39, 41, 43, 44, 45, 48, 49,51, 52, 53, 56, 57, 59, 60, 63, 67, 84, 85, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 104, 107, 108, 110, that is, a total of 55 terms in longitude, 121, 125, 126, 130, 131, 132, 135, 136, 137, 140, 141, 144, 145, 146, 148, 152, 156, 161, 165, 167, 168, 172, 173, 176, 177, 180, 185, 208, 209, 210, 212, 213, 214, 217, 218, 219, 220, 221, 222, 229, 233, 234, that is, a total of 42 terms in radius vector, and 243, 251, 270, that is, a total of 3 terms in latitude. Concerning the errors in the adopted model we have made several tests. If only the effects coming from the planets and the Moon but not the periodic ones due to the planets are considered, the total residual acceleration (difference between the two models) has weight 11.5. There is no strong difference if we pick up the 55 more important periodic terms (the ones up to order 10) and the 100 more important. In any case the residual acceleration is close to 0.5-10~5 in adimensional units. Going back to physical quantities this means 3-10~5 mm/s 2 . The yearly cumulative effect is less than 100 cm/s. However, these residual accelerations have changing directions, so there are cancellations which decrease the bound. This is seen in the simulations of the control. No systematic search has been done for the L2 case in the Sun-Barycenter
Analysis of the
Perturbations
229
system. Taking as a model for the solar system the one previously obtained for the L\ case and evaluating along a Li halo orbit the residual acceleration, a value of 0.3315-10 -6 (in adimensional units) was obtained (for the ^-amplitude 0.08). In this run the periodic perturbations of the planets on the Earth-Moon barycenter were skipped. For that model the total error is of order roughly 11.5, as it was the case for L\. For the Earth-Moon system the weight of the different planets has been computed as well as the weight of the first and last periodic term in the expressions of Moon's longitude, latitude and parallax of Brown's theory as given by Escobal. The results are the following: Sun, weight 5; Mercury, Mars and Saturn, weight 14; Jupiter, weight 11; Venus, weight 10, eccentricity of the Earth, weight 8; first and last terms of Moon's longitude, weights 2 and 8; second and last terms of Moon's latitude, weights 2 and 11, first and last terms of Moon's parallax, weights 3 and 10. (Note: The first term in latitude as well as the fourth one in longitude must always be included in order to consider the Moon in a circular orbit around the Earth.) A sample of results of program SSI for the computation of the above weights is given below. Assuming an expense of fuel of 1 m/s/year, in order to correct the errors in the modeling of the solar system, a residual acceleration of the order 10~ 5 (in adimensional units) can be corrected, which requires keeping in the model terms up to weight 12. This should require to retain hundreds of periodic terms in Moon's theory. The proposed approach is to keep only terms up to weight 8, computing after their contribution to the equations by Fourier analysis. The extension to a higher order theory is easy using the JPL ephemerides and not so expensive in CPU time.
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
FIRST MODEL = 1 0 10 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 2 0 10 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = ANALYTIC - M0DEL1 ANALYTIC - M0DEL2 N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.12023D-5 0.12671D-5 0.21353D-5 0 . 11873D-5 0..12033D-•5 0 .16254D-5 FIRST MODEL = 3 0 10 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 1 0 10 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.12045D-5 0.12695D-5 0.21355D-5 0.12023D-5 0 12671D-5 0.21353D-5 FIRST MODEL = 0 1 10 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 2 10 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 NORMINF N0RM2 0.16399D-4 0.20100D-4 0.38750D-4 0.16830D-4 0 20005D-4 0.39374D-4 FIRST MODEL = 0 1 10 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 4 10 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.16399D-4 0.20100D-4 0.38750D-4 0.16399D-4 0 20100D-4 0.38750D-4 FIRST MODEL = 0 2 10 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 3 10 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.16830D-4 0.20005D-4 0.39374D-4 0.16665D-4 0 20532D- 0.40017D-4 FIRST MODEL = 0 0 10 1 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 2 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 18262.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.11178D-5 0.12393D-5 0.19894D-5 0.59195D-6 0 65189D-6 0.10917D-5 FIRST MODEL = 0 0 10 1 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 3 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 18262.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.11178D-5 0.12393D-5 0.19894D-5 0.11242D-5 0 12477D-5 0.20080D-5 FIRST MODEL = 0 0 10 3 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 1 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 18082.00, INCREMENT = 180.0, NUMBER OF EPOCHS =
N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF Z AMPL 0.46140D-6 0.51851D-6 0.89522D-6 0.46120D-6 0. 51833D-6 0.89514D-6 0.08 FIRST MODEL = 0 0 10 0 1 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 0 3 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 4 N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF Z AMPL 0.15325D-4 0.16070D-4 0.21842D-4 0.15328D-4 0, 16072D-4 0.21847D-4 0.08 FIRST MODEL = 0 0 10 0 4 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 0 1 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 4 N0RM1 N0RM2 NORMINF N0RM1 Z AMPL N0RM2 NORMINF 0.15324D-4 0.16068D-4 0.21840D-4 0.15325D-4 0. 16070D-4 0.21842D-4 0.08 FIRST MODEL = 0 0 10 0 2 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 0 3 0 0 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 4 N0RM1 N0RM2 NORMINF N0RM1 Z AMPL N0RM2 NORMINF 0.13092D-4 0.13709D-4 0.18565D-4 0.15328D-4 0. 16072D-4 0.21847D-4 0.08 FIRST MODEL = 0 0 10 0 0 1 0 0 0 1 0 0 0 SECOND MODEL = 0 0 10 0 0 2 0 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 4 N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF Z AMPL 0.61892D-6 0.64715D-6 0.94119D-6 0.54474D-6 0. 56797D-6 0.84239D-6 0.08 FIRST MODEL = 0 0 10 0 0 0 1 0 0 1 0 0 0 SECOND MODEL = 0 0 10 0 0 0 2 0 0 1 0 0 0 INITIAL EPOCH = 17902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 4 N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF Z AMPL 0.60731D-7 0.73743D-7 0.12700D-6 0.61007D-7 0. 73873D-7 0.12801D-6 0.08 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 2 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 1 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 8, N0RM1 N0RM2 NORMINF N0RM1 Z AMPL N0RM2 NORMINF 0.54005D-4 0.67598D-4 0.25573D-3 0.54005D-4 0.04 67598D-4 0.25573D-3 0.08 0.53983D-4 0.68033D-4 0 25947D-3 0.53983D-4 68033D-4 0.25947D-3 0.12 0.54087D-4 0.68525D-4 0.26345D-3 0.54087D-4 68525D-4 0.26345D-3 0.16 0.54185D-4 0.69074D-4 0.26759D-3 0.54185D-4 69974D-4 0.26759D-3 0 0 10 0 0 0 0 0 0 1 3 0 0 FIRST MODEL = SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 8, INITIAL EPOCH
AMPL z0 .08
AMPL z0 .08
AMPL z0 .08
AMPL
z0 .08
AMPL z0 .08
AMPL z0 .08
AMPL
z0 .08
NORMl
N0RM2
NORMINF
NORMl
N0RM2
NORMINF
0 .52413D-4 0.64038D-4 0.23210D-3 0.52834D-4 0 .64859D-•4 0.23455D-3 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 0 MOON PERIODICS : 2 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF NORMl N0RM2 NORMINF NORMl N0RM2 0 .52565D-4 0.64253D-4 0.23144D-3 0.52413D-4 0 . 64038D-•4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 0 MOON PERIODICS : 3 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF NORMl N0RM2 NORMINF NORMl N0RM2 0 .52413D-4 0.64038D-4 0.23210D-3 0.52173D-4 0 .63721D--4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 0 MOON PERIODICS : 4 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF NORMl N0RM2 NORMINF NORMl N0RM2 0 .52413D-4 0.64044D-4 0.23187D-3 0.52413D-4 0 .64038D-•4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 5 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF NORMl N0RM2 NORMINF NORMl N0RM2 0 .52413D-4 0.64038D-4 0.23210D-3 0.52412D-4 0 . 64038D-•4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 0 MOON PERIODICS : 6 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF NORMl N0RM2 NORMINF NORMl N0RM2 0 .52417D-4 0.64021D-4 0.23212D-3 0.52413D-4 0 .64038D--4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 7 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF NORMl N0RM2 NORMINF NORMl N0RM2 0 .52413D-4 0.64038D-4 0.23210D-3 0.52413D-4 0 .64038D--4
EPOCHS = 8 NORMINF 0.23210D-3
EPOCHS = 8 NORMINF 0.23198D-3
EPOCHS = 8 NORMINF 0.23210D-3
EPOCHS = 8 NORMINF 0.23229D-3
EPOCHS = 8 NORMINF 0.23210D-3
EPOCHS = 8 NORMINF 0.23216D-3
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
MOON PERIODICS : 22 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 0.52489D-4 0.64324D-4 0.23508D-3 0.52413D-4 0.64038D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 23 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 0.52413D-4 0.64038D-4 0.23219D-3 0.52406D-4 0.64018D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 24 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 0.52413D-4 0.64038D-4 0.23210D-3 0.52416D-4 0.64053D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 24 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 0.52405D-4 0.64016D-4 0.23189D-3 0.52413D-4 0.64038D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 26 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 0.52413D-4 0.64038D-4 0.23210D-3 0.52412D-4 0.64036D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 33 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 0.53465D-4 0.66839D-4 0.25285D-3 0.52413D-4 0.64038D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 34
EPOCHS = 8 NORMINF 0.23210D-3
EPOCHS = 8 NORMINF 0.23187D-3
EPOCHS = 8 NORMINF 0.23227D-3
EPOCHS = 8 NORMINF 0.23210D-3
EPOCHS = 8 NORMINF 0.23205D-3
EPOCHS = 8 NORMINF 0.23210D-3
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.04 0.08 0.12 0.16
Z AMPL 0.08
Z AMPL 0.08
INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF .52413D-4 0.64038D-4 0.23210D-3 64531D-4 0.23645D-3 52579D-4 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 35 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 1 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM2 NORMINF N0RM1 N0RM2 NORMINF N0RM1 0.52207D-4 0.63504D-4 0.22727D-3 0.52413D-4 0 64038D-4 0.23210D-3 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS : 36 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 N0RM2 NORMINF NORMINF N0RM1 .52413D-4 0.64038D-4 0.23210D-3 0.52416D-4 0 64052D-4 0.23263D-3 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 1 MOON PERIODICS 37 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 3 0 0 INITIAL EPOCH 1 7 5 4 2 . 0 0 , INCREMENT = 1 8 0 . 0 , NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF .52415D-4 0.64051D-4 0.23235D-3 0.52413D-4 0.64038D-4 0.23210D-3 FIRST MODEL = 0 0 2 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 4 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 117902.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 N0RM1 NORMINF N0RM2 NORMINF 0.77425D-4 0.77428D-4 0.78042D-4 0.46905D-3 51595D-3 0.83489D-3 0.77429D-4 0.77431D-4 0.78052D-4 0.48568D-3 53167D-3 0.84761D-3 0.77433D-4 0.77436D-4 0.78084D-4 0.51164D-3 55713D-3 0.86984D-3 0.77437D-4 0.77440D-4 0.78135D-4 0.54535D-3 59146D-3 0.90261D-3 0 0 1 0 0 0 0 0 0 1 0 0 0 FIRST MODEL = 0 0 7 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = INITIAL EPOCH = 16102.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.44188D-3 0.47782D-3 0.81070D-3 0.44188D-3 0 47782D-3 0.81071D-3 FIRST MODEL = 0 0 5 0 0 0 0 0 0 1 0 0 0 SECOND MODEL = 0 0 1 0 0 0 0 0 0 1 0 0 0 INITIAL EPOCH = 16102.00, INCREMENT = 180.0, NUMBER OF EPOCHS = N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.44173D-3 0.47753D-3 0.80992D-3 0.44188D-3 0 47782D-3 0.81070D-3
FIRST MODEL = SECOND MODEL =
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 0
INITIAL EPOCH = 16102.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 2 Z AMPL N0RM2 NORMINF N0RM1 N0RM2 NORMINF N0RM1 0.44188D-3 0.47782D-3 0.81070D-3 0.44198D-3 0.47793D-3 0.81094D-3 0.08
FIRST MODEL = SECOND MODEL = Z AMPL 0.08
INITIAL EPOCH = 16102.00, INCREMENT = 180.0, NUMBER OF EPOCHS = 1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF N0RM1 .43159D-3 0.46794D-3 0.78966D-3 0.43155D-3 0.46786D-3 0.78952D-3
FIRST MODEL = SECOND MODEL = Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
Z AMPL 0.08
1 1 1 1 1 1 1 1 0 1 0 0 0 3 4 6 3 4 2 0 0 0 1 0 0 0
3 4 6 3 4 2 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0
INITIAL EPOCH = 18262.00, INCREMENT = 180.0, NUMBER OF N0RM2 N0RM1 N0RM2 NORMINF N0RM1 .44857D-3 0.48281D-3 0.81263D-3 0.44844D-3 0.48266D-3 FIRST MODEL = 0 0 10 0 0 0 0 0 0 1 1 0 0 SECOND MODEL = 0 0 10 0 0 0 0 0 0 1 4 0 14 MOON PERIODICS : 1 2 3 4 5 6 22 23 24 25 33 34 35 36 INITIAL EPOCH = 17542.00, INCREMENT = 180.0, NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 .53983D-4 0.68033D-4 0.25947D-3 0.53953D-4 0.67951D-4 FIRST MODEL = 1 1 1 1 1 1 1 1 0 1 1 0 0 SECOND MODEL = 3 4 6 3 4 2 0 0 0 1 4 0 14 MOON PERIODICS : 1 2 3 4 5 6 22 23 24 25 33 34 35 36 INITIAL EPOCH = 16102.00, INCREMENT = 180.0 NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 .44294D-3 0.47765D-3 0.82241D-3 0.44295D-3 0.47762D-3 FIRST MODEL = 1 1 1 1 1 1 1 1 0 1 1 0 0 SECOND MODEL = 3 4 6 3 4 2 0 0 0 1 4 0 14 MOON PERIODICS : 1 2 3 4 5 6 22 23 24 25 33 34 35 36 INITIAL EPOCH = 17542.00, INCREMENT = 180.0 NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 .43267D-3 0.46581D-3 0.76360D-3 0.43255D-3 0.46582D-3 FIRST MODEL = 1 1 1 1 1 1 1 1 0 1 1 0 0 SECOND MODEL = 3 4 6 3 4 2 0 0 0 1 4 0 14 MOON PERIODICS : 1 2 3 4 5 6 22 23 24 25 33 34 35 36 INITIAL EPOCH = 18982.00, INCREMENT = 180.0 NUMBER OF N0RM1 N0RM2 NORMINF N0RM1 N0RM2 .46135D-3 0.49429D-3 0.82598D-3 0.46153D-3 0.49449D-3
Z AMPL 0.08 FIRST MODEL =
1 1 18
1 1 1 1 1 0 1 0 0 0
EPOCHS = 1 NORMINF 0.81249D-3
EPOCHS = 8 NORMINF 0.25887D-3
EPOCHS = 8 NORMINF 0.82235D-3
EPOCHS = 8 NORMINF 0.76358D-3
EPOCHS = 8 NORMINF 0.82613D-3
SECOND MODEL = 3 4 19 3 4 2 0 0 0 1 0 55 0 EARTH PERIODICA : 5 6 10 11 12 15 16 17 20 21 24 26 28 32 35 41 44 48 49 89 90 93 94 95 97 98 104 107 126 130 131 132 135 136 140 144 148 168 176 INITIAL EPOCH = 1 8 1 6 2 . 0 0 , INCREMENT = 1 0 0 . 0 , NUMBER OF EPOCHS = 3 , NUMBE Z AMPL N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.08 0 . 4 6 1 6 2 D - 3 0.51894D-3 0 . 8 3 6 6 9 D - 3 0 . 4 6 1 7 7 D - 3 0.51925D-3 0.83726D-3 FIRST MODEL = 1 1 11 1 1 1 1 1 0 1 1 0 0 SECOND MODEL = 3 4 16 3 4 2 0 0 0 1 4 0 14 MOON PERIODICS : 1 2 3 4 5 6 22 23 24 25 33 34 35 36 INITIAL EPOCH = 1 8 1 6 2 . 0 0 , INCREMENT = 1 0 0 . 0 , NUMBER OF EPOCHS = Z AMPL N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.08 0 . 4 6 7 9 2 D - 3 0 . 5 2 8 0 7 D - 3 0 . 8 2 8 4 5 D - 3 0 . 4 6 7 8 7 D - 3 0.52796D-3 0.82789D-3 FIRST MODEL = 1 1 18 1 1 1 1 1 0 1 1 0 0 SECOND MODEL = 3 4 19 3 4 2 0 0 0 1 4 55 14 EARTH PERIODICS : 5 6 10 11 12 15 16 17 20 21 24 26 28 32 35 41 44 48 49 88 89 90 93 94 95 97 98 104 107 126 130 131 132 135 136 140 144 148 168 1 INITIAL EPOCH = 1 8 1 6 2 . 0 0 , INCREMENT = 1 0 0 . 0 , NUMBER OF EPOCHS = 3 , NUMBER Z AMPL N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.08 0.46515D-3 0.52679D-3 0 . 8 4 2 1 4 D - 3 0.46535D-3 0.52706D-3 0.84282D-3 FIRST MODEL = 3 4 19 3 4 2 0 0 0 1 4 1 1 0 100 14 EARTH PERIODICS : 1 5 6 10 11 12 14 15 16 17 20 21 22 24 25 26 28 45 48 49 51 52 53 56 57 59 60 63 67 84 85 86 87 88 89 90 93 94 95 121 125 126 130 131 132 135 136 137 140 141 144 145 146 148 152 15 176 177 180 185 208 209 210 212 213 214 217 218 219 220 221 222 22 MOON PERIODICS : 1 2 3 4 5 6 22 23 24 25 33 34 35 36 SECOND MODEL = 1 1 18 1 1 1 1 1 1 1 1 1 1 0 0 0 INITIAL EPOCH = 1 7 2 6 2 . 0 0 , INCREMENT = 1 0 0 . 0 , NUMBER OF EPOCHS = 20 Z AMPL N0RM1 N0RM2 NORMINF N0RM1 N0RM2 NORMINF 0.08 0.50390D-3 0 . 5 5 0 8 1 D - 3 0 . 9 1 9 6 0 D - 3 0 . 5 0 3 4 9 D - 3 0.54985D-3 0.91983D-3 Table 5.5 Output of program SSI, for global residual accelerations in the Sun-Barycenter s N0RM1 N0RM2 NORMINF refer to the differences, in the norms | | i , | |2 and | |oo as follows: AN M0DEL1 - M0DEL2.
Equations
5.2
of Motion for Perturbed Halo Orbits
237
Equations of Motion for Perturbed Halo Orbits
5.2.1
Introduction
First, we shall use ideas of Richardson and Farquhar to obtain the equations of motion in the vicinity of the three collinear points, for the Sun-Barycenter problem and for the Earth-Moon problem, in a general form so that: 1) It is readily adaptable to the perturbation analysis. 2) All orders of the nonlinear developments of the motion are shown to be easily obtainable using recursive relationships. So, the form of these equations is good for being used in the computer. 3) Furthermore, the equations shall be of the form obtained by Richardson, for the restricted circular three-body problem, plus perturbations. Point 1) was solved by Farquhar without take into account point 2). Richardson solved point 2) for the circular restricted problem omitting point 1). 5.2.2
The Lagrangian
in Ecliptic
Coordinates
We study the motion of a spacecraft in a solar system formed by the Sun, the Earth, the Moon and several planets P\,... ,PkFirst, we consider an inertial frame of reference with origin at the center of masses of the solar system, whose axes are parallel to the ecliptic ones, the time t is given in Modified Julian Days (MJD) and the distances are given in km. We have not considered the effect of the variation of the equinoxes in the equations, but can be easily taken into account by introducing a change of coordinates. an Let R, RS,RE'SLM'BLB d Rpt (resp. O, S, E, M, B, Pi) be the position vector with respect to the inertial frame (resp. the masses) of the spacecraft, Sun, Earth, Moon, Earth-Moon barycenter and the ith planet, respectively. From Newcomb's theory we know RS,RB and RP.. Furthermore, using Brown's theory we obtain RE and RM. Therefore, the motion of a spacecraft is governed by a restricted (3 + k) + 1-body problem whose equations are:
Ae{s,E,M,Pi,-,Pk}
\~A
_
—'3
where G is the gravitational constant, dots denote derivatives with respect to t and | | denotes the Euclidean norm in R 3 . Let a be the radiation pressure of the Sun in N/m 2 at one astronomical unit, i.e. a = 4.56 • 1(T 6 . We denote by m (in kg) and a (in m 2 ) the mass and the effective cross section of the spacecraft to the radiation pressure. Then, the contribution of the radiation
238
Perturbed Equations
of Motion: Halo and Triangular
Cases
pressure to the equations of motion is
Rs-E
~
—a
\RS-R\3'
where 149 597 871.41055842 • 86 400 : W km 3 a = 1000 m (Modified Julian Days) 2 ' We denote by as and UB the semimajor axis and the mean motion of the EarthMoon barycenter around the Sun. The mean motion takes into account the secular terms in the ecliptic argument of perihelion and in the mean anomaly, due to the effect of the planets. Then, using Kepler's third law we have that nBaB is close to G(S + E + M). Following the idea given in 5.1.3 let S be the modification of the Sun mass to have nBa3B = G(S + E + M). In short, taking into account the radiation pressure we can write the equations of motion in the following form GS(Rs - R) —
]
GS(RS -R) +
I\R 7 ?-R\ „ - 3/ ? | 3
|\R R „-R\ _ 73? | 3
S
—b
^ +
,
S
'—b
—'
—'
GA(RA
^ 2^
'~A
Ae{E,M,P!,...,Pk}
- R)
\RA ~R\3
,
'
—'
where S = S — S — a/G. The contribution of S — S to S in the above equation is called the coherence term (or Kepler coherence terms to distinguish from the problem of coherence mentioned in Section 5.1). The position of the Sun Rs satisfies
Rs=
GA{RA - Rg)
£
,
\RA-RS\3
Ae{E,M,Pi,--,Pk]
So, if r = R — Rs then the equations of motion of the spacecraft with respect to the ecliptic frame of reference with origin at the Sun are r=
GSr j=
GSr ^=+ r
v^ > AeiE,^,..,^
„ . ( r
r%A
where r_SA denotes the vector from S to A. Also, as it is usual we write r and TSA instead of \r\ and \rSA\ respectively. We note that the above equations of motion correspond to the Lagrange equations given by the Lagrangian T
1.
.
GS
L= -r 2 •r+ r
GS
+ r
+
v>1 t— A€{E,M,Pu--,Pk}
„.(
1
, GA V k s 4 X |
-
M
—r
\
_l
LSA • L T %A bA
Equations
239
of Motion for Perturbed Halo Orbits
or equivalently 1 .
.
T
L=-r-r
. J 1 -
JL4B
+ K(
/X5
v^
?- + ^+
J2
Ae{E,M,Pu-,Ph}
(
r
1
^A '
SA
r
"
~S'SA
-SA
where K = G(S + E + M) and HA = A(S + E + M)~1 for Ae{S, S,E, M, Pu .. Note that /J,S = 1 - \iB where \iB = ( # + M ) ( 5 + £ + M ) _ 1 . 5.2.3
27ie Collinear
Points for the Sun-Barycenter
.,Pk}.
Problem
The collinear point spacecraft geometry for the Sun and the Earth-Moon barycenter is illustrated in Figure 5.1. r
?
SB
s
?
=
B
M
-?L
2
L/y s.
x
/
Spacecraft ?
/ B /
s
S
1=
B
\P 1^
' /
y
\/
x L2
E * r
?
SB ?
B="?L
s
Spacecraft 2
VI=BI //
4
X
^^ r
^\. ?
S
B
s ?
B
=
"?L
E «
Fig. 5.1 Geometry for the spacecraft under the action of Sun, Earth and Moon, near a collinear point of the Sun-Barycenter system.
240
Perturbed Equations of Motion: Halo and Triangular Cases
Let Li (for i = 1,2,3) be located with respect t o t h e E a r t h - M o o n barycenter by t h e vector rL. T h e expression determining r_L is (J-BLL r
=1 + ~SB
=-(!-/**)
r
SB
r
S
SB
This equation is equivalent t o t h e quintic of Euler for t h e determination of t h e collinear points of the circular restricted three-body problem. Let 71 = r^r^g, 72 = r L2rsB a n d 73 = T 'S' 7 "SB- So, t h e locations of t h e collinear points Li are obtained from t h e solutions of t h e quintics 7i - (3 - fxBht
+ (3 -
2
M B ) 7 I - M B 7 I + 2 M B 7 I - MB = 0,
l l + (3 - M B ) 7 2 + (3 - 2 M B ) 7 2 3 - MB7 2 2 ~ 7f
5.2.4
2
M B 7 2 - MB = 0,
3
+ (2 + VBht
+ (1 + 2// B )7 3 - (1 - ^ B ) 7 3 2 - 2(1 - ^ 7 3 - (1 - / i B ) = 0.
Expressions tems
of the Lagrangian
in Different
Coordinate
Sys-
First of all we consider a translation of our reference system t o t h e point Li of t h e Sun-Barycenter system, i.e. let p — Z~LSL be t h e position vector of t h e spacecraft in t h e ecliptic frame of reference with origin a t L j . Positions of t h e Sun, E a r t h , Moon, a planet Pi a n d t h e E a r t h - M o o n barycenter with respect t o Li are denoted by rs,rE,rM,jip. a n d rB, respectively. In this new frame of reference t h e Lagrangian goes over t o L
=
J<^
1
1
1. . . . oP • 9- P-Ls + K (1 -
9B)
r.sB-9
+ 9B
LS-P\
'SB •LSA-9
+K
\Ls - P\
Ae{E,M,Pi
\LA
Pk,B}
~ P\
' SA
where we omit t h e terms in t h e Lagrangian which only depend on time a n d 1 -1
i{A) =
if if
Ae{E,M,Pu...,Pk}, A = B.
T h e Lagrangian can b e written in t h e form
1. . . . +K
1
„
(1-MB)
S
+•
\ts ~ P\
„ sLs'9 , (LB-9 (1 - M B ) — 3 - + MB — 3 r
K9s
+
Ml
LS- 9
r
V B
K
Ml
LSB-9 -3
r
SB LSA-9
i(A)[iA Ae{E,M,Pi,--,Pk,B}
LB
+ 9-B
\LA
- P\
'SA
-9
241
Equations of Motion for Perturbed Halo Orbits
Using the definition of Lj we have - (1 -
(1 - / i f i W + HB-I- =
PB)LSB
'SB
So, I 1 - VB)—— + HB —3 r S \ rB LB ~ (1 ~ VB)LSB PBLSB\ 'SB
'SB
-3 SB
r
_
Ls-p
J
'SB
Hence, the Lagrangian becomes +K n
L = -p-p-p-rs Kr
+ -S-P +,
^ 'SB
KHs
\I • r,
+K T^i IL5-£l
L
\LS-P\
s-P\ ,
f
r
l J
\ -
1
LB-P
\\r.B-p\
'B
^ (^L
E ' (i(A A^ Ae{S,M^r,...,P ,B} fc
*±£ MLA-fll
'54
The next step is to express the Lagrangian in normalized coordinates. First, we consider a frame of reference with origin at the equilibrium point Li, the z-axis points along the line formed by the two primaries (the Sun and the Earth-Moon barycenter) away from the larger primary, the (x, y)-plane coincides with the instantaneous plane of motion of the primaries, and the z-axis completes the right-handed system (see the figures in 2.3). Let 9 and 6 be the longitude and latitude of the Earth-Moon barycenter in ecliptic coordinates centered at the Sun. Then, the unitary vector on the z-axis is e, = = £ a , the unitary vector on the 2-axis is e, = |T gg ~ ?B , and the unitary vector -1
J
rSB'
-3
\rSBArSB\
•>
on the y-axis is e 2 = e 3 A e x . Let C be the matrix whose columns are the three vectors ex, e2 and e 3 , i.e.
(
cos S cos 9 cos S sin 8 sin S
— (sin 0 + sin S cos 6 R)R\ (cos 9 — sinSsin9R)Ri cos SRRi
(—cos9sinS + sin9R)Ri — (sin 9 sin 6 + cos 9 R)R\ cos SRi
where R = 5(6 cos 6)-1 and R\ - (1 4- R2)~1/2. Note that the matrix C is orthogonal. Now, we consider the change of variables from the ecliptic frame of reference with origin at Li,p, to the frame of reference with origin at Li, a = (x,y,z), given by p = kC a, { where k is a scaling factor defined by k = <
rL
= =
I rs =
ursB 7« r 5B
for for
i = 1,2, « = 3.
242
Perturbed Equations
of Motion: Halo and Triangular
Cases
In the system (a;, y, z) units of mass, time and distance are chosen in the following way: - The unit of distance is taken as 7 times the semimajor axis as • - The new unit of time s is the time t in Modified Julian Days scaled by 7 s / 2 , so s = 7 3 / 2 i. In what follows, primes will denote derivatives with respect to s: ' ~ Is- ^ n i s t ' m e s w a s c a n e d r m Chapter 2 and will be denoted usually t in the subsequent chapters. - The unit of mass is chosen in such a way that K = G(S + E + M)= n2Ba3B = 1, where nB is the mean motion. System (x,y,z) with these new units is the normalized system centered at Li, as defined in 5.1.3. We remark that now the passage from ecliptic to normalized coordinates is done performing first the translation to Li. This is more convenient for the analytic developments. The vectors p, ZA>?-SA> m the ecliptic coordinate system with origin at L\ or L2, are denoted by a = (x,y,z),rA = {xA,yA,zA) and rSA = (xSA,ysA,zsA) in the normalized one. As it is usual a,fA and ?SA denote \a\, \rA\ and |£ S y l |, respectively. The angle from the vector r_A (resp. LSA) t o the vector a will be denoted by Ai (resp. A2). In what follows, we usually denote a (resp. a) by a (resp. o). The Lagrangian in the normalized system becomes
1
I
LB
'£
•p\
A€{E,M,Pi
|
3
K-)
rs-P
rB
r
Pk,B}
X
|
SB '~A
K~f-3fi§ ks - P\
-'
bA
7
where p = kCa and r_A = kC^AWe shall need the following relations to compute explicitly the Lagrangian in the normalized system: i) CTC = Id, so Ca-Cb = a-b, ii) (C')TC + CTC = 0, so Ca • C'b = 0 if a = 6. / 0 -E 0 \ / A 0 D hi) CTC = \ E 0 -F and (C')TC = I 0 B 0
V 0
F
0 / + 62),
VD
0 C
where A
=
7-
3
(62cos28
B
=
7-
3
{[(cos 2 (5 + sin 2 <5ii 2 ^ 2 + (2 + i?2)(52 + (-R + s i n ^ ) 2 ] ( l + i ? 2 ) - 1
-R2R2(1
+
R2)-2},
Equations
{[R262-S2
C
=
^
D
=
7-
E
=
j-^idcosS
F
=
7-
3
243
of Motion for Perturbed Halo Orbits
+ (R +sin 56)2](l + R2)-1-R2R2(l
R2y2},
+
[-sin(5cos^2(l + / ? 2 ) 1 / 2 - c o s ( 5 ^ ( l + i?2)-1/2], R2)-1/2,
+ SR^l +
3 2
/ [ ^ s i n ^ + i?(l + J R 2 )- 1 ],
where R = 5(9 cos J ) - 1 . iv) If p = kCa and 77 = kCb then fc7_3a
p' . 77' =
• 6 + fcfc7-3/2(a • b + a' • b)
+k2aT(C')TC'b
+ k2{aT{C')Td
- ~a'(C')TCb) + k2c± • &'.
v) From iv) it follows that p'.p'
=
k2>y-3(x2+y2+z2) 2
2
2
+k (Ax 2
+ 2kkf-3/2(xx'+yy'+ 2
zz')
2
+ By + Cz + 2Dxz) + 2k [E(xy' - yx') + F{yz' - zy')]
2
l2
+k (x' +y +z'2). vi) We have that r s = (xs,0,0) where xs = 1 — 7 _ 1 , or xs = —1 — 7 - 1 , or x$ = 1 if we consider the normalized system centered at 1/1,1/2 or L3, respectively. So r 5 = 0. From iv) it follows that 7~3/V-rs
k27~3xsx
=
+ kk'y~z/2xsx'+
k2(Axsx
+Dxsz)
+
k2Exsy'.
vii) The following relation holds £|2
\LA
= =
(IU - £) ' (IA -a) r\
1
=fA-
2(xAx + yAy + zAz) + 1
_ 2 1 XAX + VAV + zAz\ J|_ , / _£_ r^a
r\
1-2COSJ4I
TA
TA
+
7\4
V r >t
Hence -1/2
\lA-a\
x
=
f/
1 - 2 cos Ax — + TA
\TA
= ^ £ ( £ ) p»(cos^), n>0
where Pn(cosAi)
is the Legendre polynomial in the variable cos A\ of degree n and
we assume that — < 1 for every A G {E, M, Pi,..., TA
Pk, B}. For more details see
244
Perturbed Equations of Motion: Halo and Triangular
Cases
"Methods in Celestial Mechanics" of D. Brouwer and G. Clemence. Therefore, \LA-P\-1
k-1\fA-a\-1
=
= (kfA)-iy2(^)
PnCcosAx).
n>0
\VA-
Note that LA-P =
= k~
(kfA)-1
^3
(•?-) cosA, = (kfA)-1
(•?-)
rA
Pi (cos 4 0
rA
viii) Concerning the Barycenter f_B — (XB,0,0) where XB = 1, or XB = —1 or _1 XB = 1 + 7 according to the normalized system centered at l a , £ 2 or L3, that we consider. From vii) it follows that (1 - PB)
Ls ' P
ks ~ P\
= (1 - nB)(krs)~l
LB
- 3 " I +P-B
\LB - P\
UBikrB)'1
+
+ (l-fiB)(kfS)-1J2(jL)
PnicOsS^+VBikfB)-1
+PB\XB\~1
1
J2
(j-j
PnicOsBt)
n>2
n>2
= constant + k
• P
(l-/x
B
)|
a ; s
|-1^(^) n>2 \I XS I
P n (cos5i)
Pn[cosBi)
^2
\XB
n>2
= constant + AT1 V ^2 = constant + k~xj3
1 - n+1 i g . + ( T 1 ) « - J £ n+1 L - anPn (cos 5i) [\xS\ \xB\ 2_. cn^nPn ( —) , n>2
where we have used - 3 [/
c„,
=
Pn(-*)
_ =
4_Cx1"l n
^
for
Li and L 2 ,
for
L3,
<
7" cos5i
-i\n 1-MB 1-MB
LS -a _ xsx fsa \xs\a n (-l) Pn(z).
,
MB
for for
L\ and L2, L3
In these expressions the upper sign is used for motion about L\ while motion about L 2 requires the lower sign. We have also used Figure 5.1 to compute cos P i
Equations
245
of Motion for Perturbed Halo Orbits
as a function of cos Si. Note that -3 3
77 "
I
[(-!)"(1(1^)n+r + (±1)"^]
for
v"+ l
U
and L 2 ,
for
which agrees with Chapter 2. ix) We have that X Ls ' P_ _ T_s ' & SX 3 kf , kf\ 'SB ""SB "• ' SB
7 xsx "
x) Now, we develop the last two expressions of the Lagrangian. First, from vii) it follows kqf-3fi§ k-y-3n§ i 1 = u-
^
/ 5 \" 2_> ~ ^n(cos5i).
We have that £s/l " P _ f 5,4 • a _ a cos ,4 2 'SA
kf
kf2
SA
SA
Then, again from vii) we obtain 1 kA - P\
'P _ 1 k r SA
LSA
a cos A 2
3
S A
rAfri\r J ' "• n>0A
Finally, the Lagrangian in normalized coordinates becomes L = 1 {k2(x'2
+ y'2 + z'2) + 2kk~f-3l2(xx'
+ yy' + zz') + 2k2[E(xy' - yx')
+F(yz' - zy')] + k2j-3(x2
+y2 + z2) + k2(Ax2 + By2 + Cz2 + 2Dxz)}
-k2-Y~3xsx
- kk^~3/2xsx'
- k2(Axsx
+Kk~1 £
cnanPn
(J) + Kk~lxsx
+ Dxsz) +
—y--3(1§
krs
n>2
+Kk-11~3
-
k2Exsy'
^£
U\rs
n>l
J2
Ae{E,M,Pi,--,Pk,B}
*(^W
-(
)
x
a cos A2 + 1 -=-H(-?-) r SA
p cos51
FAVOSA!)
246
Perturbed Equations
5.2.5
The Lagrange Equations Collinear Points Case
i)
| ^ ox1 —
for the Sun-Barycenter
=
k2x' +
=
k2y' + kkj-3/2y
+ k2 (Ex - Fz) -
k2z + kk-y-3/2z
+ k2Fy,
^ = dz> 4 | ^
of Motion: Halo and Triangular
=
=
k2x"+3kk1-3/2x'
k2y"+ 3kkj-3/2y'+ +k2-f-3/2(Ex-Fz)
A g
=
k2z"+3kk1-3/2z' + (2kF +
Problem,
kk1-3/2x-k2Ey-kkj~3/2xs,
-{2kE + kE)k^-3l2y — —7
Cases
+ (k2 +
k2Exs,
kk)1-3x-k2Eyl
- (k2 +
kk)j-3xs,
(k2 + kk)j-3y + k2Ex' -k2Fz' + (k2 + kk)1-3z
2kkj-3/2(Ex-Fz)
+
-(2kE+kE)k-y-3/2xs, + k2Fy'
kF)kj~3/2y.
ii) The following relations about Legendre polynomials will be used (see, for more details, Handbook of mathematical functions, M. Abramowitz and LA. Stegun). (a) P0(z) = 1 , ^ ( 2 ) = z,Pn(z) = 2-^zPn.x(z) - ^ P n _ 2 ( . ) forn = 2 , 3 , . . . (b) (z2 - l)P'n(z) = n[zPn{z) - P n _i(z)] for n = 1,2,... From (a) and (b) we obtain (c) nPn(z)-zPn{z) = -P^1{z). If we define Pn(z)=n\
f zPn-!(z) 5
Pn(z)\
for n = 1 , 2 , 3 . . .
then we have (d) Pn(z) =-P^iz) forn = 1,2,3,... It is easy to prove (e) Pn(z) - Pn-2{z) = - ( 2 n - 3)P„_ 2 (z). From (e) it follows easily (f) Pn{z) = sum\^\z + Ak- 2n)Pn-2k-2(z) brackets denote the integer part function. (f) is equivalent to
for n = 2 , 3 , . . . where the [ ]
Pn(z) = (3 - 2n)P n _ 2 (^) + (7 - 2n)P n _ 4 (*) + . . . + (-5)P 2 (*) + (-1)*U*), or Pnz) = (3 - 2n)P n _ 2 (z) + (7 - 2n)Pn-A(z) according to whether n is even or odd.
+ ... + (-7)P 3 (z) + (-3)Pi(z),
Equations of Motion for Perturbed Halo Orbits
247
We shall also use the following formulas:
«sS"" p -(;)=E«^' , -(;)' n>2
n>2
" n>2
n>2
and a similar expression for the derivative with respect to z. Q an (J) J^Yl^+l 0 1 „>l rA
an—2 ^ n ( c O s A i ) = {X - XA) E „ > 2 T^+T r A
^(cOsAj),
and similar expressions for the derivatives with respect to y and z. a cos A2
<
1 v-^ ^ a \ ™ r-, / ^i + — V — Pn(cosAi) r A *—*
' S4
n>l
\x r A I 2
= ~W-
+ (X~
X
A) Y
'SA
^ + 1 ^ ( 0 0 8 Ai),
>2
^
and, again, similar expressions for the derivatives with respect to y and z. Formula (g) follows from (b). From (c) and (d) the relations (h) and (j) follow. Finally (k) follows from (j). Using (g), (h), (j) and (k) it follows iii)
dx
= kk-y-3/2x' - k2Axs
+ k2Ey' + k2j~3x
+ Kk-1
+ k2(Ax + Dz) -
ncnan-lPn^
Y
(-) +
k2j-3xs
Kk~lxs
n>2
,n-2
+ jr*-s-Vs(*-*5)£j^pr P„(cos5i) n>2
+ Kk-1^-3
Y,
WVA
'SA
Ae{E,M,Pi,...,Pk,B}
dy
n-2
~f3- + (x-XA) Y
- k2Ex' + k2Fz' + k27-3y
= kh-^y'
+
n>2
JnTTP^COsA^
T
A
+ k2By
Kk-'yY^a^Pn^) n>2 n-2
+ IttrWsJ/E
ThnTT^icosSx)
n>2
+ Kk-1^3
XS\
Y. Ae{E,M,Plt...,Pk,B}
dL — = kk~f-3/2z' oz
^VA
n-2
v
^+{y-VA) Y ^+r^n(cosA!) SA
- k2Fy' + k2^~3z + k2Cz + k2Dx -
„ > , rA
k2Dxs
248
Perturbed Equations
of Motion: Halo and Triangular
Cases
n>2 an-2
+ Kk-^itgz^
m^PnicosSx) |X5
n>2
I
A€{E,M,Pi
J ^ + (z-ZA) r SA
Pk,B}
^ ^ 2
rn-flPnicOsAi) r
A
In short, from i) and iii) the Lagrange's equations for the motion in normalized coordinates with origin at Li for i = 1,2,3 are x" = ~2kk-1j-3/2x' - kk-li~3x + 2Ey' +(2kE + ktyk^-y^^y + kk'^^xs 3
*
V
+ Ax + Dz - Axs
/X\
n x ,
( - ) + Kk~3xs
+Kk~ + J2 ncna - Pn^ n>2
+Kk-31'3H{x-xs)
53 i „•>•>
+Kk-37-3
Y
\
. n+1 A,(cos5i) x s
<
*^W
Ae{B,M,Pi,-,Pk,B}
y" = ~2kk-1j-3/2yl 3/2
SA
L
n>2
- 2kk~1j~3/2(Ex
- kk^^y
rA
- Fz)
- Fz) - 2Ex' + 2Fz' + (2kE + A£0*- _11 7- 3 / 2 'XS
-~/- (Ex
+By + Kk~3y £ cnan-2Pn
Q
t>2
+Kk-31-3»§y £
\~\n+rp^cosS^
n>2
+Kk~31-3
*( A w
Yl
A£{E,M,Pi,-,Pk,B] x 3 2
z" = -2kk- ^ l z'
l
3
- kk- i~ z
r L
SA
„-^o TA
- 2Fy' - (2kF +
+Cz + Dx- Dxs + Kk~3z ] T cnan'2Pn
kF)k~l^-3l2y
(-)
n>2
+Kk-3r3^T,iz^n+ip^cosS^ n>2 I 1 5 1
+Kk~37-3
Y A£{E,M,Pi,---,Pk,B}
i{A)nA
- ^ + SA
(z-zA)Y^JrPn(cosA1) n>2
T
A
If the motion of the Earth-Moon barycenter around the Sun were circular then
Equations
249
of Motion for Perturbed Halo Orbits
in normalized coordinates the semimajor axis as would be 7 - 1 , the mean motion us = #and #7~ 3 / 2 = 1. As this motion is not far from circular, we have that e = ^ 7 ~ 3 / 2 - 1 is small. To generalize Richardson's formulation of the motion near Li (i = 1,2,3) for the circular restricted three-body problem, as given in Chapter 2, to the motion near Li for the Sun-Barycenter in the solar system we introduce the functions E
=
Ej3/2
-0 = [E-{l 2
+ e)]-f^, + e)2]13,
A
=
A^-9
= {A-(l
B
=
B73-62
= [ B - ( l + e) 2 ] 7 3 .
So, the equations of motion around Li for i = 1,2,3 are: x" - 2y' - (1 + 2c2)a; = £ ( n + l)cn+lanPn
Q
n>2 1
+C(0)^ncna"- P„_1(^) n>2
+C(l)a: + C{2)y + C(3)z + C(4)x' + C(5)j/' + C{7) +Kk-3j-3ii§(x-xs)
Y
n>2
+^fc-37-3
( c o s 5 l )
^TT^
^A^A
Y
Ae{E,M,Pi,---,Pk,B}
y" + 2x' - (1 - c2)y = y Y
,n-2 r
SA
n
c ^ " " 2 ^ ( ^ ) + C(0)y Y
n>3
>2
r
A
cna"-2P„ ( | )
n>2
+ C ( l l ) z + C(12)y + C(13)z + C(14)z' + C(15)t/' + C(16)z' + C(17) -,n-2
+Kk-31-3Ȥy
Y n>2
+Kk-37~3
j^^Pnicos xs\
S1)
^A^A
Y,
A€{E,M,Pu--,Pk,B]
" + c2z = zY
-,71-2 r
SA
Cnan-2Pn ( ^ ) + C(0)z Y
n>3
n
cna"-2P„
>2
^
g )
n>2
+C(21)z + C(22)i/ + C(23)z + C(25)y' + C(26)z' + C(27) +M-37-3^^-^-TIP„(cos51) n>2
+Kk-37-3
Y
*(A)^
Ae{B,Af,Pi,...,P*,B}
^SA
,n-2
^ 3 - + (z-zA) 2 ^ ' SA
fn+1 >2 M
P„(cosAi)
250
Perturbed Equations of Motion: Halo and Triangular Cases
where C(0) C(l) C(2) (7(3) (7(4) C(5)
= = = = = =
Kk~3 - 1 , 2e + e2 4- A7-3 -- k k ' 1 ^ - 3 (2kk~ 1E + E)j--3/2 D, -2kk- - i 7 - 3 / 2 ) 2(e + S 7 - 3 / 2 ) ,
(7(7) (7(12) (7(13) (7(16) (7(23)
xsikk-1^-3 -A + Kk-3), 2 2e + e + J B 7 - 3 - f c A ; - 1 7 - 3 , ( 2 k - 1 F + F)7-3/2, 2F, C-Jbfc"^-3,
= = = = =
and (7(11) = -(7(2), (7(14) = -(7(5), (7(15) = (7(4), (7(17) = xsC(2), (7(21) = (7(3), (7(22) = -(7(13), (7(25) = -(7(16), (7(26) = (7(4), (7(27) = -xsC{3). 5.2.6
T/ie Collinear Points in the Earth-Moon Expressions for the Lagrangian
Problem:
Several
Using the inertial frame of reference as in 5.2.2, the equations of motion of the spacecraft are: B
=
-
GS(RS-R)
^
\RS-R\3
,
GA(RA-R)
^
,
\RA -R?
'
where 5 = —a/G, i.e. S takes into account the radiation pressure of the Sun. The position vector of the Earth RE satisfies
-
RE
GA(RA-RE)
J2 yie{s,M,Pi,...,pfc}
\RA-RE\3
'
Then if r = R — RE we have that the equations of motion of the spacecraft with respect to the ecliptic frame of reference with origin at the Earth are r
=
-gJE+Gffc**-E>+
\LES-r\
~ A e { s
^_
GA(LEAJZL_LEA
\\rEA~r\3
P k }
r3EA
where rEA = RA - RE. We denote by ajv/ and UM the semimajor axis and the mean motion of the Moon around the Earth. The mean motion takes into account the secular terms in the ecliptic argument of ascending node, of perihelion and in the mean anomaly, due to the effects of the Sun and planets. Then, using Kepler's third law we have that n a M M IS close to G(E + M). Let E be the modification of the Earth mass to have n2MaM = G{E + M). Therefore, we write the equations of motion in the form GEr r=-
GEr
GS(r -r)
ES + ™**s-L) +
[LES-'Q
^
J2
GA
. w e , , P . P.X Ae{S,M,Pu-,Pk}
/ rEA-r \\tEA
rEA\
-r-13
L\~
<EA.
251
Equations of Motion for Perturbed Halo Orbits
where E = E - E. These equations of motion are the Lagrange equations given by the Lagrangian 1. . r L=-r-r+ 2
GE GE GS + +1 r r r \rES - r\
£
+
LEA-L
GA '-BA
Ae{S,M,Pu-,Pk}
EA
which can be written as
2
"
"
'
r
r
£
fJ-A Ae{S,M,Pi,.,P,}
' ^ - = 1
lEA-TXL.EA-
' EA
where K = G(E + M),/iE = E(E+M)-\ns = SiE+M)-1 and / ^ = AiE + M)'1 for A e{S,M,Pu...,Pk}. Let if (i = 1,2,3) be located with respect to the Moon by the vector r_L. As in 5.2.3 the equation which defines Li is T-L Is 'EM
VMT-L _ /, ,, N ( LE , T-EM Is— - - U - VM) I T- 3 - + - 3 — 7 L \ E 'EM
and 7 = rL rEM for Lx and L 2 or 7 = r B r ^ for L3. Let p = r_ — r_Eh be the position vector of the spacecraft with respect to the collinear point Lf, i.e. the position of the spacecraft in the ecliptic frame of reference with origin at Lj. In a similar way to 5.2.4 we denote the positions of the Sun, Earth, Moon, a planet P, and the Earth-Moon bary center with respect to L; by Ls>LE>LM'LPi and r B respectively. If we replace r by p — r_E the Lagrangian becomes
L
=
2 ^ ' ^ ~ £'^E
+
(1 - HM)-,
K
+K
\LE
r T
-S
-D\ P\
P\
+ /*M
£
^
A€{S,Pi,..,ft}
?-EM ' P
\ZM - P\
'EM "LEA
KlLA
P\
•P
' EA
where we omit in the Lagrangian the terms which only depend on the time t. The Lagrangian can be written in the form L = -p-p-p-rE
LE'P
+ K (1-PM)
1
, ,
\HM-P\
\LE~P\ ,1
+K
,LE-P
,
(LM'P
'M
+
Kp,E '-E
P\
+ fracKp,§\rs-
p\+K
LM-P
'M
LEM-P
'EM
^ A€{S,Pu...,Pk}
LEA'P
p,A ( \LA
- P\
1
EA
252
Perturbed Equations of Motion: Halo and Triangular
Cases
Using the definition of Li we have /,
^E-P
,
[l-HM)——
(LM-P
LEM-P\
+P-M I —3
'E
\
LE-P
-g
'M
'EM
I = -3 /
'EM
For more details see 5.2.4. Hence, the Lagrangian becomes 1
L =
L-E KL +
E'E
K +
< EM
P-E
r
P\
E
K +
P-s
(
/
1
LM-P
(
' " ^{5^...,Pfc} ^
r
P\
WL-M
y^
+ K
\LE - P\ ' \Ls ~P\
,
£E-£\
-p-p-p-rE+K
M
!
^A'£
V \LA ~ P\
r%A
As in the Sun-Barycenter problem we consider now a frame of reference with origin at the equilibrium points Li (i = 1,2,3) defined by
TEM
\LEM^LEM\
The change of variables form the ecliptic system with origin at Li, p, to the system with origin at Li, a, defined by e 1 ,e 2 ,e 3 , is given by p = kC a, where k is a scaling factor defined by k = <
.
{ rE
-
JTEM
for
' ' 1 = 3.
The matrix C is computed as in 5.2.4 but the values of the longitude and latitude of the Moon should be used. In this new system, units of mass, time and distance are chosen in the following way: - The unit of distance is taken as 7 times the semimajor axis OM- The new unit of time s is the time t in Modified Julian Days scaled by 7 s ' 2 , i.e. s — 7 3 / 2 i. - The unit of mass is chosen in such a way that K = G(E + M) = n2MaM = 1, where UM is the mean motion. Again, system a = (x,y,z) will be called the normalized system centered at Li for i = 1,2,3. The Lagrangian in the normalized system becomes
2 LM • P
+MM M
+Ky
-Pi y\
. ^
A€{S,PU-,Pk}
'
M
K~f-3rE
•p
'EM
.MET^—ZT)
Kj-3nE \LE
- p\
Kj-3fi§
ks - P\
253
Equations of Motion for Perturbed Halo Orbits
where p = kCa and r_A = kCf_A. Note that rE = (XE,0,0),ZB = (xj5,0,0), where XE = 1 - 7 _ 1 , or XE = _1 — 1 - 7 , or XE = 1 and XB = 1, or XB = —1, or XB = 1 + 7 - 1 , according to the normalized system centered at Li,I<2 or L3 that we consider. Using the notation of 5.2.4, the Lagrangian in normalized coordinates goes over to L
=
l{k2(x'2+yl2+z'2)
+ 2kk1-^2(xx'+yy'
F(yz' - zy')] + k2j-3(x2 -k2j~3xEx
cnanPn
- yx1)
+ y2 + z2) + k2(Ax2 + By2 + Cz2 + 2Dxz)}
- kk-y~3/2xEx'
+Kk~1 £
+ zz')+2k2[E(xyl
- k2(AxEx
( ^ ) + Kk-'xEX
+ DxEz)
-
k2ExEy'
+ ^ Q ^
£
{j~)
p
n(^sE1)
n>2
* £ * £ &'•<«•*> +Kk-^-3
Yl
a cos Ao
VA
' EA
Ae{s,Pi,...,pfc}
5.2.7
The Lagrange Equations linear Points
1 v^ + TA — " } \TA
for the Earth-Moon
Pn(cosAi)
Problem:
Col-
In a similar way to 5.2.5 we obtain x" - 2y' - (1 + 2c2)x = J2(n + l)cn+1anPn
Q
+ (7(0) £
n>2
nCna^Pn-!
n>2
+ C ( l ) x + (7(2)2/ + C(S)z + C(4)x' + C(5)y' + C(7) an~2 +Kk-3j-3fiE(x - xE) ^ I \Z+iP*(<x>*Ei) n>2 n-1
+Kk
3
3 7
fl§(x
-
XS)Y,^nTlPn{cOsS1)
>2rS
+Kk~31~3
Y,
M
Ae{s,Pi,...,pfc}
cnan-2Pn
y" + 2x' - (1 - c2)y = y £
XEA 1
n-2
+ (X- XA) Y
Q
+ C(0)y £
n>3
+C(ll)x
T^+iPnicOsAi)
n>2 TA
EA
cnan-2Pn
(^)
n>2
+ C(12)y + C{lZ)z + C(U)x' + C(15)y' + C(l6)z' + C(17)
+Kk~3j-3nEy
,n-2
Y
I a |n+i^n(cos£;i)
n>2
|:rB|
Q
254
Perturbed Equations of Motion: Halo and Triangular Cases n-2
+Kk-3j-3n§(y
- ys) ^
^ + r ^ n ( c o s Si) r
n>2
+Kk-3-/-3
Yl
S
AM
Cnan-2Pn
(y - VA) Y, T^+rPnicosAi)
?EA
Ae{s,pu...,pk}
" + c2z = zJ2
n-2
VEA
(J) + C(0)z J2 cnan-2Pn
n>3
T
n>2
A
(l)
n>2
+C(21)x + C{22)y + C{23)z + C{25)y' + C(26)z' + C(27) ,n-2
+Kk-37'3^Ez
Y
r—r^PnicosEr) XE\
n>2
n-2
+Kk-31~3fi§(z
- zs) ^
T^r^n(cos5i)
>2rS
+Kk~31-3
]T
VA
Ae{s,Pi,...,p<:}
n-2
ZEA
' EA
+ (z- zA) J2 T^+rP«(C0S^i) ^>2
V
A
where C ( 0 ) , . . . , C(27) are denned as in 5.2.5.
5.3
Equations of Motion Near the Triangular Points
5.3.1
The Triangular
Points for the Sun-Bary
center
Problem
The triangular point spacecraft geometry for the Sun and the Earth-Moon barycenter is illustrated in Figures 5.2.
Spacecraft
S (Sun)
S (Sun)
P
-SB
-SB
B (Barycenter)
B (Barycenter) Spacecraft
Fig. 5.2 The geometry for the Sun-Barycenter triangular points.
Equations
of Motion Near the Triangular
255
Points
The points L4 and L5 are such that Li (for i — 4 and 5), the Sun and the Earth-Moon barycenter form an equilateral triangle. Let p — r - r_sLi ^>e t n e position vector of the spacecraft in the ecliptic frame of reference with origin at Lt for i = 4,5. In a similar way to 5.2.4 the Lagrangian becomes L
=
-p-p-p-rs I- - -
+K
+ K(l-pB+iis)-
^
\Ls ~ £1
/HkT^f""^!"
A€{E,M,Pi,-,Pk}
-
where we use the notation of 5.2.2. 5.3.2
The Lagrangian L4 or L5
in Normalized
Coordinates
with
Origin
at
As in the collinear points we consider a frame of reference with origin at L4 or L5 defined by the unitary vectors: _e,1
= =^-, rSB'
e, = f£2—^^^ \rSBArSB\
and
e2 = e,3 A e,. ~ ~ -1
The change of variables from the ecliptic system with origin at Li, p, to the system with origin at Li, a, defined by e ^ g j , ^ , is given by p = kC a, where k = TSB is a scaling factor. Here, we use the notation of 5.2.4. In this new system units of distance, time and mass are chosen as in 5.2.4. The new Lagrangian has the same expression as that in 5.2.4 with p = kCa, and r_A = kCf_A. Again the system a = (x,y,z) will be called the normalized system centered at Li for i = 4,5. For L4 we have rs = (xs,ys,zs)
= ( - ^ - ^ . O J ,LB = ( | > - ^ r > ° ) a n d r S B =
(1,0,0); and for L 5 these vectors have the same expression but changing — - ^ by 2
•
We shall need the following relations to develop the Lagrangian in the normalized system: i) The expression for p • p is the same as that given in v) of 5.2.4. ii) Using iv) of 5.2.4 we have P'is
=
k2a-rs+
=
k2(xsx 2
kM-rs+
k2aTCTCts
+ ysy) + kk(xsx
+k (-Eysx
+ Exsy
+
-
k2&CTCts
+ ysy) + k2(Axsx Fysz).
+ Bysy + xsz)
256
Perturbed Equations
of Motion: Halo and Triangular
Cases
In a similar way to 5.2.4 the Lagrangian in the normalized system becomes L = - ik2(x2
+ y2 + z2) + 2kk(xx + yy + zz) + 2k2[E{xy - yx)
+F(yz - zy)) + k2(x2 + y2 + z2) + k2(Ax2 + By2 + Cz2 + 2Dxz)} -k2(xsx
+ ysy) - k2(Axsx
+ ysy) - kk(xsx
2
+ Bysy +
l
-k (-Eysx
+ Exsy + Fysz)+Kk- {\-^B+^§)
Y
Dxsz)
a"F„(cos5i)
n>l
+Kk~l
Y,
f*
a cos A2
5.3.3
+
'SA
AE{E,M,Pu--,Pk}
The Lagrange Equations Triangular Case
i-T(~yPn(cOsA1) rA^\rA)
for the Sun-Barycenter
Problem,
We need some preliminary computations i)
—ox r\ T—ay — oz £8L dt dx
=
=
k2x + kkx - k2Ey - kkxs +
=
k2y + kky +
=
k2z + kkz + k2Fy -
k2(Ex-Fz)-k2Exs-kkys,
=
k2Fys,
k2x + Zkkx + (k2 + kk)x - k2Ey - (2kE + kE)ky -{k2 + kk)xs + (2kE +
dt dy
kE)kys,
k2y + 3kky + (k2 + kk)y + 2kk(Ex - Fz) + k2 (Ex - Fz) +k2E± - k2Fz - (2kE + kE)kxs
ddL —^ dt oz
=
k2Eys,
- (k2 + k'k)ys,
k2z + Zkkz + (k2 + kk)z + k2Fy + (2kF + kF)ky -(2kF +
kF)kys.
Using (j) and (k) of 5.2.4 it follows that r\ y
ii) — ox
= kkx + k2Ey + k2x + k2(Ax + Dz) - k2xs +Kk~1{\
-HB+
Vs)(x ~ xs) Y
-k2Axs
a" _2 -Pn(cos5i)
n>2
+Kk~1
Y
A€{E,M,Pi,---,Pk}
dy
»A
n-1
- ^
<
+ (X- XA) Y
'SA
= kky - k2Ex + k2Fz + k2y + k2By - klys
>2
-
^+TPn(COsAl)
r
A
kzBys
Equations of Motion Near the Triangular
+Kk~l(l
-fiB+
Points
257
o n - 2 P„(cos5i)
n§)(y - ys) Y i>2
+Kk~l
Yl
USA
PA
n-2
?SA
Ae{E,M,Pu---,Pk}
V
n>2
dL ^ = kkz - k2Fy + kz + k2Cz + k2Dx dz +Kk~l(l
-^+Tpn(cosA1)
+ (y~ VA) Y A
k2Dxs
Vs)z ] C o n_2 -Pn(cos5i)
-HB+
n>2
+Kk~X
J2
M
,n-2
ZSA
+ (Z- ZA) Y
' SA
Ae{E,M,Pi,-,Ph}
-^+iPn(cOsA1) T
n>2
A
In short, from i) and ii) the Lagrange equations for the motion in normalized coordinates with origin at Li for i = 4,5 are: x = -2kk~1x
- kk~lx + 2Ey + (2kE + kfyk^y 1
-Axs-(2kE+kE)k- ys
+ kk^xs
+ Ax + Dz
3
Kk- (l-fiB+Vs)(x-xs)J2an~2pn(cosS^
+
n>2
+Kk~3
J^
^
Ae{E,M,Pu...,Pk}
y = -2kk-xy
- kk~ly - 2kk~l(Ex
+ (2kE + k^k^xs 3
+Kk~ (l
XSA 3
' rSA r
n-2
+ (X- XA) Y
-^+iPn(cOsA1)
x>2TA
- Fz) - (Ex + Fz) - 2Ex + 2Fz
+ By + kk^ys
-
Bys
n 2
- / i B + p§)(y - ys) Y, a - P„(cOs5!) n>2
+Kk~3
Y
^
Ae{s,M,Pi,...,p f c }
z = -2kk~lz
VSA 3 "frSA
n-2
+ (y -
n>2
- kk~lz - 2Fy - (2kF + kF)k~ly
+(2kF + kF)k-1ys
+ Kk~3(l
Y
VA)
T
_An + i Pn(cosAi) + Cz + DxDxs a
- MB + Hs> £
"~ 2 -P«(cosSi)
n>2
+Kk~3
Y A€{E,M,Pu-,Pk}
PA
ZSA 3 rr SA
-,n-2
-^+TPn(cOsA1)
+ {Z ~ ZA) Y i>2
T
A
In a similar way to the collinear points, we define e = 6-l,E = E-(l + e),A = A— (1 + e)2 and B = B - (1 + e)2. So, the equations of motion around L 4 or L5 are: x-2y-x
= C(l)x + C(2)y + C(3)z + C(4)x + C(5)y + C(7)
258
Perturbed Equations
+Kk~3{l
of Motion: Halo and Triangular
V§)(x ~ xs) Y
-HB+
Cases
o n - 2 -Pn(cosSi)
n>2
+Kk~3
Y
XSA
, ( - ^ 3 — + {X' SA
^
A£{E,M,Pi,-,Pk}
y + 2x-y
n-2
\ S ^ a i> r A ^ XA) 2 ^ ^T+ T - P n ( c O S Ax) >2 A
= C(U)x + C{l2)y + C(13)z + C(U)x + C(15)y + C(16)i tffc-3(l
+C(17) +
- ^ B + / i s ) ( y ~ Vs) Y ,
«n"2^n(cOs5!)
n>2
+Kk~3
J2
M
Ae{E,M,Pu-,Pk}
n-2 - f r 1 + (2/ - I/A) Y 'SA n>2
^nTTPnicOsAi) T
A
z = C(21)x + C(22)y + C(23)z + C(25)y + C(26)i + C(27) +Kk~3(l
Ȥ)(z ~ zs) Y
-HB+
«"~ 2 -Pn(cos5i)
n>2 n-2
+^fc"3
£
" 3 d + (* - **) H ^+r^«(C0S ^i)
HA
'S4
Ae{E,M,Pi,--;Pk}
n>2
r
^
where C ( l ) , . . . , C(27) are defined as in 5.2.5 except C(7)
=
( k - 1 - A ) a ; 5 - ( 2 k - 1 J E + i;)i/ s ,
C(17)
=
( 2 k - 1 E + £)a; s + (fcfc- 1 - B)ys,
C(27) 5.3.4
=
The Equations
and
l
- £ > z s + {2kk~ F + F)ys. in the Earth-Moon
Problem
We proceed as in 5.3.1 to 5.3.3. The only differences are that the coherence term refers to the Earth and not to the Sun, but the radiation pressure term is still present. The units are chosen in a similar way and in the matrix C the longitude and latitude of the Moon should be used. We obtain x-2y-x
= C(\)x + C(2)y + C(3)z + C(4)x + C(5)y + C(7) +Kk~3(l
-HM+
VE)(X ~ xE) Y
an_2P„(cosEi)
n>2 n-2 3
Pn cosS H£,(x-xs)Y^nTT ( ^ V
+Kk
>2 S
+Kk~3
Y A€{S1,P1
y + 2x-y
= C(ll)x
VA Pk,M)
XEA r
EA
n-2
+ {X- XA) Y n>2
-^+iPn(cOsA1) r
A
+ C{12)y + C(13)z + C{U)x + C(15)y + C(16)i
Numerical
259
Tests of the Equations of Motion
+C(17) + Kk~3(l -HM + HE)(y - VE) Y
an~2Pn(™*Ei)
n>2 an-2
+Kk-3n§(y - vs) Y ^+r^"( cos5 i) r
n>2
+Kk~3
S
Y Ae{S,P!
VEA
VA
"EA
Pk,M}
2 a"~ "n~2 P C0S A + (V- VA) n~>2 Y ^nTT n( l) r A
z = C(2l)x + C(22)y + C(23)z + C(25)y + C(26)i + C(27) +Kk~3{l
-HM + HE)Z J2
an~2Pn(casEi)
n>2
+Kk
nn-2
3
P cosS Hs(z-zs)Y,-^+T "( i) r
n>2
+Kk~3
S
Y, Ae{Si,Pi,...,P*,M}
»A
ZEA
,n-2
+ (Z~ ZA) Y
EA
n>2
^nTTPn(COsAl)
r
A
where C ( l ) , . . . , C(27) are defined as in 5.3.3.
5.4 5.4.1
Numerical Tests of the Equations of Motion Description
of a Program
to Check the Equations
of
Motion
Since several changes of coordinates, rearrangements and recombinations of terms have been done to obtain the final equations from the Newton ones, we have made a program, ET, in order to check the final equations. The test is done comparing the acceleration of the spacecraft, computed directly in normalized coordinates and time from the final resulting equations, with the acceleration computed using Newton's equations and the suitable changes of coordinates and time to go from the ecliptic to the normalized system. The tests are performed, either at a point given by the user or, for the L\ and L2 cases, at a prefixed number of points in a halo orbit of given ^-amplitude. All of them are done at a given number of equally spaced epochs. It is convenient to introduce a correction due to the lack of coherence of the analytic model of the solar system that we are using. When this is done, the errors found between the two accelerations are very small and due to rounding errors. We remark that for the Li,2 cases in the Sun-Barycenter system the normalized unit of acceleration is, roughly, 0.06 mm/s 2 ; for the ^3,4,5 cases is close to 6 mm/s 2 . For the Earth-Moon system the figures are 0.5 mm/s 2 and 3 mm/s 2 , respectively. Given a point in the phase space, in normalized coordinates, it is changed to ecliptic ones, Newton's equations are used to compute the acceleration, and we go back to normalized coordinates. From the other side, the ecliptic coordinates
260
Perturbed Equations of Motion: Halo and Triangular
Cases
of the bodies of the solar system with respect to the center of masses of the own system, are changed to normalized coordinates by routine EFEM. To compute the coefficients C ( 0 ) , . . . , C(27) used in the final equations, several auxiliary parameters are needed. They are the elements and derivatives of the orthogonal matrix used in the transformations, the scaling factor k and its first and second derivatives, the longitude and latitude of the primary with respect to the secondary as well as its first and second derivatives, etc. This is done in routine PARAM. Furthermore the coefficients Cn are required. The computation of them is done in routine CEN. The routines PSUM, PBSUM and PBPSUM are in charge of the computation of the diverse series involved in the equations. These series have also been checked against the direct value before expansion.
5.4.2
Numerical
Results
At some preliminary step partial checks were done, taking only into account some of the perturbations. The runs that we present here are done with the full solar system, including radiation pressure. Runs have been done for cases L\ to L$ in the Sun-Barycenter and Earth-Moon problems. In all the cases, at all the epochs and points the residues obtained are less than 1 0 - 1 0 . They are due to rounding errors. It is important to state that if the terms accounting for the lack of coherence of our model of the solar system are not included, the errors are much larger. They are of the order 1 0 - 6 in the Sun-Barycenter problems and 10~ 3 in the Earth-Moon problem. We refer here to L\ and L?- A very small sample of results is given below in Tables 5.6 and 5.7. In these tables the different codes P, V, N, A and D denote POSITION, VELOCITY, NUMERICAL ACCELERATION, ANALYTIC ACCELERATION and DIFFERENCES, respectively.
Numerical
Tests of the Equations
of Motion
261
CURRENT VALUE OF SPACECRAFT SECTION IN m**2 DIVIDED BY MASS IN kg: O.Ol THE MODEL OF THE SOLAR SYSTEM IS: 1 1 8 1 1 1 1 1 1 1 11 1 0 0 0 0 EARTH-MOON SYSTEM THE EQUILIBRIUM POINT IS L2: Z-AMPLITUDE OF THE HALO ORBIT = 0.08 CORRECTION DUE TO LACK OF COHERENCE OF THE MOTION OF THE PRIMARY INCLUDED INITIAL JD = 17762 N. OF EPOCHS = 6 STEP IN DAYS = 200 N. OF POINTS = 1
EPOCH
17762.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES 6.80150562329442E-02 -4. 89668060246066E-15 -1.29942557663951E-16 1.065243759575357 -0.40529129162314 -7. 90464251723612E-02 -0.40529129167518 -7. 90464251772684E-02 5.20398932279952E-11 4.90725862722918E-12 EPOCH 17962.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES 6.80150562329440E-02 P -0.2159341817654990 7. 42655970388849E-15 V -8.76033457265997E-15 1.065243759575337 2.05400362559781E-16 N -3 30754429192645E-02 0.1473989936776778 -0.3477346086349386 -3 30754429205688E-02 A 0.1473989936149495 -0.3477346086617204 D 6.27282947807117E-11 1 30436113299214E-12 2.67817434895789E-11 EPOCH = 18162.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES -0.2159341817655137 -3 82424542044651E-15 P 6.80150562329441E-02 V -4.47907113617948E-15 1.065243759575353 3.19971679733317E-17 7.60786012686369E-02 N 0.1310570269415729 -0.4130982600113180 7.60786012429490E-02 0.1310570269433896 A -0.4130982600218986 D 2.56879136018017E-11 -1 81676895749660E-12 1.05806127748131E-11 EPOCH = 18362.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES -0.2159341817655041 2 51563683797158E-14 P 6.80150562329428E-02 .74630755865822E-14 V 2 1.065243759575342 1.27684315692931E-17 N -1.13775160292638E-02 -1 63318094311868E-02 -0.4691788244725444 A -1.13775159992819E-02 -1 63318094309396E-02 -0.4691788244605368 D -2.99819485644753E-11 -2 47167301984996E-13 -1.20076032450455E-11 EPOCH = 18562.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES -0.2159341817655028 -1 15578086947763E-14 P 0.80150562329440E-02 V -1.03475140800010E-14 1.065243759575344 -8.73253290913403E-17 N 7.51593005432500E-02 -8 27608060370502E-02 -0.4111263652511284 A 7.51593006293423E-02 -8 27608060342255E-02 -0.4111263652193898 D -7.70922700676912E-11 -2 82474911517116E-12 -3.17385909220924E-11 EPOCH = 18762.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES -0.2159341817655023 -2 81266433003390E-15 P 6.80150562329447E-02 V -2.07029382735476E-15 1.065243759575341 2.34847461726517E-17 0.1528921771910376 9 98142426550300E-04 N -0.3395129837640657 0.1528921772942718 9 98142426183967E-04 A -0.3395129837204182 3 66333157385267E-13 D -1.03234122639239E-10 -4.36474745235670E-11
P V N A D
-0 21593418176551E+00 -6 85507705049992E-15 7 61041991265082E-02 7 61041989988855E-02 1 27622657233872E-10
Table 5.6
Output of program ET. Case Li Earth-Moon.
262
Perturbed Equations
of Motion: Halo and Triangular
Cases
CURRENT VALUE OF SPACECRAFT SECTION IN m**2 DIVIDED BY MASS IN kg: O.Ol THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 1 1 1 1 1 1 1 1 1 0 0 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI: Z-AMPLITUDE OF THE HALO ORBIT = 0.08 CORRECTION DUE TO LACK OF COHERENCE OF THE MOTION OF THE PRIMARY INCLUDED INITIAL JD = 18262 N. OF EPOCHS = 1 STEP IN DAYS = 0 N. OF POINTS = 5 EPOCH = 18262.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P 1.01963550684844E-02 0.4207314348755143 4.06163748780382E-02 V 0.3214430737628846 0.3052075793433056 -0.1446380209754839 N 2 .24145798465631E-02 -1.749426993364965 -0.1485542825383776 A 2 .24145798465702E-02 -1.749426993364973 -0.1485542825383783 D -7 .03170160987198E-15 7. 63278329429795E-15 6.90419943438769E-16 POINT NUMBER 2 ADIMENSIONAL LI COORDINATES P 0.1526361820666371 0.2757152978251848 -5.26175334267068E-02 V 9 .17755513673964E-02 0.7507366206869046 -0.1171431936735233 -0.4389373314119561 -1.425579946758043 N 0.2949045155888308 -0.4389373314119655 -1.425579946758043 A 0.2949045155888305 D 9 .48546796664118E-15 -1.66533453693773E-16 2.77555756156289E-16 POINT NUMBER 3 ADIMENSIONAL LI COORDINATES P 0.2757152978251854 0.1526361820666371 -5.26175334267068E-02 V -9 .17755513673951E-02 0.7507366206869057 0.1171431936735233 N -0.4492821262472033 1.430221653225935 0.2932566205529722 -0.4492821262472038 A 1.430221653225933 0.2932566205529722 D 4 .92661467177413E-16 85962356624713E-15 2.08166817117216E-17 POINT NUMBER 4 ADIMENSIONAL LI COORDINATES P 1.01963550684844E-02 0.4207314348755148 4.06163748780382E-02 -0.3214430737628843 0.3052075793433049 V 0.1446380209754839 N 1.48800869148124E-02 1.753602270330053 -0.1482554992488390 A 1.48800869148223E-02 1.753602270330057 -0.1482554992488395 D -9 .90939101608301E-15 -4. 10782519111307E-15 5.20417042793042E-16 POINT NUMBER 5 ADIMENSIONAL LI COORDINATES -0.1146312230589805 -8. 53459468722368E-17 8.94768437229016E-02 P 0.8952570170338835 -1.18858739276885E-17 V 2 .25395069657320E-16 -0.3026475201019374 N 0.8419834962407535 4. 43706976138599E-03 -0.3026475201019377 A 0.8419834962407530 4. 43706976138503E-03 2.70616862252381E-16 9. 63205210036122E-16 D 5 .27355936696949E-16 THE EQUILIBRIUM POINT IS LI: Z-AMPLITUDE OF THE HALO ORBIT = 0 . 0 8 CORRECTION DUE TO LACK OF COHERENCE OF THE MOTION OF THE PRIMARY INCLUDED INITIAL JD = 17262 N. OF EPOCHS = 11 STEP IN DAYS = 200 N. OF POINTS = 1 17262.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES EPOCH 8.94768437229016E-02 2.74953756902971E-16 P -0.1146312230589860 2.30803833616518E-18 0.8952570170338844 5.63025049309300E-17 -2.50719695170269E-02 -0.2862592459622015 0.8308703050994398 -2.50719695077002E-02 -0.2862592456987819 0.8308703051573733 -9.32665273137289E-12 -2.63419529245023E-10 5.79335052153240E-11 EPOCH = 17462.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589833 4.79592285373015E-16 8.94768437229016E-02 V 2.59528085298067E-16 0.8952570170338813 2.30048358410650E-18
Numerical
Tests of the Equations of Motion
263
N 0.8331313228719657 2.98100741054282E-02 -0.2912781553774492 A 0.8331313229243336 2.98100740940855E-02 -0.2912781551630238 D -5.23678600483634E-11 1.13427544266853E-11 -2.14425345534952E-10 EPOCH = 17662.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589833 -5.09735580226378E-16 8.94768437229016E-02 V -9.23336967466776E-16 0.8952570170338840 2.28640150395261E-18 N 0.8329992924983034 -2.05462122161357E-02 -0.2781748804360803 A 0.8329992925229601 -2.05462122113091E-02 -0.2781748802824957 D -2.46567072315073E-11 -4.82661957276753E-12 -1.53584596429556E-10 EPOCH = 17862.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589847 -5.90588671457213E-16 8.94768437229016E-02 V 7.75592950515096E-16 0.8952570170338846 2.28243545575292E-18 N 0.8304210393573760 1.87948340884625E-02 -0.2990810865536457 A 0.8304210393900451 1.87948340850099E-02 -0.2990810864435596 D -3.26691312890758E-11 3.45262490472619E-12 -1.10086044446955E-10 EPOCH = 18062.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589860 2.94093210596822E-16 8.94768437229016E-02 V 7.11540099395429E-16 0.8952570170338793 2.27142097150020E-18 N 0.8268437578119842 -6.16931531266036E-03 -0.2727670831562782 A 0.8268437578194670 -6.16931531243319E-03 -0.2727670831060759 D -7.48279216367109E-12 -2.27164424423942E-13 -5.02022451387418E-11 EPOCH = 18262.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589805 -8.53459468722368E-17 8.94768437229016E-02 V -6.18150899553124E-17 0.8952570170338835 2.26843787731140E-18 N 0.8419834962407535 4.43706976138651E-03 -0.3026475201019374 A 0.8419834962407530 4.43706976138562E-03 -0.3026475201019377 D 5.27355936696949E-16 8.90997345348587E-16 2.70616862252381E-16 EPOCH = 18462.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589847 7.48273188697798E-16 8.94768437229016E-02 V 2.37574376417046E-15 0.8952570170338838 2.26916030248766E-18 N 0.8209302079794383 7.25815380880589E-03 -0.2721766984006765 A 0.8209302079709893 7.25815380950265E-03 -0.2721766984507671 D 8.44903313979017E-12 -6.96757213557164E-13 5.00906122136157E-11 EPOCH = 18662.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589888 3.05148590961130E-16 8.94768437229016E-S2 V -1.18722328985158E-15 0.8952570170338839 2.24187393331493E-18 N 0.8382088467796591 -1.14672907855469E-02 -0.3001709455383223 A 0.8382088467491298 -1.14672907867862E-02 -0.3001709456488073 D 3.05293151869889E-11 1.23934521499557E-12 1.10484982274172E-10 EPOCH = 18862.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589860 -2.34175732267714E-16 8.94768437229016E-02 V 1.27601414216911E-15 0.8952570170338839 2.25034958121785E-18 N 0.8282800052808199 2.30946004210394E-02 -0.2757371961949853 A 0.8282800052548035 2.30946004278268E-02 -0.2757371963472253 D 2.60163834919779E-11 -6.78737101245108E-12 1.52239949813282E-10 EPOCH = 19062.00 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589819 -2.20981602724861E-16 8.94768437229016E-02 V 1.50517948179768E-16 0.8952570170338781 2.21094874860764E-18 N 0.8354124160884162 -2.62289319166143E-02 -0.2938122741162987 A 0.8354124160355899 -2.62289319256993E-02 -0.2938122743325946
264
Perturbed Equations
of Motion: Halo and Triangular
Cases
D 5.28263266463824E-11 9.08497929663631E-12 2.16295883981310E-10 EPOCH = 1 9 2 6 2 . 0 0 POINT NUMBER 1 ADIMENSIONAL LI COORDINATES P -0.1146312230589819 1.11845433578585E-16 8.94768437229016E-02 V 4.17581764478418E-17 0.8952570170338843 2.24009665508986E-18 N 0.8294114270383331 3.24679577073166E-02 -0.2845171364220191 A 0.8294114269818352 3.24679577236557E-02 -0.2845171366838316 D 5.64979174555446E-11 -1.63391166915771E-11 2.61812502233560E-10 Table 5.7
5.5
Output of program ET. Case L\ Earth+Moon-Sun.
References [1] R. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin, 1978. [2] American Ephemeris and Nautical Almanac. U.S. Government Printing Office. Washington D.C., 1984. [3] V. Arnold. Les Methodes Mathematiques de la Mecdnique Classique. Ed. Mir, 1967. [4] A.E. Brigham. The Fast Fourier Transform. Prentice Hall, 1974. [5] E.W. Brown. " Motion of the Moon". Memoirs of the Royal Astronomical Society, 57, 129-145, 1905. [6] Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. Her Majesty's Stationary Office, London, 1961. [7] R.W. Farquhar. "The control and use of libration-point satellites". NASA TR R-346(1976). [8] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley & Sons, 1966. [9] D.L. Richardson. "A note on a Lagrangian formulation for motion about the collinear points". Cel. Mech., 22, 231-236, 1980. [10] V. Szebehely. Theory of Orbits. Academic Press, 1967.
Chapter 6
Expansions Required for the Equations of Motion. Collinear Points Case
The final equations of motion, as they are given along Chapter 5, require some preparation to be used for the computation of the analytic quasi-periodic solutions of the motion. The essential tasks to do are expansions and evaluation of coefficients and frequencies. First of all there is a not difficult task: to compute the coefficients C(i), i — 0 , . . . , 27, which appear in the differential equations. For the Sun-Barycenter problem this is done using the expansions of the elliptic motion in terms of the mean anomaly and adding the periodic terms coming from the planetary perturbations. For the Earth-Moon problem the task is more involved. Any attempt to expand the perturbing forces as functions of the anomalies which appear in Brown's theory of the Moon, generates an enormous number of terms. We use a different approach. This approach has also been used for the planetary terms, both in the Sun-Barycenter and in the Earth-Moon problems, for the effects of the Earth and Moon instead of the Barycenter, in the Sun-Barycenter, L\ and L2, near halo orbits, and for effects of Sun (and radiation pressure) in both problems. The perturbing functions depend on time, through the position of the celestial bodies, and on the coordinates, x,y,z, of the spacecraft in the normalized system. The procedure that we have used is to expand the perturbing functions as power series in x,y,z where the coefficients are well-known functions of the coordinates of the perturbing bodies. Instead of trying to develop each of these functions in terms of the elements (or parameters) of the orbit, we have done a Fourier analysis of them. This analysis has been split into several parts: An exploration to look for the important functions, a Fast Fourier Analysis to detect frequencies and order of magnitude of the coefficients, and a refined Fourier Analysis by classical methods of the different harmonics. As the frequencies should be linear combinations of the frequencies of the anomalies appearing in the position of the bodies, it is easy to recover the exact frequency when an approximation is available. The effect of slowly varying anomalies can be neglected. Finally, the terms are converted to a suitable form to be read by program QPO to be explained in the next chapter. 265
266
Expansions
6.1
Required for the Equations
of Motion.
Collinear Points
Case
Analytic Expansion of the Coefficients Due to the Noncircular Motion of the Earth—Moon Barycenter
6.1.1
The Coefficients
Appearing
in the Equations
of
Motion
Several functions are involved in the right-hand side of the equations of motion in normalized coordinates centered at Li for i — 1,2,3, see Chapter 5, 5.2.5, which need to be developed in a suitable way, in order to obtain their analytic solution up to the convenient order. We denote by e, M, CJ and n the eccentricity, the mean anomaly, the derivative of the argument of the perihelion and the mean motion of the orbit of the EarthMoon barycenter around the Sun. E r , E#, and T,s denote the periodic perturbations due to the effect of the planets on the radius vector, longitude and latitude of the Earth-Moon barycenter according to Newcomb's theory. Then, if we develop the functions C'$ which appear in the equations of motion we obtain C(0)
=
C(l)
=
3 / 9 \ 9 53 - e 2 + 3e 1 + - e 2 cos M + - e 2 cos 2M + — e 3 cos 3M 2 \ o J 2 8 - 3 ( l + 3ecosM)E r , - e 2 + e (4n - n 2 + — e2 ) cos M + - e 2 cos 2M + — e 3 cos 3M 2 \ 8 y 2 8 +2(1 + 2ecosM)S e - 2e sin Mtr
-
tr,
C(2)
=
2en(l - n) sin M + 2(1 + 2e cos M)tr
C(3)
=
- ( 1 + 4ecosM)Y,S - 2 e s i n M t s -
C(4)
=
- e | 2n - - e 2 ) sin M - 3e2 sin 2M
(7(5)
=
2e ( 2 - e— j ncosM + 5e 2 cos2M + — e 3 cos3M + 2±0,
C(7)
-
xs
+ 2e sin Mt$ ts, 17
+ t8,
e3sin3M-2Sr
e ( n - 3 ) ( n - l ) c o s M - 3(1 + 3 e c o s M ) S r + 2 e s i n M S r
- 2 ( l + 2ecosM)£fl + II r C(12)
=
C(l),
C(13)
=
(l + 4 e c o s M ) S i + 6esinMS ( 5 + ( l - 2 e c o s M ) S 5 ,
C(16) C(23)
(1 + 2ecosM)Sj + 2esinMSa + (1 - 2 e c o s M ) s J , 9
\
5
39
n + ^2 ' cos M - -e2 cos 2M - —e3 cos 3M - 2 e s i n M S r - Er
It must be noted that in the above relations only terms up to weight 9 have been retained, so powers of e greater than or equal to 4, products of efcEQ for k > 2, a € {r,8,6}, and products of E^ between themselves have been skipped.
Expansions
Due to the Noncircular
Barycenter
Motion
267
We also remark that according to the used units (w + n)7 3 / 2 = 1. 6.1.2
A Program
for the Computation
of the
Coefficients
A program (CES) for the computation of the terms involved in fc~3-l, C(l), xsC(2), xsC(B), C(4), C(5), C(7), C(12), C(13), C(16) and (7(23), where z s = 1 - 7 - 1 for the Li case, and xs = — 1 - 7""1 for the i 2 case, has been implemented. We note that in the Sun-Barycenter case and according to the relationships between the coefficients of the equations (see Chapter 5, 5.2.5) only these need to be computed. Each term can be written as coef F(vt + ip),
(6.1)
where t is the normalized time, v is a frequency,
(6.2)
and we number them from 1 to 10. We note that in fact C(12) = C(l) and so C(12) does not need to be computed. In any case, it will be given in the output of the program in order to be coherent with the Earth-Moon case, where C(12) is different from C(l). The terms of (6.2) are stored in two arrays, CF(N1,N2), NF(N1,N2,N3), where Nl=10, N2=500, N3=2, such that CF(L,J)=COEF, NF(L,J,1)=I, NF(L,J,2)=I1. This means the term number J of the coefficient number L according to the order given in (6.2). The longitude, latitude and radius vector terms represented in (6.1) by £#, £,5 and £ r respectively, are computed by the subroutine SIGMES. The terms of £,5 and £ r are of the following type ^
Cij cos [(-ine - jnp)t + (dij - iM0 -
jMg)},
where ne,np, dij, Mo, and MQ are obtained from the subroutine NEWPER. That gives some frequencies (—ine — jnp) which are stored in GMA and some phases (d^ — IMQ—JMQ) stored in PHA. The longitude terms are computed as sine terms after the suitable modification of the phase. That change is done in order to have only cosine
268
Expansions
Required for the Equations
of Motion.
Collinear Points
Case
terms in the first and third equations and sine terms in the second equation. The (3*1
derivatives £#, £9, £,5, S<5, £^ , £ r and £ r are also computed in the same subroutine. As usual (3) stands for the third derivative. When the longitude, latitude and radius vector terms are available, the terms of (6.2) are computed and stored in the corresponding array. The products coef • F(i/jt + ipj) • £, where £ stands for £#, £5 or £ r or some of its derivatives, is performed by the subroutine SPCS. We assign a weight to each term (6.1) according to the formula [ - l n | c o e / | + 0.5], where [ ] means the integer part function. The computation of the weight of one term is done by the subroutine PROPES. In the subroutine WEINF, the terms which have a weight greater than a maximum value NN are deleted. The subroutines GUARD, STEN, REOR and BUGA, are used for the storage and manipulation of the terms. After the computation of the terms of (6.2) it is possible to perform a test. The test is done by the subroutine TESCE. For a given Julian day, the difference between the values of the coefficients (6.2) using the terms computed by the program CES and the numerical values, is obtained. The subroutines PARAM, EFEM, VEC, TRANSLI, TRANS, COSS and EPHPLA are used for the computation of the numerical values. 6.1.3
Numerical
Results
and
Tests
The program CES has been run for the Sun-Barycenter problem in the following cases (1) L\ case, (2) L2 case, (3) L\ case, simplified model. For the simplified model, only the eccentricity of the Earth, the dynamical coherence of the Earth's motion and the effect of the radiation pressure has been taken into account. This simplified model has been useful to perform simulations of control (see Chapter 9). In order to make a reduction of the number of terms that appear in the computations, the terms such that, the absolute value of its coefficient is less than a given bound e are neglected. In the three cases above the value of e has been taken equal to l.D-10. In Tables 6.1 and 6.2 we give the results for the case (1) up to order 12. The corresponding check (Table 6.3) shows a good agreement between analytic and numerical values. We note that in the model of the solar system used for these checks only the Sun and the Earth's periodic terms have been taken into account.
Expansions Due to the Noncircular Barycenter CASE LI , ORDER = 1 2 GAMMA = 0.1001090475489518E-01 NUMBER OF FREQUENCIES = 162 1 0..9999522207284640D+00 2 0..1999904441456928D+01 3 0..2999856662185392D+01 4 0..3151973342338853D+01 5 0..1625459877970818D+01 6 0..6255076572423544D+00 7 0.2250967535213173D+01 8 0.1251015314484709D+01 9 0.2510630937562449D+00 10 0.2876475192455527D+01 11 0.1876522971727063D+01 12 0..8765707509985993D+00 13 0..1233814697298647D+00 14 0.2502030628969418D+01 15 0.1502078408240954D+01 16 0.5021261875124897D+00 17 0.3127538286211772D+01 18 0..2127586065483308D+01 19 0.1127633844754844D+01 20 0.3753045943454126D+01 21 0.2753093722725662D+01 22 0..4378553600696481D+01 23 0..5004061257938835D+01 24 0..1004252375024979D+01 25 0..5629568915181190D+01 26 0..6255076572423544D+01 27 0..4683008389644087D+00 28 0.1936553898657281D+01 29 0..9366016779288175D+00 30 0..6335054279964647D-01 31 0..1404902516893226D+01 32 0.4049502961647623D+00 33 0.1873203355857635D+01 34 0..8732511351291710D+00 35 0..1267010855992929D+00 36 0..1341551974093580D+01 37 0..3415997533651158D+00 38 0.1809852813057989D+01 39 0..8099005923295245D+00 40 0.2658256908820276D+01 41 0.7465500495298781D+00 42 0.1915609282611617D+01 43 0..9156570618831535D+00 44 0.8429515884531046D-01 45 0..1084247379573774D+01 46 0..2831266344494771D+01 47 0..1831314123766307D+01 48 0..8313619030378430D+00 49 0..2746971185649461D+01 50 0..1747018964920997D+01 51 0..7470667441925326D+00 52 0..3662628247532614D+01 53 0..2662676026804150D+01
Motion
0 6231395117299221E+00 0 6179604927418856D+01 0 6127814737538490D+01 0 2595581545179894D+01 0 1330068567545066D+01 0 1425520961190873D+01 0 5953003745923967D+01 0 5994554612681657D+01 0 2688854920500531D+01 0 1060403842429783D+01 0 1142039162519251D+01 0 4118012100655008D+01 0 2586425363398768D+01 0 2556884642807375D+01 0 2420179273472353D+01 0 5062038073312304D+01 0 ,3987612619288647D+01 0 3798547372393796D+01 0 .3387825310495664D+01 0 . 5402632632501971D+01 0 ,5260691275410965D+01 0 ,5589019480636293D+00 0 1965195315016981D+01 0 , 1076289304286003D+01 0 .3388941974490275D+01 0 .4777782048923683D+01 0 4984774559577462D+01 0 5034529440171451D+00 0 5183875396819217D+00 0 1934137094660285D+01 0 ,5548744339734944D+01 0 ,9716233222678938D-01 0 1267565900474510D+01 0 ,1915909628686537D+01 0 .3207758966480621D+00 0 .6475185442187157D+00 0 ,1505650848520461D+01 0 .2555277632530175D+01 0 .3329634132736192D+01 0 3718394402892522D-01 0 . 4730792266171488D+01 0 .4584756406481247D+01 0 .4303741280471877D+01 0 .4670750522958893D+00 0 .1869375022576490D+00 0 .2128284922737904D+01 0 .2290816253657310D+01 0 . 2732658384359900D+01 0 .3345161826763161D+01 0 .1863680268766507D+01 0 .2192105145087974D+01 0 .4489304589884120D+01 0 .2956335818953634D+01
269
Expansions 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
Required for the Equations
0.1662723806075686D+01 0.9660209891320313D+00 0.1932041978264063D+01 0.9320897575355987D+00 0.1898110746667630D+01 0.3744445634861095D+00 0.8765707509985993D+00 0.8313619030378430D+00 0.3151973342338853D+01 0.1625459877970818D+01 0.6255076572423544D+00 0.2250967535213173D+01 0.1251015314484709D+01 0.2510630937562449D+00 0.1876522971727063D+01 0.8765707509985993D+00 0.1233814697298647D+00 0.2502030628969418D+01 0.1502078408240954D+01 0.3127538286211772D+01 0.2127586065483308D+01 0.1127633844754844D+01 0.3753045943454126D+01 0.4378553600696481D+01 0.5004061257938835D+01 0.5629568915181190D+01 0.4683008389644087D+00 0.1936553898657281D+01 0.9366016779288175D+00 0.1404902516893226D+01 0.4049502961647623D+00 0.8732511351291710D+00 0.1267010855992929D+00 0.1341551974093580D+01 0.8099005923295245D+00 0.1915609282611617D+01 0.9156570618831535D+00 0.8429515884531046D-01 0.2831266344494771D+01 0.1831314123766307D+01 0.8313619030378430D+00 0.2746971185649461D+01 0.1747018964920997D+01 0.7470667441925326D+00 0.3662628247532614D+01 0.2662676026804150D+01 0.1662723806075686D+01 0.9660209891320313D+00 0.1932041978264063D+01 0.9320897575355987D+00 0.1625459877970818D+01 0.3744445634861095D+00 0.2250967535213173D+01 0.2510630937562449D+00 0.1251015314484709D+01 0.7488891269722191D+00
of Motion.
Collinear Points
0. 1428603035779131D+01 0. 4024941930115337D+01 0. 1756924709239920D+01 0. 1861074776680115D+01 0. 2479483072752919D+01 0. 3678420431785595D+01 0. 5454003523592576D+01 0.3884692104137265D+01 0. 2630488130219780D+01 0. 4443735953102950D+01 0.4566735576464684D+01 0. 2802684446074202D+01 0. 2853049225554463D+01 0. 5843653956941389D+01 0.4281188355156252D+01 0.9763613276011232D+00 0. 2562863418496844D+01 0. 5699873559798764D+01 0.5558281268558158D+01 0. 8425293071948659D+00 0. 6639360358119795D+00 0.2479779861578648D+00 0. 2264530637416166D+01 0. 3691767955393451D+01 0. 5141694553646660D+01 0. 2473493209004818D+00 0. 1843181905987669D+01 0. 3634573622094972D+01 0.3658932995720519D+01 0.2394934381381191D+01 0. 3240849380918976D+01 0. 5057327749351131D+01 0.2886618384113662D+00 0.3789111197808509D+01 0. 1862961498944049D+00 0. 1502504947459261D+01 0. 1162381453804300D+01 0. 7221838949404437D+00 0. 5264641588571715D+01 0. 5431768895010397D+01 0. 5873785558638186D+01 0. 2157864779373282D+00 0. 5003702126029506D+01 0. 5335443127929762D+01 0. 1365165228814270D+01 0.6127599069827331D+01 0. 4570195689368925D+01 0. 8836983423759428D+00 0.4898517362829713D+01 0. 4993940784009937D+01 0. 1079813069376390D+02 0. 1664659540834537D+01 0. 9084444342853685D+01 -0. 3378345891744758D+01 0. 1207504907424061D+02 0. 3877411603578316D+00
Case
Expansions
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 169 161 162
Due to the Noncircular Barycenter
0 .2876475192455527D+01 0 .8765707509985993D+00 0 .1876522971727063D+01 0 .1233814697298647D+00 0 .1502078408240954D+01 0,.1936553898657281D+01 0..6335054279964647D-01 0..1267010855992929D+00 0..1915609282611617D+01 0..8429515884531046D-01 0..2831266344494771D+01 0,.8313619030378430D+00 0,.1831314123766307D+01 0..1685903176906209D+00 0..2746971185649461D+01 0..7470667441925326D+00 0..3393123159643262D-01 0,.1625459877970818D+01 0,.3744445634861095D+00 0..3250919755941637D+01 0,.1251015314484709D+01 0,.2250967535213173D+01 0,. 2510630937562449D+00 0..1251015314484709D+01 0,.7488891269722191D+00 0..2876475192455527D+01 0..8765707509985993D+00 0..1876522971727063D+01 0..1233814697298647D+00 0..3501982849697882D+01 0..1502078408240954D+01 0..4127490506940236D+01 0,.2127586065483308D+01 0..1936553898657281D+01 0..6335054279964647D-01 0,.1873203355857635D+01 0..1267010855992929D+00 0..2915561503340081D+01 0..9156570618831535D+00 0..1915609282611617D+01 0..8429515884531046D-01 0..2831266344494771D+01 0,.8313619030378430D+00 0,.1831314123766307D+01 0,.1685903176906209D+00 0..3746923406377924D+01 0..1747018964920997D+01 0..2746971185649461D+01 0..7470667441925326D+00 0..1965973209860495D+01 0,.3393123159643262D-01 0,.1876522971727063D+01 0,.1831314123766307D+01 Table 6.1
Motion
0 .1051258347245547D+02 -0,.1950206762142969D+01 0,.7207756444900344D+01 0.,5255033789698098D+01 -0,.5315215575004570D+00 0..9890328113019740D+01 0..2572462121578702D+01 0..1174067367948090D+01 0..7393776571103521D+01 0..5069013663494921D+01 0..1166316401230962D+02 -0..7996262222888242D+00 0..1210518067593741D+02 0,.3576095586610349D+00 0..1123509724332873D+02 -0..1227692991269715D+01 0..5347696774923278D+01 0,.7656916078490094D+01 0..4805874156108349D+01 0..1218439886322319D+02 -0..2783913713752542D+00 0,.1222594972998088D+02 -0..2368405046175639D+00 0..8920250037799152D+01 0..3542540196798690D+01 0..7373434279818472D+01 -0..5089355954779970D+01 0..1034940721795423D+02 0..2113383016644213D+01 0., 8788279760106596D+01 -0..3674510474491846D+01 0..1021900773658787D+02 -0..2243782498010574D+01 0..6749782656981143D+01 0..5713007577617299D+01 0.. 8147304745985758D+01 0..4315485488612684D+01 0..1081615152378047D+02 -0..1646638710817974D+01 0..1053513639777110D+02 0..1927653836827344D+01 0..8522211370956531D+01 -0..3940578863641911D+01 0..8964053501659121D+01 0.,3498736732939321D+01 0.,9576556944062382D+01 -0..2886233290536060D+01 0..8095075386065729D+01 -0..4367714848532714D+01 0..1025633704741456D+02 0..2206453187183884D+01 0..1168539864089180D+02 0..1011608722143649D+02
Output of program CES, first part.
272
1
1
•iH
1 •>cf
1
•*
co
1
1
1
1 •5f
t*
tH
Expansions
1
1
*f
i
**•C O
• *
>* LO
•*
^
tH
1
Required for the Equations
1 1
1
1
• *
1
1 I
1
CO CN
1
1
1
1
1
i CO
1
00
i 1
en o 1
tH
• ^
r~ i
• *
1
1 1
1
of Motion.
i
1
•*
1
• *
• *
1
1
oo en o
CO
•*
oo
•>#
O)
• *
i
1
• ^
1
tH tH
Collinear Points
1 1
co co
1
1 1
•*
i
Case
i 1 1
i
1
• *
• > *
tH
• < *
I I
• *
i
a Cl Cl 1 Cl1 Cl a a 1 Cli Cli a LO LO Cl t H co O) CN CO en co oo CN t H CO *f C— NCO CN CN C TI o> CO 00 LO LO *r CN CO en co co en co 00 o CN co en CO CO o *r ^ tH t H ^C t H CN tH * tH o> CO en t H C71 CO CO oo o en r^ < CO CO Ol CN oo CO r** co o o LO r- CN CN r~ CO CO o <* CO CN CN o> t H en CJ) ^ ^1< oo C- t H t H o «!•CN CO co CO CO CN CN o o o o o O O en CN ra> CO co O) t^ O o 1^ tH LO o CN CN O O
co *LO CO t< CN i^ LO t^ t H CN O o
• *
•>#
1
1
• *
1
CN
tH
•*
• *
tH
co >* CO ^ CO CO a CI Q CI a CI a LO CN t^ CO LO CO CO LO *}• oo t^ LO o t H < C~ CN CN ^ rr- oo LO o CO a> ^f o> CO t H CO CO LO ^ r^ tcHo o> CO o> o LO 1^ LO LO CN O) CN CO oo t H r~ co LO oo CO ^ en * r^ oo o CN en CO CO co CN LO O CO CO o •^ CN LO t H t H oo ro o O o o o
1
1
• *
• ^
CN
o>
• *
t*
co
1 i
"d1 CN
i
1 LO
I
1 CO CO
Cl Cl Cl Cl Cl Cl Cl CO CO LO i H LO t H
I
1
1
co
• *
CO
• *
CN tH
co co
i
1
1
•*)•
* CO CO t H co CO O) > co o> 1^- CN CN r-- CO CO t H CN CN CN CD o rO o> 1^ 1^ LO LO c o Ol 00 LO CO t H CTI <1< tH tH tH o oo f CN o> o «J" CO t H co CO CN LO oo LO CO t H CN O) t H !--
V1 •"J-
• *
• *
t*
• *
1
• H
•*
•=)•
"*
LO CO LO CO
LO LO LO
<* co r~ CO en o co ^J< >* *r •>* LO
• *
^ ^" ^< "J1 co CO >* Cl a a a Cl Cl Cl Cl Cl CO ra> CD Ol N- LO O) o oo r^ t^ o oo o en o CO CN a> ai en LO t H o> t H i H LO LO LO CN oo CO i H t H CO LO CO o CO O) CN CO CO •* r~ •4 o o oo ^ tH O) t H co t H CN CO en r^ CO LO *f co CO t^ co i H CN o t H ^ o CO CN s- Io-- 1^ en O) CN •sf t H co tt HH CO 00 CO LO CN CO o CN Ol LO CN r^ CO t H CO r^ LO o o o o O o o o o
1
t H CN co
1^
1
II
CN
i
co
•*
u
• *
CN CO *f LO
• *
1
1 1
1 i
• *
1 1
• ^
C O C O co co co <* CI a CI CI a a Q a Cl Cl 01 en CN en CO co O CO CO CO o iH r-- CD CN »* CN LO CN CO o a> CO LO LO LO o i^ 1^ CO t H o» r^ 00 LO CO o LO CN 'j* t H t~ CO o CN CN CN o t H LO oo co o t H r~ LO CN OO O) CO ro
LO co r~ co CN co O t H CN co LO CO r- 00 CTI o LO LO LO LO LO LO LO LO LO CO CO CO co co co CO CO r-
co co
1
^ LO CO t^ oo a ^< ^< ^c 't "* *f
co CN LO <*• CN co ^ a a a a a CI CI CI o CI CI a CI a LO l o co t H CO o r~ co H t H CN CO * LO CN CO CO t^ LO CO CM • c^ ^ r^ * * • 00 t H Oi •Sf t^ LO a > en co co a> TCOH tCNH LO CO LO LO o t^ t *H LO oo t^ ^ CO <* OO t H CO O CN t^ CO t«- CO 00 o »t LO co CN o LO CO * CO oo CO t^H CN CN CN CO LO CN t^ • LO ^ CO CO oo CO CN t H t H O) o CO CO r~ o LO LO oo O) K CN o tH ^ * t H LO o o o o en CO o en h- r~- OO o> t H CO 00 CN LO co CN oo t-- co CO LO O) cn cHo en co
1
CN CO 1<
1
•* "tf 1
*1« C O CN LO
CO
• *
S N S S S S N S N M O C O C O C O e O I D O O f l O l J l O l O S O I O l C J l O l O i m O l O O O O C N t N
r i n n ^ u j i o M o o i o n c i c o ^ i o M i o o i O r i n n ' f u i i o s n o i O H c s n s c o 1
co
LO
• *
a Q o Q a a a a a CO oo LO O en t H co en ioH CO
1
•* LO to r~- 00 CT> o co co co co co co CO
•iH
1
o a Q Q CI a a a a Q a Q o CI a a a 00 o oo i H co CN 00 co CO O o 'J' CO LO t~- t H t H •iH t H i H LO LO LO CO LO O CO 00 O o e n c o o *!•LO 00 CO LO 00 CN t H CO CN 00 CN CN CO CN t H t H rt H CN to CN LO CN t H t H t H CO CO CO r o r ~ o tH CO o> LO r~ ^f r^ tCJH> CN >* tCO o , toH co CN 00 >co co ^ ttf * J< CO t H o t H oo r~ t~ t H t H t H LO CO LO LO a> CO co CO a> LO ^ oo CO t H CO co co 05 i H CN oo «J< CN 'l' LO LO CO o o o o o o O o
tH
• *
•*
LO
• *
tH
o> co en co o
• *
o
** co co CN t "tf CN CO LO co co a Q a a Q a taH a CI a a Q a CO o CO CN LO oo t H a CO Ot H •=f t H o> C T I CN CN CO o a> o> * tH o CO 00 oo CO • LO CN CN CO Ol o CO CN t^ CN t H CO o O) CO co o r~- LO LO CO CN CO CN t H LO CN O) 1^ co CO r~ CO 1* CO O o co CN *}" CO CN o LO CT> t H rCO oo a ai 00 t^ co f 00 CO tH CO O) co O) en CO t H CO co co co CN ^ CO co CN r-- t~ o< LO t^ CO LO CO " ^ t^ T H *}• LO CN [^ o LO co a •*^ tH o LO o oo t H LO t H t H ! co LO oo r~ CO t H t H co en en CN 'l' r- LO t H LO O o o O o o o o o o
• *
co 1 1 1 1
CN CO
o
tH
LO tH
en CO en
v
•* t H CN en r~ O r- ff~ LO f H CO
•iH
s w
H
LO •=f B II CO o Q Q 1—1 CO a LO o to CN
tH tH
r- fi LO •»H to CN [tl o tH
oS 00 tu LO CO
1
^1
o CO •>* a> o> en
co
LO
tH
•*
CN
<•
•* LO <* LO
CN CO
CN
CO en CN CO CO CO OO
5 o o o o tH
tH
• *
I
a a Q a a CO o o O o i—i o o O o it w o o O o o o O o o o O o G H o o O o [z. U-i o o O o o o t H 00 o tH tr~ OS o t^ CN o r~ [I] t H t H CN CQ co
I
CO CN
• *
•*
• *
• ^
o Cl Cl Cl CN CO •5f o r~ co o rCO CM 1-- o tH a> o o o o oo CTI CO CO o Ol CT> o o en t^ CN »* co O oo CO CO t H CM 1^ co ^t< CO a> o tH en
CO t H CN <* LO "cr LO LO •tf ^ Q a CI a a a Q Q Cl a Q Cl Cl o a CO CN CO •sf co o t~ a> LO t H CO LO CO 1^ co LO O) LO oo CO 00 co c~ r- oo CN LO 1^ * ot H LO CN CO oo < LO oo r- >* 00 00 o a> LO co t~ <* co CN o r^ K oo CN t HH en t **•t
o o o o o o o o o o o o o o o o o o o
tH
I
a 1 1 1 1 i a CO a CO a Qttf a QO o LO o CO LO oo o o OO o CO t H oo o O o •r* c > o o •* 00 •* CN ^ tH CO o O o t- oo LO o OO o tH CN o r o o en co CO co CO o CN co o ho r~ LO t H t H LO CT> oo r~ en tH CN o O o
o
*f LO
I
o o o o o o o o o o o
CO
o
en **• CO o TH CN LO o CN LO o> H LO tco
CO
II
•iH
dd o C_>
s u
CO
o OS u
U4 u. H
!JCTII
Expansions Due to the Noncircular Barycenter
co co ^J4 I i i a o a o "tf oo < * CN CO co in tH • *
^ 4 *d* I I a a T-I co cn to C N ai m co 00 CN (D lO T H co m to t-- TO o co f- CO
•* i
co i
TO -a1 ^ TO i i i a to i-l i-in o I-cn c-- o C O in • * in CN 01 a> in in cn in cn ^ en co co C N to C N a> T-I < * CO t-l
i-i
tO cs CO m T-I to T-I to oo ro
a a a a to o tO CO • * t~ co o r- cn co cn T H CN co to T H CO • * to <* to tO T H
CN i
in in rai CN m it-H o ai cs
to TH to t-t oo o oo CO CN to to
C O CN i i
in in co to cn co tCO o m CN
Motion
CN I a in CN cn cn LO t— to CO oo O)
CN CO I I a a in CN r- oo to o cn O CN rCO t-t- to CO >* o H H TH CO CN T-I
CO I Q tO cn co (J o CN oo TH CO co O m
CO I a <• co to S in cn co O
CO I
273
CO I
a> tO in to o in rto co
N rl H
TH CN in cn ^ cn cn CN co
a a a
^ CO ^ I I a a oo oo co ^ to cn to cn >* CN o o r— CO T-I co co cn C N •tf o co o o cn oo <* m T-l
co in C-- C N
T-4
T-IT-TT-IT-IT-IT-IT-IT-HT-IT-ICN
co «* I I O Q CO O o o cn rco to CN Co co co co CN to T-I L O H CO O LO to co
a a a t~ t~ co
s o s o i O H o i n ^ m t D N M O i o n n w ^ i o t o s o o o i o H o m ^ i f l t O N M O i o
co 10 in CN co in
CN C O
co to cn CN in CN
T-4 rCN CN CN CN LO o CO O) CN
oooooocncncncncncncncncncnoooo
i
CO CO CN ^ I i i i a a m cn TO t~- CO CO T H lO T-I C N Cn U5 ^ o CN co r- ai T-I ^ cn a> to CN CN <* in w O co co i- 1-o <# co L O a> in T-I CN in C M C N t- co in C N o co to CN T H in T-I C N [»- T-I
a o a a t~ o y# co •* (O CN CO O) rco r— o in
•*
CO 1 *
in
o in
**•in in
a CI
o ho CIO o m to • * CN cn CO o
tH
i
T-i
T-i
1-4
• *
•=)<
• *
• *
T-i
T-i
T-i
T-i
iH
• #
• *
TA
i-<
1
• *
CN CO to 00
o
in
m o
s
T-l
o
o
T-i
o
• *
T-i
o
T-i
o
o
o
o
o
o
o
o
i H CN •* 1 * Q a a a d CN i-i in to to to w O in LO in r- cn 00 CO > i-i CN* LO ^ CN C) CN o cn I-- 1-i cn OS o cn co CN C) in
^
• *
o
T-i
i-l
CN
• *
T-i
CT> i H
o
o NCO CN co CN >t CN o i-4 o 00 co T-i to CO CO o fr- o to to
• *
T-i
iH
o
o
i-i
o
o
cn
• < *
CN CO
y-i
o
•^ LO •tf in >* m a a a Q a a a cn in T H to m r-- t- oo CN LO o cn co r- CO to LO r- r-> * to C) 00 cn ^ Gi LO t^ c o in o <1 to c- CO <* 00 o to to i H in LO C) CN •* m co CN co cn o oo •CN in tf
• * T-i
Tl< co *? •tf co ^* a Q Q a Q o 00 in <J> cn C-- 00 iH 00 CN 00 to 00 iH 00 i H 1-1 00 CO co i-4 CN in r-- OO rLO i H ^ to LO o i H C) fo <.> CO to co o o CN CN o >* t H in Tt-H NCO hco CO f- 00 to CN r OO CN t- r^ 1-4 co r- co to t H CO o O o o o o
o T-I CN CO ^ LO to r-- oo cn o T-I CN CO 1 * LO to r- I-- t- r- t- f- t~- t- r- r- co oo co CO 00 00 00
in CN to CN CN o h- to CN cn 00 ^f CO C) f- CIO to f- in rCN to in LO o o o o CN CO to on CN to to oo
o CO cn cn
*f co ^ sf ^ co co co Tj" co CO CO a Q Q o o a a o a a a a a a CN oo T H to r>- 00 CO LO o in t~ i-i to CO co CN cn o cn 00 to o CN cn to CO T H LO 00 CN T-I to 00 CO T-l CO r- in <* to t^ CO •H C) «> CN co cn o o > LO G> tN i H CN I-* - >* CN in to to 00 CN CO N- T H ^ in 00 00 CN oo CN CO 00 o r t~ cn CN on to ic-H> to o tto CN LO o CN 00 cn i-l to C) 00 o * 00 m cn m T H to LO in in fcn m CO o C5 CO CN to cn •* ToH CN ^* ir-1 CO •* in cn to « o o o o o o o o o o
CN CO T f in tr> t- on cn to to to to to to to to
T-i
m o t - i T-i CN LO to to to to
i
CO >*
m
o o o o o o o o o oo o o o o o o o o O o O o o o o o o o o o o o o ro «j-
• #
T-t
• *
<•>
T-i
• *
•*
• *
• *
*t "tf ># in LO a a Q o a CO r- CO CN o r-o to r- CN co 00 in CO CN T-4 i-l cn cn to T H o o m CO m CO CO <* 1-4 CD o in CN on CO CO m cn t>- to cn 00 CN cn CO CO TH to ^ cn o o o o o CN CO • * LO CN CN CN CN
m in to
a a
«n> cn c
^ *• CO < C)
o
• > *
i H CO «tf in m <• >* S Q e> a a Q a a a 00 h*f o cn to LO CN C3 C) CO c n CN cn CN 1-4 ^ CO r- oo to c CN to cn LO i H> o rn co U^ M< CO CO CN in o CO to T-l C) LO ^ o CO cn cn r
i H i - 4 i H i H C O L O i H i H i H i H i H ^ C O i H T - l i H i H i H i H i - l i H i n t * - T - l i - l T H T - l i H i - l i - l I I I I I I I I I I I i—< o ii o n o I
• *
in LO Q a to to ^ CO co to to CN CN fr- C) co LO LO 00 CO
o
CO o O CO o ^f o to *to 1<
^
o
I
I
T-i
y-i
1
I
1
I
T-i
1
I
• *
T-i
T-i
I
T-i
1
I
T-i
1
I
1
I
y-i
•*
I
•*
T-i
y-i
i
I
• *
y-i
y-i
1
I
•>#
i
I
i
I
• *
• *
i
• *
I
• *
I
• *
• *
y-i
•!(•
y-i
y-i
1
I
I
• *
<•>
TH
•>* in LO m a a a Q1 "S on o yf in to 00 oo 00 sf •=)* c-ni-i cn cn I cn cn C7) o o T-4 o o "5" to CO to CN CN
1
1
• *
h- 00 co I-O t-- r >- 00 i-l l>- to o o o
• *
i
I
I
• *
I
1
I
I
1
I
I
1
I
o O O o o o O O o O O O O
<* to
LO <-" ^f in in m in in in ^ Tj* i * •
T H C N C o ^ m t o r — co oi o co •*o i O r i M n ^ s c o < f i o o s o tDoocnoiH r o c o c o c o c o c o c o n c o * ^ ^ 1 T j * L o m L O L o m L O L O O o o O T - * Ii H- iT cHNI - cHoI m H I H T H T - I C N C N I
i
274
Cn
to
to CO
>* •Sf ^ Q
co
o a a "S* to 00 to 00 tO
•*
'i'
•iH
•iH
•*
•iH
•*
iH
TH tH
cs
• *
tH
• *
• < *
• *
• *
• *
to to to to to
cn o
^
• *
o co cn cn CO tH
Required for the Equations
• *
O) *f CO N- 00 CO If
• *
cs
Expansions
<• • *
•*
• *
o tH
cs
>* «tf *f
to to LO to
•*
• *
•*
•*
• *
•*
CO
to •*
^- 00 • > *
•sf
cn o
•* LO
to tH
II
CN
o co
of Motion.
II
o
•>* •*
<* to
O tH
Case
CS CO to o CO to cn en
Collinear Points
II
LO
1
• > *
cn
*1* *f
• *
•*
• *
1
I
•*
•*
1
LO CJ
o
1—1
tH
tH
o
• *
cn i -oo t H
tH
tH
a
CN
CN
a a.
~
to to •*
cn
•*
•*
• *
•*
co OT to LO U CS CJ
CO „
tH
cs LO N-
^ tH o
to
LO to CO CO
i H CN CO CO
ddd
• *
tH
a Cl CO CN LO en 00 i -to to t H t- cn TH s*
II CO
cs m
a
fcL,
c
to to 00 00 CO CO
cn cn oo 00 o o LO LO 00 oo
^ ^ to to
o o
^
r- CO cn o cs cs CN CO
*f to *f to to ^l*
O t H CS CO LO to CS CN cs cs CS cs
• *
tH
a Q to to
*!•LO
cs CO • * LO to r- 00 cn O LO to LO to LO to LO to to to
tH
• *
LO to N- 00
•*
tH
CO
tH
•*
tH
tH
tH
tH
cs CO iH
<* CO ^
•*
• *
•*
• *
cn o co
tH
"tf
• *
co
•*
•*
•* co cs CN
• *
•«•
< •
CO
t H cs CO to to LO
CO CO CO
cs CO <# LO to t- CO cn o >* ^ ^ »* ^ ^ ^ to
>* co CO •* co CN
LO to I-- 00 CO co co co
•*
• *
1
• *
• *
• > *
• ^
r" 3
a Q a a Q a Q Cl a a taH a Q a Q Q Q o cn r- to O LO to CO cn cs o o H* to * to oo cn cs cs r- t- ttoH tLOH 3 CO 1-- o f- t- o o h- tcs cs tH <* ^f en 00 o LO 00 LO tO to to to to to c n co cs c n i H 1^ o to t H <• LO to CO 00 CO co co t~- r- H ^ > * tH 00 CS 1-- t H >* co oo > r* -•00 00 TCOH tcHo toH toH •>* CN ^o" cs CN 00 tH CS 00 CN c co rt H t H *f <J" to tH co t H CO co << *f ^ «* i H t H o o o o o o o o o o o o o o o o O
•>* to •* to ^ <# to
tH tH
a a Q a Q Q Cl Cl O Cl Cl Cl Q a to to CO CO oo 00 cn cn o o tt HH tt HH • * t H t H CO to LO 00 to to CO cs cs CO co CO o O cs cs t~- t--
LO to LO to CO CO
•*
»* to
•St"
•*
CO
•*
to to to
• *
cs co co
r- 00 cn o t H cs CO *f cs cs cs co co CO CO co
•* <• co
tH
CO t H co •5f LO
o r- Cn 00 co t~CS •sf o o to o to CO LO co o to 00 oo tTHH !--CS o tH to o o
*f co CN tH i H CS «tf cs t H cs en
• *
co • * LO to t~- oo cn CO CO CO co co CO CO
• *
• *
•*
•iH
•*
•*
*1< *J<
to to t-- 00 cn o o o o o o o tH
•*
Q a Q a a a a Q Q a a Q to to CO CO oo 00
<*
TH
• *
LO to f- oo to LO LO to LO
CO CO CO CO Q
CO •*
• *
•*
Q a a a Q a Q a Q Q Cl Q a a a tH •* T•iHH to ct Hn O to t H cn cn O i H Cl o t- 00 to t to CO 00 00 o c n cs c n CO ^ to o to r- to cs 00 cs to to cn 00 to to cn to LO tcs t~- CO o CN r- CO co CN LO CO to co oo t~- t H ht H co to to f- t H ^ t~- i H c o to o r- to CO to cn to hLO CO o tH tH cs cn t H 00 rH ^ o o a> cn CO cs o t~- co t H t H CS o t H cs cn LO o cs t H cn t- o o cs CO o to CN CO 00 to cn to LO t H CO to TH cn tH CO i H i H CO to to to
sf
CO *}• LO to CN cs CN cs
i H CO cn 00 LO LO 1CO hcs LO 00 CO oo t^- to en o •tf t H 1TH in t H o o t- 00 o o 00 o o cs t H CO cs t H o o o o
T-i
cs cs cs
•*
4BER
a a a a a Cl Cl Cl a Q Cl Cl a Q a Q Q Q a Q a Q Cl a Cl a Cl a a Cl Cl Cl O
•tf
1BER
CO CO CO to *? ^ cn ttoH t H to to cn cn o t^ ^J< cn CO cs to 1^ o oo 00 CO t H to co LO o CS 00 to to CO Cn cs to CO to o o CO CN 1 ~ LO to CO to CO CO o cs cn t H to cn t H cn CO cs t H h- t~- o to cn oo o * t H f- hcs o Ol cn CO CO cn to cn cn c* n•00 cs o cn to tt HH CO >* CO LO CS o cs CN toH o cs LO t H o CO c 00 G> • o ^ tcs o cn CO CO t CO to cn to hH >* o cn to
tH o cs I-co cn LO to Cn cn tO CO co oo
econd program Outpu
rERM!
MBER
^BER
Expansions
Due to the Noncircular
Barycenter
Motion
275
CURRENT VALUE OF SPACECRAFT SECTION IN m**2 DIVIDED BY MASS IN kg: O.Ol THE MODEL OF THE SOLAR SYSTEM IS : 0 1 19 0 1 0 0 0 0 1 0 0 0 0 100 0 EARTH PERIODICS: 1 5 6 10 11 12 14 15 16 17 20 21 22 24 25 26 28 29 32 35 36 38 39 41 43 44 45 48 49 51 52 53 56 57 59 60 63 67 84 85 86 87 88 89 90 93 94 95 96 97 98 104 107 108 110 121 125 126 130 131 132 135 136 137 140 141 144 145 146 148 152 156 161 165 167 168 172 173 176 177 180 185 208 209 210 212 213 214 217 218 219 220 221 222 229 233 234 243 251 270 EARTH+MOON-SUN SYSTEM DAY = 17000.00 DIF= 0.586228D-05 W=12 -0.47323223135D-01 0.47317360846D-01 0 -0.47352037297D-01 DIF= 0.328028D-05 W=13 0.47348757010D-01 1 -0.22581500073D-02 DIF= 0.136246D-04 W=ll 0.22445253265D-02 2 W=14 -0.14980665534D-05 0.22703348479D-05 DIF= -0.772268D-06 3 0.72907158388D-02 0.72897958735D-02 DIF= 0.919965D-06 W=14 4 0.63890205566D-01 DIF= 0.289212D-05 W=13 -0.63893097692D-01 5 W=13 0.28511960973D-02 DIF= -0.173268D-05 -0.28494634105D-02 7 W=16 O.OOOOOOOOOOOD+OO DIF= -0.137264D-06 0.13726456587D-06 13 O.OOOOOOOOOOOD+00 DIF= 0.312971D-07 W=17 -0.31297142302D-07 16 DIF= 0.314703D-05 W=13 0.15520478411D-01 23 0.15523625451D-01 DAY= 17500 00 0.42447763370D-01 W=13 DIF= -0.162021D-05 0.42449383589D-01 C 0 0.42434403720D-01 DIF= 0.133870D-06 W=16 0.42434269850D-01 C 1 -0.21177307606D-03 W=12 DIF= -0.418189D-05 C 2 -0.20759118551D-03 0.59078831638D-04 W=13 0.62593230051D-04 DIF= -0.351439D-05 C 3 19473685954D-01 W=12 DIF= -0.830770D-05 0.19481993655D-01 C 4 55887031794D-01 W=12 DIF= -0.722165D-05 0.55894253447D-01 C 5 15056483962D-02 W=ll DIF= -0.110345D-04 -0.14946138207D-02 C 7 OOOOOOOOOOOD+OO W=15 DIF= -0.316697D-06 0.31669713704D-06 C 13 OOOOOOOOOOOD+00 W=14 0.12314860616D-05 DIF= -0.123148D-05 C 16 14234783481D-01 C 23 DIF= 0.624200D-05 W=12 -0.14241025489D-01 DAY= 18000.00 C 0 DIF= -0.206983D-05 -0.83864447118D-02 W=13 -0.83843748798D-02 C 1 -0.82786665903D-02 DIF= 0.149099D-05 W=13 -0.82801575880D-02 C 2 W=14 0.83113327376D-03 0.83195078685D-03 DIF= -0.817513D-06 C 3 0.45574038015D-05 W=13 0.60184118229D-05 DIF= -0.146100D-05 C 4 DIF= -0.371839D-05 -0.32759721147D-01 W=13 -0.32756002748D-01 C 5 -0.11356879515D-01 W=15 DIF= -0.240346D-06 -0.11356639168D-01 C 7 0.10333198911D-01 DIF= 0.270392D-04 W=ll 0.10306159627D-01 C 13 O.OOOOOOOOOOOD+OO DIF= 0.407048D-06 W=15 -0.40704878079D-06 C 16 O.OOOOOOOOOOOD+00 W=16 DIF= -0.122413D-06 0.12241310311D-06 C 23 W=14 0.30452368428D-02 0.30442382676D-02 DIF= 0.998575D-06 DAY= 18500 00 0 C DIF= 0.391254D-05 W=12 30997751585D-01 -0.31001664126D-01 1 C DIF= -0.643908D-05 31048686591D-01 W=12 -0.31042247505D-01 2 C 10932696906D-02 W=14 DIF= 0.515631D-06 -0.10937853225D-02 C 3 15122404059D-04 0.12798829821D-04 DIF= 0.232357D-05 W=13 C 4 25391597752D-01 DIF= 0.464190D-05 W=12 0.25386955846D-01 C 5 W=14 0.41877761045D-01 DIF= -0.130604D-05 -0.41876455002D-01 C 7 W=12 DIF= -0.999022D-05 0.40233239967D-02 -0.40133337759D-02 C 13 0.OOOOOOOOOOOD+OO W=16 DIF= 0.112045D-06 -0.11204567608D-06 C 16 O.OOOOOOOOOOOD+00 W=15 DIF= -0.264382D-06 0.26438273133D-06 0.10391676826D-01 C 23 W=12 DIF= -0.412130D-05 0.10395798126D-01 DAY= 19000.00 C 0 0.51653661865D-01 W=12 DIF= -0.466952D-05 0.51658331389D-01 C 1 0.51611459297D-01 DIF= 0.607769D-05 W=12 0.51605381601D-01 W=ll C 2 0.97131741099D-03 0.98523320557D-03 DIF= -0.139157D-04
276
Expansions
Required for the Equations
of Motion.
Collinear Points
Case
c 34 -0.47199664011D-04 -0.27032153244D-02 c c 5 0.67966155048D-01 c 7 -0.52364740560D-02 c 13 0.00000000000D+00 c 16 0.00000000000D+00 c 23 -0.17510847886D-01 DA'S = 19500.00
-0.50791228875D-04 -0.27036261294D-02 0.67966973302D-01 -0.52362612281D-02 -0.15761879237D-06 -0.99345461584D-06 -0.17516469065D-01
DIF= 0.359156D-05 DIF= 0.410804D-06 DIF= -0.818253D-06 DIF= -0.212827D-06 DIF= 0.157618D 06 DIF= 0.993454D-06 DIF= 0.562117D-05
W=13 W=15 W=14 W=15 W=16 W=14 W=12
C C C C C C C
-0.36266089948D-01 -0.36284451061D-01 0.18729839462D-03 0.13948608114D-04 -0.21881942540D-01 -0.48949166953D-01 -0.18157501517D-02 0.17110937262D-06 0.28917796563D-06 0.12065710655D-01
DIF= DIF= DIF= DIF= DIF= DIF= DIF= DIF= DIF= DIF=
W=15 W=13 W=ll W=13 W=13 W=14 W=13 W=16 W=15 W=13
c c c
0 1 2 3 4 5 7 13 16 23
-0.36266577631D-01 -0.36286160842D-01 0.20022264422D-03 0.15382478862D-04 -0.21880162231D-01 -0.48948321893D-01 -0.18134857972D-02 0.00000000000D+00 0.00000000000D+00 0.12063454072D-01 Table 6.3
6.2 6.2.1
-0.487683D-06 -0.170978D-05 0.129242D-04 0.143387D-05 0.178030D-05 0.845059D-06 0.226435D-05 -0.171109D-06 -0.289177D-06 -0.225658D-05
Checks of the results of program CES.
Preliminary Exploration of the Functions to be Kept Expansion of the Perturbing als in the Coordinates •
Functions
as Sum of
Monomi-
As it has been shown in Chapter 5, 5.2.5, the last terms appearing in the equations are of the form:
J2
i(A)»A
VSA ' SA
Ae{E,M,Pu---,Pk,B}
^2
i(A)fiAGA(v),
. ,
\ S ^ n>2
n-2
a
f> I
A \
T
A
v£{x,y,z}.
Ae{E,M,Pi,-,Pk,B]
These terms must be developed as a sum of monomials in the coordinates (x,y,z), the coefficients of these monomials being some time-dependent functions. The first term in the square brackets is independent of x,y,z, the components of a. The only term to expand is the summation for n > 2. The polynomial Pn{w) can be given explicitly using the formulas Pn(w) = dn -P^iw), Pn{w) = 2 _ n ( n ! ) - 1 - — ( w 2 - l ) n . The argument cosAi is written conveniently as cos Ai = (XXA + WA + zzA)/afA and, as deg Pn = n — 2, the variables x,y,z appear only in polynomial form (i.e., there are no terms in am,m < 0 or m odd, where a = (x2 + y2 + z2)1/2; only terms a2m,m > 0 appear).
Preliminary
Exploration
277
of the Functions to be Kept
Summarizing, we reach the formula
^£pn(cos4i) = Y,A^i^'i^^xhyi2zi3xiAyiA^xifA-.
n>2 TA
m - 2j — 1 v-i"~ 2j — 1 — kit h e i n d i c e s
where £ stands for E ~ = i E}=o J E^1=o ££3i ££"=0 i\,..., iy having the values h = 2ji + /ci,
i 2 = 2j 2 + fo, h=n-
«4 = fci, h = ^2,
i& =n-2j
E^o"
'
2(ii + j 2 ) -fci-fe2- 1,
- 1-fci -fc 2 ,
i7 = 2 ( n - 2 j ) ,
and
,,. . ^^'"",l6>
M_(zlli
(2n-2j)!
2" (n - j)!ji!j 2 !(j - Ji - j2)!fci!fc2!(n - 2j - 1 - h - k2)V
an_2 The coefficients of the first equation (x - XA) E«>2 -n+i Pn(cosAi) lected in the form £ as
f{qi,q2,q3)xqiyQ2zq3.
The function f{qi,q2,q^)
have been colis expressed
^J v^J I?!) (fij The formulas for the second and third equations are obtained using a suitable permutation of indices. The computation of the coefficients cqp and the related exponents is done in routine EXP AN. It has been shown very efficient to compute all the coefficients of the type A and then collect all the coefficients which are related to the same exponents ii,... ,i6. An ordering of the computed coefficients according to a given order of the indices has been used as an intermediate step. This is done by routine ORDRE which calls the comparison routine COMP. 6.2.2
A Rough Exploration
of the Functions
to be Kept
A program has been developed (program TF) in order to compute the maximum degrees up to which the functions Fv must be developed in order to achieve the precision required in the expanded equations of motion. The program computes, for each body of the solar system, the value of its global direct contribution to each of the equations, and the values of the contributions of the direct terms under consideration, when they are expanded up to different degrees, between two previously specified, to the program. As test points, at which the above functions are evaluated, we have taken points on an analytic halo orbit of the RTBP. It must be said that this program has also been used to check the goodness of the automatically computed developments of the functions Fv, performed by routine FUN2 and its related ones.
278
Expansions
Required for the Equations
of Motion.
Collinear Points
Case
The results of this program are summarized in the following table, which gives the maximum degree for the expansions:
Mercury, Mars, Saturn Venus, Jupiter Earth-Moon barycenter Table 6.4
1st eq. 0 1 11
2nd eq. 0 1 11
3rd eq. 0 1 9
Sun-Barycenter problem, Li}2 cases.
Of course not all the terms, up to the computed degrees, shall be kept in the final equations. A second rough exploration of the terms to be retained is performed by program FURI1, routine EXPLOR. The execution of this option of program FURI1 performs the following task: For a given set of epochs, within a certain time interval, all the "a priori" time-dependent functions appearing in the equations are evaluated (3 x 20 functions associated to each planet and 3 x 455 associated to the Earth-Moon barycenter). To the values obtained a correction factor is applied. This factor takes into account the powers of x, y, z related to the function. As significant functions, only those whose corrected value is greater than a certain tolerance (5.E-5 as standard value for the Sun-Barycenter problem in normalized coordinates), have been retained.
6.3
6.3.1
Computation of the Approximate Frequencies and Magnitudes of the Perturbations Using FFT The Functions
to be
Analyzed
When the significant functions, related to the developments, have been selected, the next step is to perform a Fourier analysis of them. This analysis has been mainly divided into two steps: - First a Fast Fourier Transform of all the selected functions has been done, in order to detect the main frequencies involved in its Fourier developments. - Second, when the frequencies have been identified, as linear combination of the mean motions of the planets or of the relevant arguments for the motion of the Moon, the right coefficients associated to these frequencies are computed directly by integration. The results of the FFT give only an approximation of these coefficients. The goodness of the obtained Fourier developments has been tested in the last step. An analysis of the functions C(i),i = 1 , . . . , 27 that appear in the equations for the Earth-Moon problem, L2 case, has also been done following the same steps above mentioned.
Computation
6.3.2
The Filtering
of Frequencies and
Amplitudes
279
Procedure for the Output of FFT
The Fast Fourier analysis of the time-dependent functions previously mentioned is performed by program FURIl, routine FURRAP, which uses the subroutine FFTSC (Fast Fourier Transform Sine Cosine) of the IMSL library. For this analysis the functions are evaluated at 2 M points (the standard value of M used has been 16) equidistributed within a certain time interval centered at the osculating epoch TAU (1/1/2000). This time interval is measured in revolutions of the secondary around the primary and the values that have been used are 2048 (1024 in some cases) for the Sun-Barycenter problem and 128 for the Earth-Moon problem. The output coefficients of the FFT analysis have been filtered using the following criteria: a) Only the modulus of a harmonic, which appears in the function multiplying the monomial xly^zk, is considered. If this coefficient times the factor
\k\ai+j/3k ({i + k)i+kf{i+j
+
k)~(i+j+kA
is greater than a certain tolerance (T0L1), then the term is retained. The meaning of this factor is explained in Chapter 7, 7.1.1. b) This harmonic multiplied by the factor given above can have a large frequency and therefore it can be relatively important but it can produce small amplitude oscillations. This amplitude is estimated and the harmonic is skipped if it is less than a certain tolerance (T0L2). The values which have been used for the above two tolerances, in order to keep terms up to weight 9 have been:
Sun-Barycenter problem Earth-Moon problem Table 6.5
6.3.3
Numerical
T0L1 5.D-5 3.D-4
T0L2 5.D-6 3.D-5
Tolerances of terms to be kept.
Results
The results of the FFT analysis show that there are no contributions of Mercury, Mars and Saturn up to order nine, for the Sun-Barycenter problem both in the L\ and 1/2 cases. For Venus and Jupiter the contribution reduces to the constant term and the major contribution is due to the Earth-Moon barycenter. For the Earth-Moon problem the analysis has been done for the direct terms coming from the Sun and for all the indirect terms involved in the functions C's. The results for the Sun-Barycenter problem, L\ case, are listed below.
280
6.3.4
Expansions
Required for the Equations of Motion.
The Identification
of the
Collinear Points
Case
Frequencies
The numbers in front of the coefficients (coefficients of the cosine and sine terms) of the above mentioned tables are related to the approximated frequencies in the following way: frequency = (number - 1) / (number of revolutions of the secondary), when the frequency of the secondary is taken equal to one. Looking at the obtained frequencies we identified them as follows: For Venus: 1 Independent t e r m 642 Tly — TIE 1282 2riv — 2UE 1923 3riv — 3TIE 2563 4nv — 4-UE 3204 5ny — 5UE 3844 6 n y — QUE 4485 Iny — 7TIE 5125 8nv — 8TIE 6406 10nv — IOTIE
For the Moon: 1 Independent t e r m ni - n3 - n5 115 129 ni n5 136 ni - n3 n5 2n\ — 2ri3 — 2ns 228 - 2 n i + n3 + 3n 5 1343 —2ni + 2ri3 + 3ns 1357 1449 - n\ + n 4 + 2n 5 1471 - n i + n3+ 2n 5 1584 n5 1698 ni n3 3054 - rii + n3 + 3 n 5 2n 5 3167
For Jupit er: Independent t e r m 1 939 nE - nj 1790 2nE - 3 n j 1876 2nE - 3nj 2814 3TIE — 3 n j
where ny,nj and TIE are the derivatives of the mean longitude of Venus, Jupiter and the Earth, and 711,713,714,7x5 are the mean motions of the following arguments: mean longitude of the Moon, mean longitude of the lunar perigee, longitude of the mean ascending node of the Moon and mean elongation of the Sun. These frequencies can be affected by minor modifications due to the fact that some slowly changing anomalies have been neglected. This shall produce not only a very small change in the frequency but a modification of the phase related to it. This last point shall be taken into account in 6.4.2.
Computation
of Frequencies and
281
Amplitudes
CURRENT VALUE OF SPACECRAFT SECTION/MASS IN m**2/kg: 0.00 THE MODEL OF THE SOLAR SYSTEM I S : 0 1 11 0 0 0 0 0 0 1 0 0 0 0 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI BODY NUMBER 2 NUMBER OF FUNCTIONS = 29 NUMBER OF POINTS = 16384 INITIAL DAY = -168742.00 FINAL DAY = 205266.00 NUMBER OF REVOLUTIONS OF THE SECONDARY = 1024 FUNCTION NR. 1: NR. OF TERMS UP TO WEIGHT 9: 1 -4.4939923848751437E-04 .7331954554868247E-05 642 .0642040844543807E-04 1282 .5100932273713361E-05 1923 .9372833164279313E-04 2563 .6658379900449168E-05 3204 .5901120913209079E-04 3844 . 3230066543297976E-05 4485 .0338716303075196E-05 5125 .7591775549788391E-05 6406 FUNCTION NR. 2 NR. OF TERMS UP TO WEIGHT FUNCTION NR. 3 NR. OF TERMS UP TO WEIGHT FUNCTION NR. 4 NR. OF TERMS UP TO WEIGHT FUNCTION NR. 21 NR. OF TERMS UP TO WEIGHT 642 1282 1923 2563 3204 3844 4485 5125 6406 FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION
.4827144987234327E-04 .9483165701272172E-05 .6202991416406071E-04 . 6707410569284612E-05 .1119080347526384E-04 .3911703230731183E-05 .5627015217915499E-05 .8248851646060530E-05 .0866923551690530E-05 NR. NR. OF TERMS NR. NR. OF TERMS NR. NR. OF TERMS NR. NR. OF TERMS NR. NR. OF TERMS NR. NR. OF TERMS NR. NR. OF TERMS
Table 6.6
UP UP UP UP UP UP UP
TO TO TO TO TO TO TO
WEIGHT WEIGHT WEIGHT WEIGHT WEIGHT WEIGHT WEIGHT
10, UP TO WEIGHT 11: 32 0 OOOOOOOOOOOOOOOOE+00 -7, 2615206098866838E-04 9. 3699650886702544E-05 -2. 6423065530096558E-04 1 1288803253358732E-04 -1. 5431044072816770E-04 9. 7523179049771403E-05 -8. 4016640685136371E-05 7 2295340767460178E-05 4, 8792886630977165E-05 0, UP TO 11 0, UP TO 11 o, UP TO 11 9, UP TO WEIGHT 11: 28 -1. 3734852665137244E-05 2. 6366460471883169E-04 4. 5954043355252426E-05 1,9867432207864296E-04 5. 5125262267942052E-05 1. 2000299031923278E-04 4. 9254923424610345E-05 6. 4368298277646131E-05 3. 1185771016455967E-05 0, 0, 0, 0, 0, 0, 0,
UP UP UP UP UP UP UP
TO TO TO TO TO TO TO
11 11 11 11 11 11 11
0 0 0 17 0 0 0
Output of FURIl, routine FURRAP. Terms coming from Venus.
282
Expansions
Required for the Equations
of Motion.
Collinear Points
Case
CURRENT VALUE OF SPACECRAFT SECTION/MASS IN m**2/kg: 0.00 THE MODEL OF THE SOLAR SYSTEM I S : 0 1 11 0 1 0 0 0 0 1 0 0 0 0 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI BODY NUMBER 5 NUMBER OF FUNCTIONS = 29 NUMBER OF POINTS = 16384 INITIAL DAY = -168742.00 FINAL DAY = 205266.00 NUMBER OF REVOLUTIONS OF THE SECONDARY = 1024 FUNCTION NR. 1: NR. OF TERMS 1 .5071768279936979E-04 939 .4973991073471902E-06 1790 .4882859085612199E-04 1876 .0159737325237434E-04 2814 .1592356083398305E-05 FUNCTION NR. 2: NR. OF TERMS FUNCTION NR. 3: NR. OF TERMS FUNCTION NR. 4: NR. OF TERMS FUNCTION NR. 21: NR. OF TERMS 1790 9 .7218336138635408E-05 1876 1 .1610233432350377E-04 2814 -2 .3042035028281357E-04 FUNCTION NR. 22 NR. OF TERMS FUNCTION NR. 23 NR. OF TERMS FUNCTION NR. 24 NR. OF TERMS FUNCTION NR. 41 NR. OF TERMS FUNCTION NR. 42 NR. OF TERMS FUNCTION NR. 43 NR. OF TERMS FUNCTION NR. 44 NR. OF TERMS Table 6.7
UP TO WEIGHT 9:
UP UP UP UP
TO TO TO TO
WEIGHT WEIGHT WEIGHT WEIGHT
9 9 9 9
UP UP UP UP UP UP UP
TO TO TO TO TO TO TO
WEIGHT WEIGHT WEIGHT WEIGHT WEIGHT WEIGHT WEIGHT
9 9 9 9 9 9 9
5, UP TO WEIGHT 11: 18 0 . OOOOOOOOOOOOOOOOE+00 -1 .1890032783201678E-04 9 .8963822524347728E-05 1 . 1787462064385039E-04 -2 .3309029148002041E-04 0 0, UP TO 11 0 0, UP TO 11 o, UP TO 11 0 15 3, UP TO 11 -1 4578965339272261E-04 -8 8760793853527658E-04 -5 1012558764118559E-05 0, UP TO 11 0 0, UP TO 11 0 0, UP TO 11 0 0, UP TO 11 4 o, UP TO 11 0 0 0, UP TO 11 0 UP TO 11 0,
Output of FURI1, routine FURRAP. Terms coming from Jupiter.
CURRENT VALUE OF SPACECRAFT SECTION/MASS IN m**2/kg: 0.00 THE MODEL OF THE SOLAR SYSTEM I S : 0 1 11 0 0 0 0 0 0 1 1 0 0 0 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI BODY NUMBER 11: NUMBER OF FUNCTIONS = 455 NUMBER OF POINTS = 32768 INITIAL DAY = -5113.50 FINAL DAY = 41637.50 NUMBER OF REVOLUTIONS OF THE SEC FUNCTION NR. 1: NR. OF TERMS UP TO WEIGHT 9: 7, UP TO 11: 18 1 1.813270139388E-03 2.67 O.OOOOOOOOOOOOE+00 1471 115 9.578381168986E-05 -3.130628584831E-05 1584 -5.54 129 1.520611156189E-04 3167 -9.84 2.999908084963E-06 228 -4.092671935929E-05 2.903693707059E-05 FUNCTION NR. 2: NR. OF TERMS UP TO WEIGHT 9: 6, UP TO 11: 18 1 1.122219822996E-03 O.OOOOOOOOOOOOE+00 1471 1.65 115 7.435734898833E-05 -2.427451848207E-05 1584 -4.25 129 9.579551786285E-05 3167 -6.04 1.720782158983E-06 FUNCTION NR. 3: NR. OF TERMS UP TO WEIGHT 9: 4, UP TO 11: 15 228 -3.064243930758E-05 -4.324952572406E-05 1584 -3.98 1471 8.570330210166E-04 -3.324906125339E-04 3167 6.17 FUNCTION NR. 4: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 4 1.058534422265E-04 136 -4.626148684080E-05 FUNCTION NR. 5: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 3 1 4.369088783942E-04 1584 i.97 O.OOOOOOOOOOOOE+00 FUNCTION NR. 6: NR. OF TERMS UP TO WEIGHT 9: 3, UP TO 11: 16 1471 3.279078719711E-04 -1.272193955219E-04 3167 '.35 1584 -1.829349739158E-04 1.497388218227E-04 FUNCTION NR. 7: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 8 136 -3.732133246262E-05 8.538863716984E-05 FUNCTION NR. 8: NR. OF TERMS UP TO WEIGHT 9: 3, UP TO 11: 21 1 -1.042206134195E-03 O.OOOOOOOOOOOOE+00 1357 - 3 96 115 -8.100570165074E-05 2.650719699166E-05 1471 - 3 63 -1.331924530836E-06 129 -8.436483073363E-05 1584 4 80 -3.893187123790E-05 228 5.473293674999E-05 3167 1 37 -6.731097691473E-05 1343 -2.798943302774E-05 FUNCTION NR. 10: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 4 1 -9.621005515571E-05 O.OOOOOOOOOOOOE+00 1584 4.31 FUNCTION NR. 11: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 8 1 1.369771303377E-04 O.OOOOOOOOOOOOE+00 1584 -7.13 FUNCTION NR. 12: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 1471 1.163378737378E-04 -4.513819197066E-05 1584 -7.56 FUNCTION NR. 14: NR. OF TERMS UP TO WEIGHT 9: 4, UP TO 11 18
1 -3.721216569677E -04 0.000000000000E-00 1471 -1. 284288049431E -04 -3.309690220232E-04 FUNCTION NR. 16: NR. OF TERMS UP TO WEIGHT 9: 2, 1 -9.085155274050E -05 0.OOOOOOOOOOOOE-00 FUNCTION NR. 17: NR. OF TERMS UP TO WEIGHT 9: 5, 1343 -5.614062785306E -05 2.342007892272E-05 1357 -7.889757350547E -05 4.317056145094E-06 1471 -7.703729670146E-04 2.989345930936E-04 FUNCTION NR. 19 NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 21 NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 22 NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 24 NR. OF TERMS UP TO WEIGHT 9: 3, 1 -1.313953901498E-04 O.OOOOOOOOOOOOE-00 1471 -4.487231463983E-05 -1.156244439141E-04 FUNCTION NR. 26: NR. OF TERMS UP TO WEIGHT 9: 1, O.OOOOOOOOOOOOE-00 1 -5.040395297243E-05 FUNCTION NR. 27: NR. OF TERMS UP TO WEIGHT 9: 4, 1471 -2.672296690224E -04 1.037022583507E-04 1584 1.276349812562E -04 -1.045472109857E-04 FUNCTION NR. 29: NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 31: NR. OF TERMS UP TO WEIGHT 9: 6, 1 4.188376422942E -04 O.OOOOOOOOOOOOE-00 1357 3.821300675695E -06 7.059178362433E-05 1471 2.374523186035E -04 6.118207816777E-04 FUNCTION NR. 33 NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 37 NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 39 NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 42 NR. OF TERMS UP TO WEIGHT 9: 2, 1471 -9.360777000366E -05 3.632829083831E-05 FUNCTION NR. 46: NR. OF TERMS UP TO WEIGHT 9: 5, 0.OOOOOOOOOOOOE-00 1 1.483266784173E -04 1471 8. 299877925500E -05 2.138273179248E-04 1584 -1.020094581981E -04 -1.247587418520E-04 FUNCTION NR. 48: NR. OF TERMS UP TO WEIGHT 9: 0, FUNCTION NR. 51: NR. OF TERMS UP TO WEIGHT 9: 5, 1357 5.715343993788E-05 -3.219542964396E-06 1471 4.30506366962IE-04 -1.670877885259E-04 1584 -1.660817753460E -04 1.362233432597E-04 FUNCTION NR. 60: NR. OF TERMS UP TO WEIGHT 9: 0,
1584 3167 UP TO 11 1584 UP TO 11
4.7
21 1584 3.2 3167 -5.5
UP UP UP UP
TO TO TO TO
11 11 11 11
2 4 4 10 1584
UP TO 11
4
UP TO 11
15
7.9
1698 3.4 3167 -1.9 UP TO 11 UP TO 11
2 27 1584 -2.5 1698 -1.5 3167 -9.0
UP UP UP UP
TO TO TO TO
11 11 11 11
3 2 5 9 1584
UP TO 11
5.0
17 1698 -5.4 3167 -3.1
UP TO 11 UP TO 11
3 21 1698 -5.5 3167 3.1
UP TO 11
FUNCTION NR. 63: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 67: NR. OF TERMS UP TO WEIGHT 9: 3, UP TO 11: 1 5.363117354167E-05 O.OOOOOOOOOOOOE- 00 1471 2.958292299563E-05 7.620427424884E- 05 FUNCTION NR. 72: NR. OF TERMS UP TO WEIGHT 9: 3, UP TO 11: 1471 1.527416424828E -04 -5.928642651313E- 05 1584 -6.579550158459E -05 5.391670207523E- 05 FUNCTION NR. 78: NR. OF TERMS UP TO WEIGHT 9: 5, UP TO 11: O.OOOOOOOOOOOOE- 00 1 -1.441326636746E -04 -2.984825711335E- 04 1471 -1. 158772743658E -04 1.363949534536E- 04 1584 1. 116486874293E -04 FUNCTION NR. 91: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 95: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 100: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 1471 5.548620020192E- 05 -2.153851626327E-05 FUNCTION NR. 106: NR. OF TERMS UP TO WEIGHT 9: 4, UP TO 11: 1 -5.31078587038IE-•05 O.OOOOOOOOOOOOE- 00 1471 -4.202487604730E-•05 -1.082367388570E- 04 FUNCTION NR. 113: NR. OF TERMS UP TO WEIGHT 9: 3, UP TO 11: 1471 -1.931003458188E-•04 7.496110858058E 05 1584 6.992400143885E- 05 -5.736450029173E 05 FUNCTION NR. 136 NR. OF TERMS UP TO WEIGHT 9 0, UP TO 11: FUNCTION NR. 142 NR. OF TERMS UP TO WEIGHT 9 0, UP TO 11: FUNCTION NR. 149 NR. OF TERMS UP TO WEIGHT 9 2, UP TO 11: 1471 -7. 159550561682E- 05 2.779545288200E- 05 FUNCTION NR. 157: NR. OF TERMS UP TO WEIGHT 9: 3, UP TO 11: 1471 4.816690155803E- 05 1.240378781585E- 04 1584 -4.241178412487E- 05 -5.179900989184E- 05 FUNCTION NR. 187: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 194: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 3167 -1.956351850391E-•04 -4.047196070085E- 05 FUNCTION NR. 202: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 3167 -6.987657799203E-•05 3.377432637896E- 04 FUNCTION NR. 211: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 3054 -1.292016634430E-04 -7.365209139243E 05 FUNCTION NR. 249 NR. OF TERMS UP TO WEIGHT 9 0, UP TO 11: FUNCTION NR. 257 NR. OF TERMS UP TO WEIGHT 9 0, UP TO 11: FUNCTION NR. 266 NR. OF TERMS UP TO WEIGHT 9 0, UP TO 11: FUNCTION NR. 276 NR. OF TERMS UP TO WEIGHT 9 0, UP TO 11:
4 11 1584 -4.056 13 3167
1.097
1698 3167
7.060 4.422
22
3 5 14 1584 4.480 3167 1.598 19 3167 -1.393 4 12 12 3167 -5.154 19 3167 -1.843 5 7 11 13 3167 4 7 9 12
5.502
FUNCTION NR. 332: NR. OF FUNCTION NR. 342; NR. OF FUNCTION NR. 353 NR. OF FUNCTION NR. 420: NR. OF FUNCTION NR. 431 NR. OF FUNCTION NR. 443: NR. OF FUNCTION NR. 456 NR. OF 1584 -1.608247913607E- 04 FUNCTION NR. 457: NR. OF 1584 -1.226384482797E- 04 FUNCTION NR. 458: NR. OF 1 -8.334247989342E- 04 115 -5.387165301771E- 05 129 -6.630521681319E- 05 228 4.363939691333E- 05 FUNCTION NR. 460: NR. OF 1584 -5.628763275499E- 05 FUNCTION NR. 461: NR. OF 1 -3.206787414494E- 04 1471 -1. 117217803333E- 04 FUNCTION NR. 463: NR. OF 1343 -5.658148038017E- 05 1357 -6.834954253860E- 05 1471 -7.786182567550E- 04 FUNCTION NR. 465 NR. OF FUNCTION NR. 466 NR. OF FUNCTION NR. 467 NR. OF 1 -1.144989501125E- 04 1471 -3.951657523901E- 05 FUNCTION NR. 469: NR. OF 1471 -2.737078978121E- 04 1584 1.140748212161E- 04 FUNCTION NR. 471: NR. OF FUNCTION NR. 472: NR. OF 1 4.778630491958E- 04 228 -4.090754660330E- 05 1343 2. 116263864775E- 05 1357 3.784684324790E- 06 FUNCTION NR. 476: NR. OF
TERMS TERMS TERMS TERMS TERMS TERMS TERMS
UP TO WEIGHT 9: 0, UP TO 11 4 UP TO WEIGHT 9: 0, UP TO 11 8 UP TO WEIGHT 9: 0, UP TO 11 9 UP TO WEIGHT 9: 0, UP TO 11 2 UP TO WEIGHT 9: 0, UP TO 11 3 UP TO WEIGHT 9: 0, UP TO 11 5 UP TO WEIGHT 9: 2, UP TO 11 10 1.320438742647E-04 3167 TERMS UP TO WEIGHT 9: 1, UP TO 11: 1.005072691248E-04 TERMS UP TO WEIGHT 9: 7, UP TO 11: 17 0.000000000000E-00 1471 1.766123906628E-05 1584 -1.165429538026E-06 3167 -3.103812331358E-05 TERMS UP TO WEIGHT 9: 1, UP TO 11: 7 4.607355108958E-05 TERMS UP TO WEIGHT 9: 3, UP TO 11: 16 0.000000000000E-00 1 1584 -2.879513234877E-04 TERMS UP TO WEIGHT 9: 5, UP TO 11: 16 2.357350757641E-05 1584 3.690445660407E-06 3167 3.021149236426E-04 TERMS UP TO WEIGHT 9: 0, UP TO 11 1 TERMS UP TO WEIGHT 9: 0, UP TO 11 3 TERMS UP TO WEIGHT 9: 3, UP TO 11 11 0.000000000000E-00 1584 -1.018366403378E-04 TERMS UP TO WEIGHT 9: 3, UP TO 11: 16 1.062092081275E-04 1584 1.140748212161E-04 -9.353833460232E-05 TERMS UP TO WEIGHT 9: 0, UP TO 11: 1 TERMS UP TO WEIGHT 9: 8, UP TO 11: 21 1471 0.000000000000E-00 1584 2.914315420785E-05 1698 5.071957774306E-05 3167 7.131688385965E-05 TERMS UP TO WEIGHT 9: 0, UP TO 11:
3.12
-2.92 3.22 1.11
1.47 2.77 -5.62
6.10 -9.35
2.74 -2.60 -1.76 -1.04
FUNCTION NR. 477: NR. OF FUNCTION NR. 479: NR. OF 1471 -9.494475429832E--05 FUNCTION NR. 482: NR. OF 1 1.674110732692E--04 1471 9. 491072668524E--05 1584 -1. 032869470778E--04 FUNCTION NR. 486: NR. OF 1357 6. 426705412943E--05 1471 5. 445233716318E--04 1584 -1. 858474227506E--04 FUNCTION NR. 492 NR. OF FUNCTION NR. 494 NR. OF FUNCTION NR. 497 NR. OF 1 5.928676934538E--05 1471 3. 317497704515E--05 FUNCTION NR. 501: NR. OF 1471 1. 895664766738E--04 1584 -7. 313120994269E--05 FUNCTION NR. 506: NR. OF 1 -1.915717655145E--04 1357 -2. 939702916510E- 06 1471 -1. 562745618693E-•04 FUNCTION NR. 515 NR. OF FUNCTION NR. 518 NR. OF FUNCTION NR. 522 NR. OF 1471 6. 725730662768E •05 FUNCTION NR. 527: NR. OF 1 -6.886548111597E •05 1471 -5. 536531175494E- •05 FUNCTION NR. 533: NR. OF 1471 -2.737949427307E •04 1584 8.954643680255E- •05 FUNCTION NR. 546 NR. OF FUNCTION NR. 550 NR. OF FUNCTION NR. 555 NR. OF 1471 -2. 007916254365E •05 FUNCTION NR. 561: NR. OF 1471 -9. 899387908533E 05
TERMS UP TO WEIGHT 9: 0, UP TERMS UP TO WEIGHT 9: 2, UP 3.684462411223E -05 TERMS UP TO WEIGHT 9: 5, UP O.OOOOOOOOOOOOE -00 2.445472582754E -04 1.262291683887E 04 TERMS UP TO WEIGHT 9: 5, UP 3.592602065654E 06 •2.113242321764E •04 1.526122966942E -04 TERMS UP TO WEIGHT 9 0, UP TERMS UP TO WEIGHT 9 0, UP TERMS UP TO WEIGHT 9 3, UP O.OOOOOOOOOOOOE 00 8.546764788241E 05 TERMS UP TO WEIGHT 9: 3, UP 7.357431612583E 05 5.998383105903E 05 TERMS UP TO WEIGHT 9: 6, UP O.OOOOOOOOOOOOE 00 5.296106567376E 05 4.025910377105E- 04 TERMS UP TO WEIGHT 9 0, UP TERMS UP TO WEIGHT 9 0, UP TERMS UP TO WEIGHT 9 1, UP 2.610579095118E 05 TERMS UP TO WEIGHT 9: 4, UP O.OOOOOOOOOOOOE 00 1.426126938159E 04 TERMS UP TO WEIGHT 9: 4, UP 1.062781182764E 04 7.353642083667E- 05 TERMS UP TO WEIGHT 9 0, UP TERMS UP TO WEIGHT 9 0, UP TERMS UP TO WEIGHT 9 1, UP 5.171468065847E- 05 TERMS UP TO WEIGHT 9: 2, UP 3.842919536132E- 05
TO 11 : 5 TO 11 8 1584
TO 11
4 534
16 1698 -6 158 3167 -3 609
TO 11
21 1698 -6 979 3167 3 932
TO 11 TO 11 TO 11
3 4 9 1584 -4 077
TO 11
13 3167
TO 11
20
TO 11 TO 11
3 5
TO 11
9
TO 11
13
TO 11
1 366
1584 1698 3167
1 347 9 462 5 980
1584 3167
5 334 2 112
19 1698 3 510 3167 -1 978
TO 11 TO 11 TO 11
4 4 9
TO 11
13 3167
-7.141
FUNCTION NR. 568: NR. OF 1 6.576301379165E-05 1471 7.093462430717E-05 FUNCTION NR. 591: NR. OF FUNCTION NR. 597: NR. OF FUNCTION NR. 604: NR. OF 1471 2.626869686166E-05 FUNCTION NR. 612: NR. OF 1471 1.157360642614E--04 FUNCTION NR. 642: NR. OF FUNCTION NR. 649: NR. OF 3167 -3.810846419656E--05 FUNCTION NR. 657: NR. OF 3167 3.170862156736E--04 FUNCTION NR. 666: NR. OF 3054 -7.004102344594E--05 FUNCTION NR. 704: NR. OF FUNCTION NR. 712: NR. OF FUNCTION NR. 721: NR. OF FUNCTION NR. 731: NR. OF FUNCTION NR. 787: NR. OF FUNCTION NR. 797: NR. OF FUNCTION NR. 808: NR. OF FUNCTION NR. 875: NR. OF FUNCTION NR. 886: NR. OF FUNCTION NR. 898: NR. OF FUNCTION NR. 911: NR. OF 136 -1.360151430893E--04 FUNCTION NR. 912: NR. OF 136 -8.674026178879E--05 FUNCTION NR. 913: NR. OF 136 -1.647054892450E--04 FUNCTION NR. 914: NR. OF 1 -4.617499985763E--04 FUNCTION NR. 915: NR. OF 136 -3.498873896253E--05 FUNCTION NR. 916: NR. OF 136 -6.480374738577E--05 FUNCTION NR. 917: NR. OF
TERMS UP TO WEIGHT 9: 4, 0.OOOOOOOOOOOOE-00 1.826897123882E-04 TERMS UP TO WEIGHT 9: 0, TERMS UP TO WEIGHT 9: 0, TERMS UP TO WEIGHT 9: 2, 6.764631547104E-05 TERMS UP TO WEIGHT 9 2, -4.493372660120E -05 TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 1, 1.841944388503E -04 TERMS UP TO WEIGHT 9 1, 6.559681868411E-05 TERMS UP TO WEIGHT 9 2, 1.228948208882E -04 TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 TERMS UP TO WEIGHT 9 TERMS UP TO WEIGHT 9 TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 0, TERMS UP TO WEIGHT 9 1, 3.112553280943E -04 TERMS UP TO WEIGHT 9 1, 1.984751736206E -04 TERMS UP TO WEIGHT 9 1, -7.21O504680131E -05 TERMS UP TO WEIGHT 9 1, O.OOOOOOOOOOOOE -00 TERMS UP TO WEIGHT 9 1, 8.005183483592E -05 TERMS UP TO WEIGHT 9 1, -2.837178719522E -05 TERMS UP TO WEIGHT 9 2,
UP TO 11:
20 1584 3167
-5.68 -2.72
3167
-1.00
3167
8.37
143167
1.08
UP TO 11: UP TO 11: UP TO 11:
5 9 13
UP TO 11
16
UP TO 11 UP TO 11-
3 7
UP TO 11: 10
UP TO 11:
UP UP UP o, UP o, UP o, UP UP o, UP UP UP UP
TO TO TO TO TO TO TO TO TO TO TO
11 11 11. 11: 11: 11: 11: 11: 11: 11: 11:
UP TO 11: UP TO 11: UP TO 11: UP TO 11: UP TO 11: UP TO 11:
4 6 10 10 4 7 9 2 3 5
•»-»
1 -3.607876656328E--04 O.OOOOOOOOOOOOE- •00 FUNCTION NR. 918: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 136 8.468174599143E--05 -1.937623771502E--04 FUNCTION NR. 919: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 923: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 1 -1.703466426467E--04 0.OOOOOOOOOOOOE-•00 FUNCTION NR. 924: NR. OF TERMS UP TO WEIGHT 9: 1. UP TO 11: 136 3.104374513392E--05 -7.102657035995E- 05 FUNCTION NR. 925: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 927: NR. OF TERMS UP TO WEIGHT 9: 2, UP TO 11: 136 1.024149225774E--04 4.484099036012E- 05 FUNCTION NR. 928: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 1 1.079149077388E--04 0.OOOOOOOOOOOOE-•00 FUNCTION NR. 933: NR. OF TERMS UP TO WEIGHT 9: UP TO 11: 1584 3.677403434367E--05 4.514010689583E- •05 FUNCTION NR. 935: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 938: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 1584 -4.541909896878E--05 -5.571885350616E-•05 FUNCTION NR. 941: NR. OF TERMS UP TO WEIGHT 9: 1, UP TO 11: 1449 -3.050333781775E-•05 5.936983634480E- •05 FUNCTION NR. 942: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 953: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 957: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 962: NR. OF TERMS UP TO WEIGHT 9: 0, UP TO 11: UP TO 11: FUNCTION NR. 978: NR. OF TERMS UP TO WEIGHT 9: UP TO 11: FUNCTION NR. 983: NR. OF TERMS UP TO WEIGHT 9: FUNCTION NR. 989: NR. OF TERMS UP TO WEIGHT 9: UP TO 11: FUNCTION NR. 1017: NR . OF TERMS UP TO WEIGHT 9: 0, UP TO 11: FUNCTION NR. 1024: NR . OF TERMS UP TO WEIGHT 9: 0, UP TO 11:
o, o, o,
1471
-3.20
1584
8.81
1449
-7.46
7 4 8 6 3 7 8 4 2 6 7 4 3 3 4 2 4 3 3 2
-Table 6.8 Output of FURI1., routine FURRAP. term 1
290
6.4 6.4.1
Expansions
Required for the Equations
of Motion.
Collinear Points
Case
T h e Final C o m p u t a t i o n of t h e P e r t u r b i n g T e r m s Determination
of the
Coefficients
As it has been said the direct effects of the Moon and the planets have been developed as ^2fijk(t)xlyjzk, where fijk(t) are time-dependent functions and x,y,z the normalized coordinates of the spacecraft. Each function fijk has been analyzed using an FFT method as described before. In this way we have detected the main harmonics as already explained. Next step is the computation of the right coefficients. To do this we use not the rough frequency determined by FFT but the right one which is a combination of the mean motions of several arguments related to the motion of the bodies of the solar system. Program FURI1, routine FURLEN, performs these computations. The coefficients are computed argument by argument using the trapezoidal rule for the integration and starting at an epoch such that the related argument is zero (modulus 2-K) . The routine analyzes, for a given frequency, all functions involving the frequency. Tables 6.9 to 6.11 give the values found for the Sun-Barycenter problem, case L\. For the interval of integration we have taken an integer multiple of the period related to the analyzed frequency. On each revolution a fixed number of equally spaced points has been taken. Several different sets of number of revolutions and points per revolution have been used until a good agreement is found. This is done to prevent from aliasing and to filter the influence of too near frequencies. 6.4.2
Conversion to a Suitable Form for the Equations Quasi-periodic Orbit. Numerical Results
of
the
The data obtained from routine FURLEN of FURI1, are used to prepare the files to be used by program EQUAP. This is also done by program FURI1, routine PREPAR. Routine PREPAR not only prepares these files of data but also puts them in a suitable form. First of all the data are filtered in the following way: for those functions which, for a given frequency, have coefficients of the cosine, sine or independent terms, which are less than a given quantity (5.D-5 for the Sun-Barycenter problem and 3.D-4 for the Earth-Moon problem as standard values), these terms are skipped. After this filtering some modifications are done to the phases in order to have only terms of the cosine or sine type for each function. If the modification of the phase is less than a given value (0.05 as standard value) then it is not modified in order to have a reasonable number of different frequencies phases. This modification shall take into account the slow varying frequencies not considered during the identification as mentioned in 6.3.4. A sample of results of this routine is given in Tables 6.12-6.14. This output has also been used to check the goodness of the Fourier developments. Routine FUCHEC of program FURI1 compares, for each function the values obtained by directly and the ones obtained using its Fourier development.
CURRENT VALUE OF SPACECRAFT SECTION/MASS IN m**2/g : 0.00 THE MODEL OF THE SOLAR SYSTEM IS: 0 1 11 0 0 0 0 0 0 1 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI N
FREQUENCY
PHASE
N
FREQUENCY
2 3 4 5
0.6254989350070546D+0 0.1250997870014109D+1 0.1876496805021164D+1 0.2501995740028218D+1 0.3127494675035273D+1
0.1417296496991782D+1 0.2834592993983564D+1 0.4251889490975374D+1 0.5669185987967127D+1 0.8032971777792659D+0
7 8 9
0.37529936100423 0.43784925450493 0.50039914800564 0.62549893500705
IFRE = 1 1 2 21 IFRE = 1 1 2 21 IFRE = 1 1 2 21 IFRE = 1 1 2 21 IFRE = 1 2 21 IFRE = 1 1 2 21 IFRE = 1 1 2 21 IFRE =
1 ENE = 0.6254989350071D+00 N = 512 M = 43 AO = 0.1417296496992D -0.1120886924154275D-02 0.4568607260176857D- 07 -0.449362158 -0.1196479538355846D-06 - 0.2287077047278306D- 03 -0.897863065 2 ENE = 0.1250997870014D+01 N = 512 M = 43 AO = 0.2834592993984D -0.5151970860167298D-03 - 0.1523348026455242D- 06 -0.449298462 0.2684587364771737D- 03 0.1011417690906884D-06 0.192943582 3 ENE = 0.1876496805021D+01 N = 512 M = 43 AO = 0.4251889490975D -0.4043917496626441D-03 - 0.1476774308438172D- 05 -0.448519842 0.2481969087447426D- 03 0.306696901 0.4205589354758795D-06 4 ENE = 0.2501995740028D+01 N = 512 M = 43 AO = 0.5669185987967D -0.3159582413954282D-03 - 0.1114494853507741D- 07 -0.449651794 0.2138022975919758D- 03 -0.2173418973564046D-07 -0.655495224 5 ENE = 0.3127494675035D+01 N = 512 M = 43 AO = 0.8032971777793D -0.2443894462194629D-03 - 0.2463549806484620D- 05 -0.450159077 0.1766164457081246D- 03 -0.124146665 -0.1135706981452381D-06 6 ENE = 0.3752993610042D+01 N = 512 M = 43 AO = 0.2220593674771D 0.5047182570874378D- 06 -0.1869395435249823D-03 -0.447147472 0.1412067412636475D- 03 0.104955293 -0.1413061995308833D-06 7 ENE = 0.4378492545049D+01 N = 512 M = 43 AO = 0.3637890171763D 0.6674104161383844D-0.1433505043383679D-03 07 -0.449084595 0.1124353587183572D03 0.405122784 -0.3262371387560192D-06 N = 512 M = 43 AO = 8 ENE = 0.5003991480056D+01 0.5055186668755D
1 1 -0.1093787811970052D-03 -0.8181604075729483D-07 -0.44965821 2 21 -0.8292081957574832D-07 0.8801665124480810D-04 -0.99142778 IFRE = 9 ENE = 0.6254989350071D+01 N = 512 M = 43 AO = 0.1606594355559 1 1 -0.6236072683115891D-04 0.4765894769308156D-06 -0.44714669 2 21 0.3148931796656982D-07 0.5215829136335666D-04 0.13994959 Table 6.9
Output of FURI1, routine FURLEN. Terms coming f
CURRENT VALUE OF SPACECRAFT SECTION/MASS IN m**2/g : 0.00 THE MODEL OF THE SOLAR SYSTEM IS: 0 0 11 0 1 0 0 0 0 1 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI N
FREQUENCY
PHASE
N
FREQUENCY
1 2
0.9156600625595784D+00 0.1746980187678735D+01
0.1146036806276883D+01 0.1693250981649915D+01
3 4
0.1831320125119 0.2746980187678
IFRE = 1 1 2 21 IFRE = 1 1 2 21 IFRE = 1 1 2 21 IFRE = 1 1 2 21
1 ENE = 0.9156600625596D+00 N = 512 M = 43 AO = 0.1146036806277 0.1497094581445498D-03 - 0.9262426601099436D- 06 0.35038342 -0.8673677030599162D-06 - 0.4916776609049902D- 04 0.67743889 2 ENE = 0.1746980187679D+01 N = 512 M = 43 AO = 0.1693250981650 0.1834791052856497D-03 -0.3465805252685086D- 04 0.35151261 -0.3423626455988194D-04 - 0.1795325882027494D- 03 -0.20413491 3 ENE = 0.1831320125119D+01 N = 512 M = 43 AO = 0.2292073612554 0.1028123963021951D-02 -0.1487783297976936D- 05 0.34998646 -0.1487648962138785D-05 - 0.1012094375141046D- 02 0.12353840 4 ENE = 0.2746980187679D+01 N = 512 M = 43 AO = 0.3438110418831 0.6292336594479343D- 05 0.24007429292973580-03 0.35018770 0.5449584159753695D-05 - 0.2370064468439855D- 03 -0.83907730
Table 6.10 Output of FURI1, routine FURLEN. Terms coming
N
CURRENT VALUE OF SPACECRAFT SECTION/MASS IN m**2/g : 0.00 THE MODEL OF THE SOLAR SYSTEM IS: 0 0 11 0 0 0 0 0 0 1 1 0 0 EARTH+MOON-SUN SYSTEM THE EQUILIBRIUM POINT IS LI FREQUENCY PHASE N FREQUENCY
1 2 3 4 5 6 7 8
0.8869742675313748D+00 0.9999522207438958D+00 0.1053724902883324D+01 0.1773948535062750D+01 0.1048134000056199D+02 0.1059431795377451D+02 0.1131454158595393D+02 0.1148129222130588D+02
0.3432635595834144D+01 0.6231395122225130D+01 0.2703571879556000D+01 0.5820858844887022D+00 0.1711238098207887D+01 0.4509997624599100D+01 0.2388511629531575D+01 0.1659447913253431D+01
IFRE: = i ENE = 0.8869742675314D+00 1 1 -0.1465603760382508D-03 2 2 -0.7580672476865840D-03 3 8 0.5038787102203607D-03 4 458 0.1634594679323987D-03 5 26 0.5820156681546279D-01 6 914 0.5946077797541867D-03 7 928 -0.2087532455016062D-02 IFRE: = 2 ENE = 0.9999522207439D+00 1 1 0.1499880931309437D-03 2 2 0.6273420837422142D-03 3 8 -0.3472220028128979D-03 4 458 -0.1337186066258772D-03 IFRE = 3 ENE = 0.1053724902883D+01 1 4 -0.1879532441927055D-06 2 7 -0.9870870867078197D-06 3 911 -0.4496280151211255D-07 4 912 -0.1879532441927055D-06 5 913 -0.3784652953238619D-03 6 915 -0.4935435433539098D-06 7 916 -0.1985621943854786D-02 8 918 0.1135609467175608D-06 9 924 0.7028507258934257D-06 10 927 0.9904034385888296D-03 IFRE = 4 ENE = 0.1773948535063D+01
9 10 11 12 13 14 15
0.123682664888372 0.132552407563686 0.237365807569306 0.238495587101431 0.247365329776745 0.371047994665117 0.494730659553490
N = 800 M = 43 AO = 0 .3432635595834D+ -0.1359608944934010D- 05 0.18147320 -0.7005563519696952D- 05 0.74879308 0.1485246725045678D-•04 -0.43940706 0.4876246443698255D-•05 -0.17128544 0.2077660135634228D-•03 -0.35026288 0.2129317076000503D--05 -0.57750764 -0.1995586454242680D--04 0.14761114 N = 800 M = 43 AO = 0 .6231395122225D+ -0.1923057975848962D- 06 0.18136856 -0.1028674263119758D--05 0.74833630 0.1019287036218621D- 05 -0.43868749 0.2978236746426478D- 06 -0.17101747 N = 800 M = 43 AO = 0 .2703571879556D+ 0.1480686572052652D- 02 0.31919082 0.7963337706221116D-•02 0.19901140 0.3482857653243684D-•03 0.63204001 0.1480686572052652D-•02 0.31919082 -0.5944864529783911D-•07 0.45732487 0.3981668853110558D- 02 0.99505703 -0.3171761679250696D-•06 0.25444270 -0.9123632340780074D- 03 -0.17789207 -0.5792984540910950D-•02 -0.12838019 0.1620711187674213D-•06 -0.12658823 N = 800 M = 43 AO = 0 .5820858844887D+
to o i a o <* cs i•* oo co
294
cs o i Q o •rf en oo LO cs o oo CO tH
en sco tH co
Expansions
Required
I I I Q Q Q O
•*
co
CN
o + a
o o o
LO tO CS *
*
^ ^ tH LO StO * CO Q en tH ** oo o es cn en LO C O t H en LO L O LO s- vH
+ r fc
s- co en co o en ii en co es cs tH co O tH CO S H en en tH cs o en ^ CO CN ^ o to to co
i-»
i-<
H CO CO CO
co
iH
en r-
o + CI o
for the Equations
O O i
tH es
I
£§ ^S
S
d
W
1
1
a a a1
W
• *
II S3 CS
i
1
Q
i
°> f£
' O O tO tH I
O O P
a a1
Q
II
*
of Motion.
•
o + o o CO
o t-tH es oo oo cs
tH O )
Q iH
II
o * •*
o o
1
a a1
1 s s cs cs CO to o o o +
to
LO CO LO CS o cs o >*o o o o + i 1 1 i o i a
a a a
O 1
LO
o o o o o o
t~ a1
d
I S3 I
I
I
• *
W
I E
d
W
I H
i
i
Collinear
I
*
oI o oI o oI oI o I I I O Q Q a Q a a * cn co o cs r- o * • * c o > * t H o to CO LO CN LO O co es S - CO 0 0 r- CN LO co en co LO o o o cn * to to « * t o s- co cn cn •* O CO cs r LO LO * •Sf tH LO 00 to r~ to to << LO CO * co to cn cn LO LO cs cs •* f - * CS CS to to to 0 0 t H tO CN LO t H >J< to oo O CO LO CO to o cn oo to CN LO oo cn cn tH * t H CN C O t H i-o *o cs o o o o o
Qi
Q
Q
Q
Qi
Points
I
I
I
Case
CN ^ f i H L O
1
1
O
1
* *
"* tH CO
1
i
o o o o o o oI o I I I + 1 1 1 a a a o a a a a LO to s- o CN CN es co CN s- LO tH r— CN * i-cn tH CO LO oo o f- oo *r cn CN CO s ^ m o tH C O * 00 o to to * tH C O 00 LO >* * LO CN to o * LO CO CS CN LO >* cn r— co co * CO LO to to ^ H O l t f L O cn t H t o s- o * es »* co oo co es * * oo L O •* C N L O o cn cs o cs * O t H sf- es to es co s- o o t-- cn cs C O t H co co rcs tH co cn oo to * cs LO cs cs to LO o o o 1
o o o o o
• *
• *
a o a
Q
• *
a
Q
a
Q
CO CN to to cs to tH to o to tH to o o o o o o o o o o o o o 1 i 1 1 1 o 1 o 1 1 1 o i o
a o
I
I
I
I
I
I
• *
I
• *
I
t H CO 0 0 CO CS tH00tHCNCOtOCOCNtl,S-«^t~-tHCStOtHS. cos-tHtHcocstoto1 oo s- co cs H H H C N d n ^ " j L O l O cs •* t H CO LO t o h - 0 0 O tH t O f to r-en cn * • * * LO W W W W c4 « K c4 tHCSco*tofetHesco*u
I
a Sa LO LO t~ LO 00 tH tH o t~ tH • * • * CN iH t~ CO cn CN LO CO to CO cn to O cn es + • * • co CN + r+ CO * CO tH CO CO CO to LO CO • * [•- * CO o LO lO to LO to tH o to tH cs cs o tH co to to s o o cn oo o c o o cn so • * tH CS tH LO LO 00 o to LO CS LO t-- CO 00 r- iH LO cn cn 00 CO tH CS CO es H CO CN T H cn t- LO cn CN CO en r< * tO tH * tH CO o CO LO LO LO lO to en to cn tH tH es to to CN tH tH tH r- CN s- tH tH s tH to tH CO cn r- cn to * LO CN CO to CN cn co cn tH o CN * o to * to cn oo o to LO CO LO s cn es ttf to o cn cn * •a- LO •tf 00 tH es * cn LO c- o es f- en en to r- en cn LO to "J1 to T H to cn iH LO o tH to cn • * cs o sr- to o 1-- LO CO LO o LO LO tH 00 CO tH s- o cs LO co i>to oo co to en co tH r- cn h- LO to tH LO to oo cs cn iH co co o tH * iH cn to to tH 00 CN tH to CO N- o o CO CO • * oo es o cs cn cn tH o s iH s cn tH cs CO «* tH cs tH r- o cn * s- tH f- LO cs to o cn co CO to cn o 00 00 LO CO o o en * LO to CO o o o cn * • * * * * * LO LO tH tH CN O cs cs CO to to N•=f iH CO S- cn r- to s- tH r- tH 00 to f- to s- tH co foo to o tH o to tH cn 00 00 CO t\o LO * s * tH tH CO LO *f I 1 CO cs o c n o o o cs c n o cn s o * ! tH CO o iH oo tH L-iH CO f- O iH es iH 1~- 1* 00 cn to LO t~- 00 * O CO CO CO cs i>1to to CO CS O cn co o c n c n es c n o e n cn *r CN tH f- cs CN oo CN to to s. o CS co to tH to tH N- tH o to cn LO cn cn tH oo co s- * tH s <* tH * CN tH CO o tH to en LO 00 * CN 00 CN LO O CN r- tH cn oo to sss. cn s. o s- co * to • * * tH t-- LO CO CO fLO LO tH o to cn cs en o cn co o cs es to LO co CS •aco co o s- LO s- co tH co •*iH LO LO IO cs tH <* II * tH to to II CO * tH iH cs to 1- cs II CO r- II cn CO cs * CO to tH LO tH cs tH cn LO o o o o o u o o o o u o o o o o o o o w o o w o o o o o o o o o o o o o o o
to
t O I O CN t H LO t H
cs LO CS LO to cs LO CS to tH t o t H L O C N * t H I O ! CO LOLO LO < o o o o o o o o o o O O O i O LO O O LO ' I I I I o I o I o I I I I I i i I I I I I I I I + • I I Q a a a a a a a O O a o a a a a Q a a a a a a a a a a LO LO to co t - - * es co o LO to cs i-- co en co co en co to cn r- o CO t H en tH LO co en c- to * cn * S O I o ses^ H H co o r-- to II LO to II to * es co o cs cs tH LO S H LO t H C O t H t O t H to sto * O to • * • * «t res rto cn to >* t H !-o oo tH H O I S to to to LO o co co o cs o t-- to co CO tH tO t H C O L O O * to o CN CN •* •* en en tH tH O t- H * n s oo o o >* co * o to soo tO LO to LO N- co O t H H "* L O •i H t H en •* to CN oo N H H CO •* C N LO o 22 *S- LO 00 CO O t- to *r en oo LO CO 00 oo TH oo cn tH oo o to to to 1t- en co s- en LO CS w co oo en oo cn ,H cs to cn r~ T H co * t-- cs cn tH to LO tH LO CO CN CN * CN CN o CO tH o * co * co co io co + H t H 0 i-tH tO S- tH cn CO LO CO * f - t H O to t o CO O tH r— to to cs CS *-< oo + CN O s- cn co co o o r- co co o CN t-~ CO CS CO cs csO CO CN tO es tH 00 Q O I O H CO O * CO CO r- o en co s- to to es in H» CN o to LO * tH (TJ tH to h- LO 00 to o en tH S . cs to to cn * •>* s - T H t H LO LO iH s- to CS CO S S Ol CO CO o s. o en en tg CN CO * tH t H < * CS CN CO cn * •* CO tH t*fH Cco f- CS CO * t H t O N S H ID cs to O CO H s n l"— t H o o o o o o o o o o o o o o o
•
o + o LO soo cs en en
o cs en en rco cs cs CN CO CS o o I I o * oI Q Q ai o Q H LO to •H II o es >* o o CN t- H co es
1-- en >* oo co es LO t H es o to * tO tH T H
9o £+
Oi I
* oo o o d d to ^r OI
oo CS CN < # , H TH T H O CO co CS en cs lO TH to rO •>* CO CO 00 es s- o CO o LO O CO T H cs co oo L O CO I-CO
tH C O
o d OI
• *
1
• #
>*t~- I H
LO co co CO LO CN >* * oLO oCO O•sf CON o o oi io o o o o I I Ct a a a o Q Q a a a a a a t * CO CO C ) "* O • * t - o to e n o "II 1- tH CO to II CS CO en * en >*oi>- t-*- en en to co o co en CO s- o CN t•f> oo m LO CS f LO o co to to to « > es C ) es co •5f t O en co s- CI •co r- co en o o tH • * •* co en o •*en< * tco cs to en o s en to LO tH en LO to co o co en co to LO tH en co «* •=f tH s- o CO 00 co cs £ to LO to to es en LO O LO LO LO en co o co to C ) CO en to LO cs en co CO o co t H * cs tH O co to S ; H ° ° 2
II
es
o o o o
to tH en (N cs CO to 00 CO CO cs en CO CO CN CN t * e n o •CN* II en tH en CO tH es CO CO "* CO hII to co t-- «tf f" E S- to LO tH CO to CN S- t- CO iH
i°
f- CO to to o o o o I I i i Q Q a a to CS CO CS cs LO to en to "* t H tO co s 01 t H t H i>- co LO f- tH CO s- TH CO LO en oo o o L O t H tH OO oo es cs «* to oo t H I-T-» t H r-- co oo o i-- cs cs tO CO cs co L° to en * t H LO cs o to co o tO t H LO t H
i
o oo o o i
a
to CO * to CO CO CO CO co o o o o o o o o o+ o + 1 1 1 1 a Qi 1 1 o a o 1 Q
a
800
--) --)
o
*>
o
o
o
o
*>
*. o->!o
o
o
o
o
o o
(-»•
*-*•
*-k
* k
en to en O o CO CO o oo 4i en o o CO -~I oo ~I to to CO en to -s h-k to -J to CO to co CO o e n h-k CO o 4> to en CO o 4i 00 -~i o ^i IO 00 00 oo h-k en 00 00 oo o en --j 4* 00 en CO co to en to to 00 en -J oo o en CO oo to en o ai a 4* a c oo IO o a o1 o a ai o1 oi i i i i i i o o o o o o o o o o o o en h-k to en en h-k 4^ en o+ 4i h-k en
4* CO 00 o
->! -) o o
S62
41 --i h-k CO h-k to h-k eo tO --j to o o to a i o en
o oo 0 0 co oo t o io o 4 i en 41 oo CO h-k o o co h-k en i o o co -~i t o t o t o en t o en - j en oo co - J h-k i o O IO t o - J 41 o a a a i i i o o o h-k tO en
41 io O en -~J h-k to en -j to to 41 oo en a i o i-k
o
I I o o o o
00 eo O 41 ^) en 41 to h-k o -) co oo co o i o to
o
o h-k co o 00 --J on OJ co 00 t o t o O 4 i to + h-k en o oo to h-k - ^ O en co H h-k O
to
I o
I o
i
i o
o
i o
I o
o
i o
i o
i o
i o
I o
;o«y
sijj,
o
i
o -j
o IO en 41 o o en en to ->j co 4i en h-k o 41
i
io oo co to
l o
4i -~i en co en o -^ --) oo a + o o
en co io en
o 0 0 h-k h-k O
l
4i oo i-k co en io en to to a a i i i o o o h^- 4 1 en
41 to o co -^i io -j to en en 4 1 --) en 4 1 en - j co en t o en to t o O a
to en o en en io to h-k O
o
o
o
o
o
-~i h-k l-k tO --! 4iio io en oo i-k co 4i to h-k tO h-k en -J en -N] - J h-k oo to to en CO O h-k to o co en o - i CO h-k CO h-k en -j to oo o o -J oo -•] oo o 4i t o en eo tO h-k 41 eo en -~J O h-» -J -~i -J 41 i-k en oo en oto 4i to ^i h-k 41 h-k O tO t o 41 h-k en co co tO oo co en 41 00 oo h-k co en en h-k 41 en en CO h-k h-k o en h-k 4 1 oo t o to ^i en en en co io en 41 co o oo --J en h-k 41 eo to to 41 -J co en o i-k - ^ - j h-k 41 to io ->i en h-k -~! to en1 co co en en co oo io en to en co I- h-k h-k 00 o h-k 00 4i O h-k O o ->i oo --) o - j --I 41 io en 41 to to to en en ~ j to a D O H 13 41 O co to o a o i i I I I i a a a o o1 o o o o i + oi o i oi io o o o en en io en I- en to io en en o
o
a o
ai/? / o uozjvfndiuoQ
en to 41 41 to 41 oo --J en en oo en en eo ->! 00 en o o to to co to to 41 --J en en en to en en o a i i o o h-k 41
o
SW.J.3X 6mqjn^i3j
~j co t3 i o en o o en t o 4 i h-k en en co en io en en o eo en oo a + o 4»
h-k 41 en II CO oo en H O O
oo o en 00
PS S ? *• co — 00 i-^ O CO 00 o en oo 00
o
h-k CO h-k to co •^i co o en h-k 4i en t o to - j co t o i o o 41 to t o co to —i o oo t o io to oo en en 41 4i oo to co co to o to en o eo en en to en o to o en en o oo h-k eo to en h-k -J oo co o co to eo co co en --!o 41 en a a a a a + i i + i o o o o o o i-k 4i O en
cng4i to o o o IO h-k 4 1 io - J O I en co co t o t o 4 1 tO h-k O
o°
CO O en en en CO 41 tO -~) co -j en h-k 00 IO h-k a i o 41
o
h-k tO O -J - j to i-k o 41 en CO h-k h-k en h-k IO to o en to o co co h-k -J h-k 4i h-k IO h-k en co a a i i o o h-k en
I o
I I I I I I I I I I I I I I I I I I o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o M en t-k to to co to en en en i-k co en en to h-k CO Sop' h-k 4 1 en to to -j io to io en i-k 41 h-k tO IO h-k en en oo o oo - uu l_k o to CO 00 4i 00 -j o o co h-k tO 4i -1 to en o --1 41 o en en O (71 O h-k 00 co o oo to -~> o oo to -j to co en oo o IO O en en -~l en ->! tO o t o s 4i en (71 IO h-k CO 4i h-k 4i O en - j en io co en h-k § tO -J Co co en en o --J 0 0 to to en h^ io en en en oo 41 en to 41 to to en —I en 00 en co 4i 4i h-k 00 en - j 41 " O oo to to 4i o 41 en t-k ->! en en (O O en en —J io co to oo en -4 o en -J co to to to 4> h-k o en oo en 1-1 CO en oo o co co h-k oo --)en 41 41 en to 41 to h-k 4 1 -~i en en to 41 en en en a '-' to h-k o en io to --I c o Oio io CO 41 -~i oo -j o oo co h-k IO o co en co oo to en to 4i o h-k 41 oo co to o oo en en 41 h-k -J 0 •* 4i to en h-k IO O ~J oo co co oo to so o co 41 to (O -J co en oo 00 to -~j 4 1 to -•] O (O en to o oo co oo en .. h-kh-k to 4 1 t o en o o to en co to en 41 to en io 41 o en oo o to h-k CO h-k to 00 41 h-k to co ' t-k o en to 0 1 oo t o --J t o oo co en to en en io ~j 4i CO -j to -J •s to to o to en to en oo ->i --! COo 4i ° o to h-k en t-k t o oo en O h-k 4i 41 to to o oo oo en to h-k CO 4i CO 4i en o 0 0 h-k 4 1 41 en o to o w io 1 t o en t o t o en 41 ^ ) to to co co en en co to oo o en co en to o en 4i C O O h-k -~I h-k oo to en io oo -~i --J i o -~i h-k co to en to io en 41 4i 41 CO 00 4i o co to -J en - j o t O h-k --] co to oo en en en en ;_. Ih-k o en t o 4i en co en -< h-k 4i to to 4> --J en 00 h-k IO io oo co en co -~l en oo co en 41 oo g to t o - J 41 oo ^l o en oo IO -J o oo en oo h-k to O to 41 en ->i o 41 en oo co t o t-k en oo -j tO h-k o ° 4i 41 to 4i --1 IO h-k to " co en co oo o en o oo -J en en 4i 00 h-k O h-k tO IO to o h-k en en - j - J en en oo 4 1 00 CO a t3 O H O a o a a a o a a a a D o o a 13 o co h-k o a a a a i i i i i i a I + a a i i i i i i a a a i i I I + i i + i + i + i i o o o o i + o o o o o o o o o o o o o o o o i i i o o o o o o o o o o o o o o o en en to en to en h-k CO en o co h-k 41 O en o C O h-k 4i h-k en i-k 41 to en en to CO 41 O h-k CO i-k en o I P I
41 (O to 41 M h-k 00 41 on h-k -1 41 h-k o n IO tO 41 IO h-k h-k 00 IO n (O o 00 41 (71 e (71 h-k (71 ->1 ->1 h-k 4» a a t3 a a
-) o -~!o
I I I I I I I o o o o o o o o o o o o o o o S I I I I I I I fII CO l o IOo o CO o en o to o h-k o h-k o oto oIO o oioo h-ko en 00 00 to co h-k to to h-k en h-k --I CO oo CO CO h-k h-k 4* to 4* 4* Cn to IO en to 00 en O -J 4i en en h-k CO en h-k to h-k oo O -~l to co C71 h-k 00 to ^i -~i 41 -J to 00 en 00 4i en to en n to n h-k 00 h-k 00 4* IO • i t * t-k 00 IO en CO to en e to 41 CO 41 to H* e -J to en to en oo -~i 4i e n h-k h-k h-k IO h-k to to h-k to I - ' (O IO to 4i 4» to en i-^ en en 41 00 t-k en IO -i en en n -«I en en IO n h-k to co IO i o oo 00 to en to to e IO h-k h-k ->1 ->] en e 4i o e n e n e n e n h-k h-k CO (O IO ^i h-k en c h-k h-k h-k h-k to 4i e n 41 en en 00 00 4* en to to to e n CO 41 c n 4 1 to 00 41 en -1 to 00 en to (71 CO en IO 41 * k1 4* CO en oo CO h-k to 41 CO to CO en h-k -~l ->i IO to to ^1 CO ^ CO 00 I" to ~ j 41 to CO 4i to 4i 00 to
s
o o o o ro co en en en o oo en m 41 cn o 4i o o en o h-k en ~ j 4i co en to o en h-k IO en en 00 o o en --I en en co h-k en 00 CO co en 41 rf> (O co en \-L --i en CO CO en o o o IO o CO h-k en to h-k CO 4» h-k CJl co *> o to en en IO 41 o to en 4* 00 to en to oo h-k 41 h-k oo co C71 to en en en IO -~] -J en en 00 to o n oen oo h-k h-k co to 4i 00 en oo to o 4* e n en *>en ^) o -~!eh-kn 00 CO ~ ~ j CO to 41 41 oo -~i 00 o CO to en 4l en co o e n!e n CO a 4 1 a a a o a a a a a a a 13 a i o i i a i i + i a a i a i i i i i ai o o o o o o o + o o o o o o o o+ o o o o o o o o o o + en o en o en h-k en o+ en h-k en to en h-k 1-* IO 41 h-k On IO co o io en o io
o
I I I I h-k o o CO oh-k oh-ko IOo 4*o t£>t M 41 4i (O (71 O to (71 IO --1 i-^ O (O (n (n ->l f»> to -~] ->l 00 to en h-* CJl IO 41 4i O t o en -~l (O h-k Cn 41 IO Cn IO h-k 41 On IO IO (O h-k O (O CJ> •n 41 (71
., (Ocncnencncncncncncnen4i4i4i4i4i4i4i4i4i4i4i4ih-kh-kh-ki-kh-k h-k " H K O < 7 1 ( J 1 0 1 U I 0 I O O O ^ ) 0 0 0 ! S - ^ f l l 0 1 0 1 C I K I l t I 1 U H n i > K O O > H O C O O ^ O I W W K ^ S U ^ O O K O l W S t O O l K S O l l O I O w y J S C O K O D S O J S t D W O l O C O M
s
hH4i4i414i4l4iCOCOCOCOCOCOCOCOCOCOIOtOtOtOtOtOtOIOtOlOh-kh-kh-k|-k -•Jcncn4icotOh-khgcn4icoiOh-ktoiO(x>--icncn4iCotOh-kO(OC©-^cn(ji4iCotOh-kO(OOo-~icn
296
Expansions
CO (O 1^ LO TH CN LO CO CN CT> C) O CO t H Ol t H
•*-»
TH
Required for the Equations
• *
• *
TH
tH
tH tH
•*
tH •*
CN CO
TH
tH
* O CO
• *
tH
o o a n
• *
I I I
tH
• *
I
of Motion.
• *
tH
Collinear Points
• < *
• *
tH
t H CO LO CN LO CN LO t H ^f CN CO i H o CO CN o > * « * o o O o o o o o o o o o o o1 o o o1 Cl o a O a a a a a a a Cl1 Cl Cl Cl Cl 1 a + Ol tH cn t H cn t H LO LO CO o LO CO r~ co r~ co
CO C ) CN LO
D+0
• *
1
tH
tH
tH
tH
TH
tH
tH
tH
tH
tH tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
TH
tH
tH tH
TH
tH tH
•^
tH
tH
tH
tH tH tH tH
• *
tH
tH
tH
tH
'j' iH
tH
tH tH
tH
tH
tH
tH
tH
tH
tH
tH
tH
I
tH
iH
• *
tH tH
I
tH
I
TH
O
Case
• *
• *
'J' i H i H o o o o o o o + a+
1 1 1 Cl Cl Cl Cl Cl Ol CO CO CO Ol
• *
iH tH
I
tH
tH
iH
tH
tH
tH
c o c n o t H C N c o ^ ' L o c o h - o o o i o tHCMCO^LOCOh-COCnOtHCM CO^lOCOt— O O O l O t H C N C O ^ L O , , i H t H t H t H t H t H t H t H t H t H C N CNCNCNCNCNCNCNCNCMCOCOCO raconco^<)co(<)<J'>*^>l <^ *
tHCN-tfCOr— » # r - - t H C N C O t H t - . C N o o c o c o f - c o t - o o o i H c o r - c n C N O i C M C o r — t H c o r — c o o o c o c o c o t H t H t H T H t H C N C N C 0 t ^ « * L O C O f — h-OtHLOLOLOLOCOCOCDCDCO r - l ~ - 0 0 0 0 0 1 0 0 C N C O C O C N C O C O ^"f^M'^'LOUlLOLOLOaiOlOl
I I
in CO Cl LO Ol LO CO 00 ^ ^f co cn o a> C ) CO t^ \D CO CN cn 00 cn CD o Ol no CO cn sf r- CO oo CO t^ ^ LO CO Ol co CO i>- CO C5 CO CD i^ CD CN CO f sf o o N- Ol CO oo oo CO CO CO o o (^ ^ oCO CN 00 Ol LO CN CN cn CN co ^f cn Ol CN o o cn Hco -- cn CO Ol ^ 00 o CN •*LO ^
o o o o o o o o o o o a Q Q a a a a a a a a tH cn CO Cl cn cn CM t H oo LO
00
>*
• * •iH •*<•CN CO t H • ^ o oCO oCN oCO oi H o oCO ot H o•>#oCO oCM oLO oCN o<•oCM o ot H o• * ot H O*F oCM oCO ot H * *•CO CN ^ ^f • * o o o o o o O o o o O o o o o Q Q a a Q Q Q a a a Q a a a a a a a a Q a a a a 1=1 1=1 1=1 1=1 Q a a a a Cl Cl Cl Cl O CN CD CO K t~ t H CI i^ CO LO t H i H o CM CM CN CN LO 00 00 t H r~- i^CM CO CO CN oo LO oo cn CO •iH i H cn ^f t H **oLO tCOH ccnn cn t H 00 **•on CO 1^ CO Ol LO LO cn CN t H CO cn LO CO LO t H Ol 00 cn r-- Ol 1^ * • CO teHn r- * t H t H > * ^" LO LO LO oi i^ CO LO CO C3 CO CO cn i^ CO CD LO Ol co ^ CO co 1^ o co tcn cn t H CO icn cn LO t H LO co co rH cn CN H 00 CO 1^ LO CO CO h- r~ Ol CD oo foi c n c n c o oo en cn *e c n co cn r ^ ^ t H H ) LO LO OO co trH^ C LO O Tcn LO LO tH CM c CO CO CO o CM cn h- cn o t H LO o 1^ LO o tt HH <3< n Ol o o co LO ^ o LO cn co tH CN tH LO CN O O cn CO co t^ LO co LO m Ol CO co o CO o I-- o t H o cn t H 1^ CO o CO t H Oi CM co 00 LO CO •^ct Hn CN T-t CO CN t- LO LO C ) t^ CO CO • * 00 CO CN r^ o cn CO CO cn o LO o o 00 1^ Ol CO CO o ^ " t H t H CN CO LO Ol LO LO CN CN CO LO CM 00 O LO LO h- ^ ^f oo CO CN ^f co •tH co **CN cn 1^ o LO oo OO c> 1^ o hcn co r- CN co ico H 00 1^ t H CO o 00 00 CO O CO LO CO CN t H cn 1^ CO CO CN o ^ OO KC ) CN cn 00 o CN *H*oCN OO t•H*oi^ ^ ^ CN ^ t 00 CO CN 1^ 1^ l»- cn CN t H o co i»- h- CN o co oo 00 o CX) •*co ^ cn co i H CN CN o Ol Ol LO LO ( IN LO < CN CN Ol Ol co LO CO 1^ co OO LO cn CO \T) CO m o> o c n oo cn co < * > * * • ^ C ) cn tH CD CO CN CO LO co CN co CO co LO LO i^ CN CO CO LO oo LO CO Ol CO *f cn c n c o r ^ en r ~ cn o co o o o oo ^ < ^ * t H* C ) LO Ol cn o oo O t H CN CO 1^ LO Ol CO LO CN 1^ CO 1^ en 1^ CO CN t H LO a> cn O
• *
-iH LO t H •iH to •tH t H LO o *f i H o tH I-- CD CN CO CN CO t H LO CN t H LO o 'J' CN t H LO t H t H o a CN • > * " * • * o o o o o O o o o o o o O1 o o o o o O1 o oi o1 o1 o o o oo o o O o O o o o Q a Q a Q a a Q a a a a a a a a Q a 1=1 a a a1 a a1 a 1=1 a a a CN Q Cl 1=1 a 1 1=1 a1 a LO t H Ol IN 00 + t+H H CO CN O C) CO CN CO LO t+ CO 1^ CN i^ CO •<* co t~ t*t~ cn r~ o oo c n oo cn ^ r- T H o f CO oi ^f *#o LO CN CI CO co *r LO ^< co o CN 00 CM CN CM 00 LO cn *c o ^
o en r^ *f LO •* co CN Ol T H
D+0
o o oI oI oI oI oI o oI o o o o o o o o o o o o o o o o o
D+0
D+0
D+0
<* o
• *
•<*
• *
• *
•>*•
• *
• *
1
• *
• *
• *
• *
• *
of the Perturbing
Terms
• *
LO
• *
o
• *
LO
• *
• *
o
• *
• *
LO
1
1
o
• ^
• *
The Final Computation
• *
1
to to o
• *
CN O
• *
• *
• *
• *
• *
• *
• *
• *
800
CN O
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
• *
800
CN O
• *
• *
• *
• *
297
Q Q CI a + + + + LO to CN en tH CN tID CO tH CO a > CO CO 00 o CO CN cn cn iH O o cn 00 CO CO CD io tH LO CN co tH CO o to CO tH tH co CN CN CN CN CN tH LO h- LO CN tH LO tH CN tH LO CN LO tH CN to CN CN to iH CN LO "*
• *
• *
r-
800
•=)•
• *
• *
• #
• *
oo
• *
w
• *
• *
• *
• *
• *
tH CN tH tH to tH CN CN CO tH tH CO 00 00 CO tH tH CO to 00 h- tH 00 CO CN to tH tH CN CO LO to tH tH LO to f- to CO LO to CO 00 II CN CO vf LO fII II CN • * M* to II •a1 T <•
r-
• *
• *
CN tH CN CN tH LO CN CN tH LO tH CO * w ^ o o o o o o o o o o ao o O o o a o O O o O o o o o o a o O o o o O o o o 1 1 1 1 1 1 1 1 1 1 1 a 1 i 1 w u 1 1 1 u w o co CN 1-co iH • <*tH tH
CN O
800
rj< CN CO i-l
298
H
y-i
i
i-i
1
• *
o * to o o oo oo oo o o
Required for the Equations of Motion.
T-t
TH
• *
i 1 1 1 1
r l r H O S 1 O 1CN CN CN i H
to co oo o s co co CN ^ cn <* oo oo to CN «tf O ) •* O l O r t s- oo oo C N O l S O l •* cn co en co to s- LO O cn in to i-i cn cn o to s- s o n r- oo o o to t~- co oo i< co to cn cn o cn I H oo co to to co iH CO s- t- cn to CN P- iH to T H S O CN LO C N o co oo co to o *J< T H CO CN »* L O to 0 0 M J I iH iH co siH *f iH tO LO IO LO co r- cn ^p 00 iH O i* CN CN iH o o to co L O CN rCN CN O LO ** •* iH o to L O "tf oo cs cn S- CO **• LO cs cn oo r~- o iH CO O S 0 1 O CO to oo L O to cn co o tO CO O B S O CO H cn L O to co T-t T-l co t» co o oo CN LO "4< L O r- o •* C O S CN CN i-l ^f CN c n i-i CN CO to co to o o o o o o o o o o o o o o
I a
• *
TH
i
Collinear Points
i 1
1
+
Case
•*
I
I
LO
o + CI to
oo rcs rcs *f CO
o CN CO O
a a a o •* en i* to s- co cn CN co to c n •* s - ii ^p «* T H o i o o en oo s- r- iH CN co cs to cs to to to CN co en to o iH CO 00 TH to to o to r-- C N to cn oo to to to o oo co to co s cn CN co s co to cn i-i to E-H o t~- co r- cn <j< I f l L O O I H cn co cs «* cn CN to o cn • C I D I O O cs to cn oo co ,H •* i< cn L O to LO tO 00 CO CN S- to o cn o iH CO M r l S s- cn CN CO CO CN CO to to oo s- iH LO oo to N O I D O CO to O CN i^ LO cs to + s- o N I O S LO i-l O O iH CO co t o t o Q i H • * r - t o i n itf tO tO iH CO CO CN to S 5B CN tO O h - **• to cn o o co o tO ' f • * o in en **• CM cn T H cn cn CN to cn >* es t o t o t o CN S- 1* O iH CS o o s cs < ( * U ) 0 O r t n o o o o o tO o io-l io-l oi-t o o oCo So to o co cn
a
O r t H o o o o o o o o o Ool o o • I
O •* CO iH CN tO CN L O C N tO i-l *f CN rt LO ^ CN i-i « r c o i-i O O O O O I 1 I I I I I I I I I I + I I + i i I I i i i a CI CI ci a ci Ci C I a a Q Q Q a ci Q Q Q Q O Q Q Q
1
o o
Expansions
i
o o oo oo oo o I I I I I I I i + a o Q a Q a Q a a cn to o T-l CO CO CN CN iH to <*• to CN 00 CN LO oo «* o in oo 00 CO iH 00 O CN to ** oo 00 t- s- ^ LO co to to C N s- oo L O en i-l H co en co iH 00 i-l O •* iH CO iH to oo o o i< CN tO S Cn O i-l CN co to s o n O < • *f CN ocn co co O 00 CN co to O CO L O < * O l O S LO 00 o o H t O r H en en co •* r- to o co to o t- iH LO CO o O ) T H to co iH LO 0 0 C n «tf T H iH o oo s- o O iH oics s i-l CO T-H en o oo o o o o o o 1
iH
• *
• *
• *
O i I
00 00
o O I
• *
• *
• *
T~i
• *
y-i
T-l
• *
o
T-i
y-i
T-i
i
o o I I
TH
TH
o o I
o
TH
1 *
TH
I*
• *
TH
o
o
i *
TH
IH TH
o
TH
• *
o
TH
i *
• *
TH
• *
o
• *
o
TH
TH
IH
• *
f-i
TH
o
• *
TH
o I
• *
TH
• *
TH
TH
TH
o O I I
• *
TH
TH
O I
i-i
i
TH
TH
IH
TH
y-t
• *
Tt
TH
o I
TH TH
TH
o O I I
TH
1 *
TH
T-*
O i I
• *
TH
TH
1 cn p IH 1 t— co
f-i
• *
o
TH
i *
TH TH
o
T-t
TH
o I
TH
s U
s
O i H c N c o ^ i o t o s c o c n o T - i c N c o ^ i o t o s ( » c n o i H c s c o ' 4 * L o t o s o o c n o i - i c N c O ' t t , t o t o U , THi-lTHT-liHiHT-lTHTHi-lCSCSCSCNCSCSCSCSCSCNC0COC0C0COCOC0C0COCO'i'^,iS,'d,«a*'3,1,M
^ s - T H C N t o w c N c o t o c o c n
o I
o co i H co o co o i-i CO cs o T-l i H co to to T-1 nf i H •* o ^f o ^ i CO o i H «5f CO o i H CO cs CN o Q o o o o o o1 oi o o1 o oi o1 o1 o1 o1 o1 o1 o o1 o1 o o1 o1 o o o1 o1 o O o1 o O1 o T-l + io o1 oi o + 1 1 + CI + CI + + + + + Cl + Cl Cl + Q Q+ LO Q+ o CI CI a CI CI Cl Q+ Cl Cl a Cl Cl Cl Cl a a Q a o CI Q a to a Ci Ci 00 a tO i H S CN «5» a a CO to CO to «* cn r~ c n i-l c n cs c s o c o s t o co to c s c n t o o o rt o • iH < •& i-l O LO to i H CN CO CO to «*f- CO CN 00 to CN to CO CN to CO T-l to to o to c n cs cs oo " * T-l cn < * i-i cn CO cs CO to CO rto o cs to o co to o r- s r~ cs s- e n•t H i H cs to CN •*to cs ro cs o co oo cn «* «* CN n to cn cn oo s- T-l oo co CN s- i H to 00 CN c ^ oo t~ to oo o cn o CO 00 to cn •*o i H CO to ^ 1< iH i H CO CN CN « J 1 CO to 00 CN O r- c cn n c n c n t o c s rr « c o t o o rrt o t o o c o o o c n c n o o s o c o CO to 00 t H t- o s- cs o CO I-- cn s- o CO cn to f- o to to to so co LO CO ^ oo ii HH cn tto SCN 00 o CO CN to CN to CN to CO to CO to to s- 00 c o c n s c n o c n t o c n cs r c n cs o o o o s<* « * CN 00 i-to to 00 to 00 O CO CO •a1 00 o CO o t o c o e n c n t o r ~ o o c n e n e i H co o "5" i-i ^ < to « 4n
T-l > CO O *f 1-1 CO o CO T-l o co cs o co cs CN o cs to tf o co o i-i co cs o T-H co o1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o + 1 + 1 + + 1 i + + i + 1 + 1 1 1 1 1 1 1 + 1 i 1 + 1 1 + + i i + 1 + 1 CI Q Q CI CI Q Cl Cl Q •* a LO o Ci i-i n a a Q Q CO a CI 00 a Cl a Cl Cl Cl a O a Cl a a 00 a Q a Cl Cl II a LO o CN S- to to to LO T H CO co CO cn to oo co c to 00 CO c to to CO to to o o t H So cs CO cn iH CN O CO LO ioHo LO to CO t14* to CO CO to i-n - s- S icHo to CN to o o t o c n c n sscn CN o ^ < iH 00 cs CO to CO s CO c CO cs oo t I-- to o s- cn CO cn to o co S CO o CN n co LO 00 co CN o o S t H cs to cn ^ i to s to LO to
, 270987! 800 +02
0.1813599 -0.4296001500950472D-05 0.7482296 -0.1746457701489708D-04 0.5722690 -0.5647773376616640D-02 -0.!5347609550109189D-05 0.3051915 -0.3435390242743685D-01 -0.:2386014530002394D-04 -0.4394483 0.2143166922440479D-04 -0. 1475003516322373D-01 -0.2717347 -0. 1045664699694068D+00 0.1258395133862314D-03 -0.2222402 0.1389370246286312D-04 0.3051050966554530D-01 -0.1662568 0.2469317521874746D+00 0.7710288846286750D-04 0.7445776 -0.5124613455732084D-04 0.5594097789939282D-01 0.6140892 0.!5090696973344658D+00 -0.3938993733018322D-03 0.5584313 -0. 1569375055990127D-04 -0.9314486676242559D-01 -0.1080505 0.8968831044210816D-04 -0. 1457787959735107D+00 0.1352331 -0. 1472045056631368D-05 -0.1116157605227783D-02 -0.1713378 -0.'4862475698548866D-02 0.8779442961347989D-05 -0.8788967 -0. 2950007032644746D-01 0.4286333844880958D-04 8272482274555480D-05 -0.1047704 0.1294199838470504D-01 0.4142064 0.2769546717299560D-01 -0.3046381520661902D-04 IFRE: = 15 ENE = 0.4947306595535D+02 N = 800 M = 43 A0 = 0.1518778114812 0.4621899 1 17 0.!5495126019831779D-06 0.1480773874148775D-01 0.7471148 2 0.:3058685060092381D-01 0.4131688182853522D-05 31 -0.8224339 0.1459330695493099D-04 -0.5685811618357794D-01 3 51 9801401709497803D-01 4 78 -0.!1351607816500874D-01 -0.3623948250338392D-04 -0.1084274 0.4153952 5 472 0. 0.2767869916985371D-06
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 6 8 14 17 27 31 46 51 78 456 458 461 463 472
0.1507534997960027D-02 0.'7673080032467071D-02
o.;
Table 6.11 Output of FURI1, routine FURLEN. Terms coming fro
300
Expansions Required for the Equations of Motion.
Collinear Points
Case
CASE L I : ORDER = 10 GAMMA = 0.1001090475489518D-01 TERMS COMING FROM BODY 2: NUMBER OF FREQUENCIES = 9 1 0.62549893500705D+00 0.14172964969918D+01 2 0.12509978700141D+01 0.28345929939836D+01 3 0.18764968050212D+01 0.42518894909754D+01 4 0.25019957400282D+01 0.56691859879671D+01 5 0.31274946750353D+01 0.80329717777927D+00 6 0.37529936100423D+01 0.22205936747712D+01 7 0.43784925450494D+01 0.36378901717629D+01 8 0.50039914800564D+01 0.50551866687547D+01 9 0.62549893500705D+01 0.16065943555585D+01 EQUATION NUMBER 1: NUMBER OF TERMS = 10 -0.4493621586696200D-03 0 0 100 0 -0.1120886925085356D-02 0 0 100 1 -0.5151971085381031D-03 0 0 100 2 -0.4043944461260186D-03 0 0 100 3 -0.3159582415919906D-03 0 0 100 4 -0.2444018627201997D-03 0 0 100 5 -0.1869402248683973D-03 0 0 100 6 -0.1433505198749962D-03 0 0 100 7 -0.1093788117964714D-03 0 0 100 8 -0.6236254796301988D-04 0 0 100 9 EQUATION NUMBER 2: NUMBER OF TERMS 9 -0.2287077360246153D-03 0 0 -100 1
0 0.2684587555297388D-03 0 0 0.2481972650539546D-03 0 0 0.2138022986966805D-03 0 0 0.1766164822231288D-03 0 0.1412068119664962D-03 0 0 0.1124358320145184D-03 0 0 0 0.8801669030480799D-04 0 0.5215830086881653D-04 0 0 EQUATION NUMBER 3: NUMBER OF TERMS = 0 Table 6.12
-100 -100 -100 -100 -100 -100 -100 -100
2 3 4 5 6 7 8 9
Output of program FURIl, routine PREPAR. Terms coming from Venus.
The Final Computation
of the Perturbing
Terms
CASE L I : ORDER = 10 GAMMA = 0.1001090475489518D-01 TERMS COMING FROM BODY 5 : NUMBER OF FREQUENCIES = 4 1 0.91566006255958D+00 0.11460368062769D+01 2 0.17469801876787D+01 0.16932509816499D+01 3 0.18313201251192D+01 0.22920736125538D+01 4 0.27469801876787D+01 0.34381104188306D+01 EQUATION NUMBER 1: NUMBER OF TERMS = 5 0.3503834212090000D-03 0 0 100 0 0.1497123234186157D-03 0 0 100 1 0.1867237603557100D-03 0 0 100 2 0.1028125039496269D-02 0 0 100 3 0.2401567397045788D-03 0 0 100 4 EQUATION NUMBER 2 : NUMBER OF TERMS = 3 -0.1827678090851681D-03 0 0 -100 2 -0.1012095468467025D-02 0 0 -100 3 -0.2370690908008197D-03 0 0 -100 4 EQUATION NUMBER 3 : NUMBER OF TERMS = 0 Table 6.13
Output of program FURIl, routine PREPAR. Terms coming from Jupiter.
301
302
Expansions
Required for the Equations
of Motion.
Collinear Points
Case
CASE LI: ORDER = 10 GAMMA = 0.1001090475489518D-01 TERMS COMING FROM BODY 11: 1 0.,88697426753137D+00 2 0..99995222074390D+00 3 0 .10537249028833D+01 4 0,. 17739485350627D+01 5 0..10481340000562D+02 6 0., 10594317953775D+02 7 0..11314541585954D+02 8 0..11481292221306D+02 9 0.,12368266488837D+02 10 0..13255240756369D+02 11 0..23736580756931D+02 12 0..23849558710143D+02 13 0.24736532977675D+02 14 0..37104799466512D+02 15 0..49473065955349D+02
EQUATION NUMBER 1: NUMBER 0.18147320740023D-2 0 0 0.74879308939471D-2 1 0 0.43940706312415D-2 0 2 -0.35026288078635D+0 2 0 0.62734208374221D-3 1 0 -0.14806865720527D-2 0 0 0.50212727377061D-4 0 0 -0.28120925209644D-3 0 2 -0.74673399932669D-3 0 3 0.71855196740396D-3 0 3 0.13229188284290D-2 0 4 -0.96547150776979D-3 0 0 0.24645465446583D-2 0 1 0.55230773658313D-2 0 2 -0.27087744114162D-1 1 2 -0.93225458461149D-2 0 3 0.12119987232546D+0 2 2 -0.15198570965991D-1 0 4 0.61067075646442D-1 1 4 0.21922449825337D-1 0 5 -0.56754314634276D+0 2 4 -0.10714311250374D-1 0 6 0.10189689968394D+1 2 5 0.31684114902349D+0 1 6 -0.46156602894062D+0 1 7 0.90075921044331D-3 0 0 -0.10835871360657D-2 0 1 0.14273442445416D-1 2 0 -0.32758275038948D-2 0 2 -0.10997614941521D-1 0 0 0.34457447245241D-1 3 0 -0.23472492710197D-1 1 2 -0.79899849025527D-1 1 0 -0.96401390565497D-1 2 2 0.74128351207918D-2 0 4 0.68251606795533D-1 1 4 0.34996309267308D+0 2 4 -0.13473823151034D-1 0 6 0.14153577988937D-1 0 7 -0.13591114135226D-1 1 3
OF TERMS 100 0 100 0 100 0 2 0 100 2 1 3 100 4 100 4 -100 5 -100 6 100 6 100 8 -100 8 100 8 100 0 -100 8 100 8 100 8 100 0 -100 8 100 8 100 0 -100 8 100 8 -100 8 100 9 -100 9 100 9 100 9 2 9 100 9 100 9 2 9 -100 9 100 9 100 9 100 9 100 9 -100 9 -100 10
NUMBER OF FREQUENCIES = 15 0.34326355958341D+01 0.62313951222251D+01 0.42743682063508D+01 0.58208588448870D+00 0.17112380982079D+01 0.45099976245991D+01 0.39593079563264D+01 0.16594479132534D+01 0.50920835090876D+01 0.22415337977421D+01 0.39527718959502D+01 0.46834611516165D+00 0.39009817109956D+01 0.27098799129038D+01 0.15187781148115D+01
= 132 -0.14656037603825D-3 -0.75806724768658D-3 0.50387871022036D-3 0.14998809313094D-3 -0.34722200281290D-3 -0.79633377062211D-2 0.10980182181717D-3 0.43823814136631D-3 -0.35628940765918D-3 0.74223339565492D-2 -0.21696061747327D-2 -0.39774804994313D-2 0.12568796404075D-1 0.38606255527053D-1 0.33816294118149D-1 -0.98172632914111D-1 -0.66370281648429D-1 -0.27070274734079D+0 -0.12368479774093D+0 0.28439939687048D+0 0.20032523574174D+0 0.31203029843370D-1 -0.11058264768508D+0 -0.41377217466672D-1 -0.54562713207951D-1 0.46191053380955D-2 0.19420671967225D-1 -0.66361075000889D-2 -0.15032630639257D-1 0.40587678407588D-1 -0.23776401255852D-1 -0.94627935363846D-1 0.36716088504397D-2 0.29980928625528D-1 0.13802872560195D+0 -0.79899229699075D-2 -0.81583402952670D-1 -0.15162889961594D+0 0.21541344039046D-1 -0.38600243864157D-2
0 1 0 0 0 1 0 0 0 0 0 1 1 2 1 2 1 2 1 2 1 0 1 0 0 1 2 1 0 3 2 1 0 1 2 0 1 1 0 0
0 0 2 0 2 0 1 2 2 4 5 0 1 1 2 2 3 3 4 4 5 6 6 7 8 0 0 1 0 0 1 0 3 3 3 5 5 6 8 4
100 100 100 100 100 1 -100
100 100 100 -100
100 -100 -100
100 100 -100 -100
100 100 -100
100 100 -100
100 100 100 -100
2 100 -100
2 -100 -100 -100 -100 -100
100 100 100
1 1 1 2 2 3 4 5 6 0 6 8 8 8 8 0 8 8 8 0 8 8 0 8 8 9 0 9 0 0 9 0 9 9 9 9 9 9 9 10
The Final Computation -0.31675217360437D-1 1 4 0.74458223433347D-2 0 6 -0.98770719498409D-3 0 1 -0.32419469252641D-3 0 0 0.79088569177183D-2 1 1 -0.71057176571844D-2 0 3 0.55333172153350D-2 0 0 -0.14748274211034D-1 0 1 -0.74929625133010D-1 1 1 -0.22907933520032D+0 2 1 0.55779167615818D-1 0 3 0.39595304235498D+0 1 3 0.16093130316042D+1 2 3 -0.13124928422845D+0 0 5 -0.18542019679684D+0 0 6 0.24807576862353D+0 0 7 0.32540280501338D+0 0 8 0.39520567690162D+1 1 8 0.15075349979600D-2 0 0 -0.56477733766166D-2 0 1 -0.14750035163224D-1 0 2 0.30510509665545D-1 0 3 0.55940977899393D-1 0 4 -0.93144866762426D-1 0 5 0.14807738741488D-1 0 3 -0.56858116183578D-1 0 5 EQUATION NUMBER 2: NUMBER -0.17128544069669D-2 0 1 -0.13371860662588D-3 0 1 0.41268276041702D-2 0 3 -0.67949552599563D-3 0 3 0.65516874934926D-3 0 3 -0.69663122610585D-2 0 5 0.60627797124699D-3 0 0 0.21721278068218D-2 0 1 0.11046154730003D-1 1 -0.27087744114162D-1 2 -0.27967637538345D-1 1 -0.99555422472643D-1 2 -0.60794283863966D-1 1 0.12213415129288D+0 2 0.10961224912669D+0 1 0.50081308935435D+0 2 0.18721817906022D+0 1 0.95052344707046D+0 2 0.10022395225018D-1 0 -0.43650170566361D+0 -0.21290503397099D-3 0 0 -0.10698744601540D-2 0 1 -0.65516550077897D-2 1 1 -0.23472492710197D-1 2 1 0.36315044102104D-2 0 3 0.29651340483167D-1 1 3 0.13650321359107D+0 2 3 -0.79179093037801D-2 0 5 0.88305271728579D-2 0 6 -0.21578956730023D-2 0 3 0.27770077863421D-2 0 4
of the Perturbing
100 10 100 10 -100 11 100 12 -100 12 -100 12 100 13 -100 13 -100 13 -100 13 -100 13 -100 13 -100 13 -100 13 100 13 -100 13 100 13 100 13 100 14 -100 14 100 14 -100 14 100 14 -100 14 -100 15 -100 15 OF TERMS 100 0 100 100 100 100 100 -100 100 100 100 -100 -100 100 100 -100 -100 100 100 8 100 0 8 100 9 -100 9 100 9 100 9 100 9 100 9 100 9 100 9 100 9 -100 100 10 -100 10
303
Terms
0.44984357156352D-2 0.37556539975293D-3 -0.21413770540353D-2 0.12711886865180D-2 0.33783704601474D-2 0.10241690239930D+0 0.22637504945201D-1 0.58166013092557D-1 -0.32446946449852D-1 -0.19781075380165D+0 -0.70527252327855D+0 0.89933584675744D-1 0.72951600934986D+0 -0.11965711625367D+1 -0.18780103073705D+1 0.27622438669669D+1 0.16797241502480D+2 -0.41243778809968D+0 0.76730800324671D-2 -0.34353902427437D-1 -0.10456646996941D+0 0.24693175218747D+0 0.50906969733447D+0 -0.14577879597351D+0 0.30586850600924D-1 -0.98014017094978D-1 = 97 0.16345946793240D-3 -0.10961320305915D-3 -0.36543310226163D-3 0.30532359848449D-3 -0.11935396690907D-2 -0.20242469910149D-2 0.24645459393335D-2 -0.87600103680732D-2 -0.45943436095890D-2 0.33816294118149D-1 -0.85571562804382D-2 0.29611684747661D-1 0.13519738664322D-1 -0.24736959548186D+0 0.20522208761048D-1 -0.64285867502246D-1 -0.28604397099973D-1 -0.28964052226671D+0 -0.39185015150359D-1 0.50878329114721D-1 -0.10835871360657D-2 -0.33180537500444D-2 0.15450785455382D-2 0.11014826551319D-1 0.44971392938292D-1 -0.43555520736070D-2 -0.39949614849538D-1 -0.80842938906201D-1 0.14056485789453D-1 -0.15440097545663D-1 0.48671898731582D-2
0 0 0 0 0 0 1 2 0 1 2 0 1 1 1 1 2 0 1 1 1 1 1 0 0 0
5 0 2 1 2 9 0 0 2 2 2 4 4 5 6 7 7 9 0 1 2 3 4 6 4 6
0 0 0 0 0 0 1 1 0 2 0 1 0 2 0 1 0 1 0 0 1 2 0 1 2 0 1 1 0 1 0
1 1 2 2 4 5 0 1 2 1 3 3 4 3 5 5 6 6 7 8 0 0 2 2 2 4 4 5 7 3 5
10 100 11 100 11 -100 12 100 12 -100 12 100 13 100 13 100 13 100 13 100 13 100 13 100 13 -100 13 100 13 -100 13 -100 13 -100 13 100 14 -100 14 100 14 -100 14 100 14 100 14 100 15 100 15 -100
100 100 -100 -100 -100
100 -100
100 -100
100 100 100 -100
100 100 100 -100 -100
100 -100 -100 -100 -100 -100 -100 -100 -100
100 100 100 100
1 4 5 6 6 6 8 0 8 8 8 0 8 8 8 0 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10
304
Expansions
Required for the Equations
-0.58773606507448D-2! 0 6 0.18166631093185D-2! 0 2 -0.29686073666850D-2! 0 2 0.97380417476031D-1. 0 9 -0.14748272955688D-1. 1 0 -0.37464809333102D-1 2 0 0.27554733284100D-1 0 2 0.16733750284745D+0i 1 2 0.35973433870297D+0i 1 3 -0.65624642114223D+0i 1 4 -0.11125211807810D+1 1 5 0.17365303803647D+1 1 6 0.26032224401070D+1 1 7 0.15808227076065D+2! 2 7 -0.39257641135829D+0i 0 9 -0.48624756985489D-2! 0 1 0.12941998384705D-1 0 2 0.13516078165009D-1 0 3 EQUATION NUMBER 3: NUMBER -0.57750764869803D-2: 0 0 -0.34828576532437D-3i 0 0 -0.37846529532386D-3: 0 1 -0.19856219438548D-2: 1 1 0.57929845409110D-2 1 2 0.81436275067354D-3: 0 3 -0.30047941875164D-1 1 0 -0.94627935363846D-1 2 0 -0.23330952182028D+0i 3 0 0.10759129489155D+0i 1 2
-100 10 -100 11 -100 12 100 12 -100 13 -100 13 -100 13 -100 13 100 13 -100 13 100 13 -100 13 100 13 100 13 100 13 100 14 -100 14 100 15 OF TERMS 1 0 100 3 -100 3 -100 3 100 3 -100 7 1 0 1 0 1 0 1 0
of Motion.
Collinear Points
-0.85326654505731D-3 0.10884532922865D-2 -0.64280226490409D-2 -0.36388176012653D-2 -0.12804929043611D-1 -0.64893890940634D-1 -0.19781074702511D+0 0.50769939627863D-1 -0.81097929480023D-1 -0.12220957425971D+0 0.17175638558071D+0 0.23408684256622D+0 -0.30605935435997D+0 -0.37119400928971D+1 -0.11161576052278D-2 -0.29500070326447D-1 0.27695467172996D-1
Case
0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 1 0
1 1 3 0 1 1 1 3 4 5 6 7 8 8 0 1 3
0 1 2 0 0 0 1 2 3 1
2 0 0 2 3 4 0 0 0 2
100 100 100 -100 100 100 100 100 -100 100 -100 100 -100 -100 -100 100 100
11 12 12 13 13 13 13 13 13 13 13 13 13 13 14 14 14
= 20 0.14761114930456D-1 -0.14806865720527D-2 -0.39816688531106D-2 0.91236323407801D-3 0.99040343858883D-3 0.13275826358880D-2 0.95749394410103D-2 -0.79899849025527D-1 -0.22223333984529D+0 0.10384875968149D+0
100 100 100 -100 100
1 0 3 3 3 3 7 1 8 1 9 1 9 1 9
Table 6.14 Output of program FURI1, routine PREPAR. Terms coming from the Moon.
6.5
References [1] A.E. Brigham. The Fast Fourier Transform. Prentice Hall, 1974. [2] E.W. Brown and C.A. Shook. Planetary Theory. Dover, 1964. [3] R. Bulirsh and J. Stoer. Foundations of Numerical Analysis. Springer Verlag, 1981. [4] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley & Sons, 1966. [5] H. Poincare. Les Methodes Nouvelles de la Mecanique Celeste. GauthierVillars, 1892, 1893, 1899. [6] C.L. Siegel and J.K. Moser. Lectures on Celestial Mechanics. Springer Verlag, 1971. [7] V. Szebehely. Theory of Orbits. Academic Press, 1967.
Chapter 7
The Quasi-periodic Orbits: Equations, Method of Solution and Results
The objective of this chapter is to obtain the analytic expression of the nominal quasi-periodic orbit. It is in this chapter where the expressions found in Chapter 6 are used. This chapter is also a necessary step towards the numerical refinement of the orbit to be described in Chapter 8. First, the equations of motion should be put in a suitable form to be handled by the program carrying out the computations giving the analytic solution. Then the method of solution is presented. The successive terms are determined by recurrence as in Chapter 2. The Lindstedt-Poincare method used for the halo orbits has been extended to allow to obtain the quasi-periodic orbit. This method is suitable when we deal with the exactly resonant terms. The difficulties are associated to the nearly resonant terms, giving rise to small divisors. In a first approach they have been skipped because its size is very small (especially for the L\ case in the Sun-Barycenter problem).
7.1 7.1.1
The Final Equations of Motion for the Collinear Case Expansion of the Equations for the Integration
of Motion
in a Suitable
Form
The general equations have been developed in a suitable form in order to design a recurrent method for solving these equations up to a given weight. That method will be explained in section 7.2. We recall that the halo terms of the equations, that is, M, N and P in 7.2.2 have the following form: qijkxlyizk, where q^ is a coefficient and i,j, k € NU{0}. In the perturbing terms (we call them "on halo" terms), some frequencies (v) and phases {if) are involved. So, if we consider the terms of the equations up to a given weight, then, there is a finite list of pairs {u, if) related. The first frequency is taken as the basic one for the perturbing terms, that is, the mean motion of the secondary. 305
306
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
The nonhalo terms of the equations will be written in one of the following ways c1xiyjzkF(vt
+
or
c2v'F(vt +
(7.1) (7.2)
where i,j, k > 0, cx and c2 are two real coefficients, v and ip are the frequency and the phase respectively associated to the corresponding term, F means one of the trigonometric functions sine or cosine, and v' stands for one of the derivatives x',y' or z'. It has been useful to take only cosine terms in the first and the third equations, and sine terms in the second equation. This goal was taken into account in the computations of the coefficients C(1),C(2),... of the equations, as well as in the determination of the perturbing terms due to planets and Moon (see Chapter 6). Once all these terms have been collected from previous computations, a weight is assigned to each term. Let us consider a term (7.1) or (7.2). We define its weight according to the formula:
•I°{MI*I'(0*'(0*{(/+^
(7.3)
where ce is the corresponding coefficient, k is the amplitude of the sine term of order one of the halo y-component, tz — 0.08, for the Sun-Barycenter problem, for the Earth-Moon problem, case L\, for the Earth-Moon problem, case L2, A /
=
for a term (7.1), for a term (7.2), for the Sun-Barycenter problem, for the Earth-Moon problem
and [ ] means the integer part function. The reason for this choice is the following: Individual terms in the halo orbit as given in (7.1) and (7.2) can be approximated by c(a cos ipy(ka sin ip)i{fi cos ip)k x CS, where CS means cosine or sine of vt + p, tp is the angle in the halo orbit and x, y, z have been approximated by the first term. The constant c includes A in the case (7.2). The values of tx and tz are typical values for a and j3\ k depends on /i and is determined at the beginning of program ANACOM. We have to bound (cos ip)l+k (sin V0J, because CS is easily bounded by 1 and no improvement is possible. The bound for the trigonometric expression is (i+k)l+k j^(i+k+j)~^l+k+^. Finally one takes In suitably scaled by the factor / . This factor is determined from the behavior of the terms in Chapter 5, 5.1.2. The result is rounded to the nearest integer. The term \.\l+i+k is taken for safety reasons.
The Final Equations
7.1.2
A Program
of Motion for the Collinear
for Producing
the Equations
of
Case
307
Motion
The program EQUAP generates a file with the nonhalo terms of the equations in the suitable form to be read by the program QPO. First, the routine READCE reads the terms of k~3 - 1, C(l), xsC(2), xsC(3), C(4), C(5), C(7), C(12), C(13), C(16) and C(23) where
(
1 — 7_1
for the Sun-Barycenter problem, case L\,
-1 - 7_1 for the Sun-Barycenter problem, case L2, 1 for the Earth-Moon problem. We recall that for the Sun-Barycenter problem, these terms are computed by the program CES. The terms due to the lack of dynamical coherence of the motion of the secondary around the primary plus the terms due to radiation pressure, are computed and added to the previous ones. The perturbing terms due to the planets and the Moon are read from different files in the routine READPL. After some manipulations, all these terms are given, up to a fixed weight, in the appropriate form to be implemented in the analytic computation of the quasiperiodic orbit, that is, each term that appears in the equations is given as in (7.1) or (7.2). In the program EQUAP, the values of the involved frequencies are stored in the vector GMAR(400) and the corresponding phases in PHAR(400). The terms (7.1) are represented by C(I,J,L-K1,I1), where C= c\, I and J are the exponents i and j respectively, L is a sign equal to 1 for a cosine term and equal to —1 for a sine term,
r k
if
k^o,
\
if
jfe = 0,
100
and II is an index such that GMAR(Il)=i/ and PHAR(Il)=y. If v = 0 and ip = 0, we take 11=0. The terms (7.2) are represented in a similar way as C(0,J,L-K1,I1), where C= c 2 , J = 1,2 or 3 for a term in x',y' or z', Kl = 100, and L and II have the same meaning as before. For the computation of the terms that come from the part with Legendre polynomials, the coefficients of the halo terms of the equations, that is, M,N and P are required. The routine FMNP computes these coefficients in the exponential form of M, N and P (see Chapter 2). If the developments in cosine and sine terms are required, some coefficients given by FMNP change their sign according to the exponent of y. These changes are performed in the routine SIGMNP. In this step, the routine
308
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
PONENT is required to obtain the exponents of x, y and z in the monomials of M, N and P. The computation of the weights associated to each term is done in the routine RETO via the routines PROPES (for the terms with i = j = k = 0) and PR0PC3. We note that in some cases the formula (7.3) gives a weight less than or equal to the degree of the term. This happens for some of the terms due to the Moon or terms which come from the nonhalo terms of the equations where the Legendre polynomials are involved. In that cases, we assign to these terms a weight equal to its degree plus 1. In order to distinguish these terms in the output, their weight is taken as a negative integer number. In any case the real weight is also written. Therefore, if we want to compute the terms of the equations up to a given weight NN, then some terms with a negative weight NP such that |NP| >NN can appear. So, in order to get the solution up to a given real weight NN it will be necessary to compute the solution up to the maximum of the absolute values of the weights that appear in the terms of the equations. In order to reduce the number of frequencies and phases, and the number of terms of the equations, it has been useful to combine some of the terms. This compactification which takes place in the routine REDUIR is done as follows. Let us consider two terms
*i =
cixlyjzkF(uit
+ fi),
*2 =
c2xiyjzkF{p1t
+ ip2),
and
with the same frequency v\. Then, we can write tl+t2
= c3xiy:>zkF{vlt
+
where 1 /2 c
3 = {c? + c\ + 2cic 2 cos(v?i - ip2)}
and tan
The Final Equations
7.1.3
Results
and Numerical
of Motion for the Collinear Case
309
Checks
The terms of the equations up to weight 9 have been computed in the following cases: (1) Sun-Barycenter, case L\, given in Table 7.1, (2) Sun-Barycenter, case Li, (3) Earth-Moon, case L2. A simplified model of the case (1) has been useful to perform different simulations of control with a short computing time. In this simplified model, only the eccentricity of the Earth, the dynamical coherence of the Earth's motion, and the effect of the radiation pressure have been taken into account. Of course, in this case, there is only one frequency which is the mean motion of the Earth. Some checks of the terms obtained by the program EQUAP have been performed at different points and at different epochs. The points were taken on a halo orbit with z-amplitude /3 = 0.08 (see Table 7.2). The results show a good agreement between analytic and numerical accelerations in the Sun-Barycenter problem. Indeed, in the worst case the difference has a weight equal to 6. We remark that this error can be accepted because in the equations, perturbing terms due to the planets and the Moon, of that order of magnitude were neglected. We recall that terms with relatively large amplitude (i.e., weights from 6 to 9) were skipped in the filtering procedure of Chapter 6, 6.3.2. Those terms have large frequencies, and despite the large value of the accelerations due to them, they produce only short amplitude terms in the position. For the Earth-Moon problem, the approximation is poorer. In that case, the weight of the maximum difference is equal to 5. For the simplified model of (1) the agreement is very good. The differences have weights greater than or equal to 9. We remark that in this case the numerical accelerations have been computed using the same simplified model.
The Quasi-periodic
Orbits: Equations,
EARTH+MOON-SUN SYSTEM CASE LI WEIGHT = 9 NUMBER OF FREQUENCIES = 82 1 0.9999522207284640D+00 2 0.1251015314484709D+01 3 0.9156570618831535D+00 4 0.1831314123766307D+01 5 0.2473653297767500D+02 6 0.3710479946651200D+02 7 0.1999904441456928D+0i 8 0.6255076572423544D+00 9 0.9366016779288175D+00 10 0.1148129222130600D+02 11 0.4947306595534900D+02 12 0.1876522971727063D+01 13 0.8765707509985993D+00 14 0.2510630937562449D+00 15 0.8313619030378430D+00 16 0.1747018964920997D+01 17 0.6254989350070500D+00 18 0.1831320125119200D+01 19 0.1236826648883700D+02 20 0.2373658075693100D+02 21 0.2384955871014300D+02 22 0.2502030628969418D+01 23 0.2746971185649461D+01 24 0.2250967535213173D+01 25 0.1502078408240954D+01 26 0.8732511351291710D+00 27 0.1915609282611617D+01 28 0.8429515884531046D-01 29 0.9660209891320313D+00 30 0.1250997870014100D+01 31 0.1876496805021200D+01 32 0.2501995740028200D+01 33 0.3127494675035300D+01 34 0.2746980187678700D+01 35 0.1325524075636900D+02 36 0.1404902516893226D+01 37 0.2831266344494771D+01 38 0.1932041978264063D+01 39 0.1625459877970818D+01 40 0.6335054279964647D-01 41 0.4049502961647623D+06 42 0.2658256908820276D+01 43 0.1084247379573774D+01 44 0.7470667441925326D+00 45 0.3752993610042300D+01 46 0.4378492545049400D+01 47 0.5003991480056400D+01 48 0.9156600625595800D+00 49 0.1746980187678700D+01 50 0.8869742675313700D+00 51 0.1053724902883300D+01
Method of Solution and Results
0.6231395117299221D+01 -0.2884338825126906D+00 -0.1979167429597718D+01 0.2293632183012776D+01 0.3900981710995600D+01 0.2709879912903800D+01 0.6179604927418856D+01 0.1425662661422312D+01 0.5191770785557459D+00 0.1659447913253400D+01 0.1518778114811500D+01 0.1150705458671403D+01 -0.2167779041033939D+01 0.2643633021351981D+01 0.2714619818594807D+01 0.1881342399767400D+01 0.1417296496991800D+01 0.2292073612553800D+01 0.5092083509087600D+01 0.3952771895950200D+01 0.4683461151616500D+00 0.2553870424499513D+01 -0.3074291866679034D+01 -0.3283894176739517D+00 0.2430331539214389D+01 0.1916038532792506D+01 -0.1827920526552135D+01 -0.3095417103290732D+01 -0.2258506631948617D+01 0.2834592993983600D+01 0.4251889490975400D+01 0.5669185987967100D+01 0.8032971777792700D+00 0.3438110418830600D+01 0.2241533797742100D+01 -0.7233664097316860D+00 0.2182875486824612D+01 0.1756924709239920D+01 0.1359984598049204D+01 -0.1145897920449518D+01 0.9572104907461318D-01 0.3718394402892522D-01 0.1869375022576490D+00 0.2170478728628369D+01 0.2220593674771200D+01 0.3637890171762900D+01 0.5055186668754700D+01 0.1146036806276900D+01 0.1693250981649900D+01 0.3432635595834100D+01 0.4274368206350897D+01
The Final Equations of Motion for the Collinear Case 0.5820858844887000D+00 52 0.1773948535062700D+01 0.1711238098207900D+01 53 0.1048134000056200D+02 0.4509997624599100D+01 54 0.1059431795377500D+02 0.2612227390392102D+01 55 0.3151973342338853D+01 -0.2891284191112373D+00 56 0.12510i5314484709D+01 0.2289217823911790D+01 57 0.1831314123766307D+01 -0.1979628239660955D+01 58 0.9156570618831535D+00 0.1425700153600997D+01 59 0.6255076572423544D+00 0.1138912762564505D+01 60 0.1876522971727063D+01 -0.2167620986141730D+01 61 0.8765707509985993D+00 0.2556299801139196D+01 62 0.2502030628969418D+01 0.5192220030676837D+00 63 0.9366016779288175D+00 -0.2914075454189641D+01 64 0.2746971185649461D+01 0.1864493202009641D+01 65 0.1747018964920997D+01 -0.3185521467599869D+00 66 0.2250967535213173D+01 -0.2294371900809253D+01 67 0.3127538286211772D+01 -0.8816036368470227D+00 68 0.3753045943454126D+01 -0.1557393366956654D+01 69 0.1915609282611617D+01 0.2080900989865821D+01 70 0.2831266344494771D+01 0.2713696048062953D+01 71 0.8313619030378430D+00 0.2429935316830200D+01 72 0.1502078408240954D+01 0.5610543688337673D+00 73 0.4378553600696481D+01 0.1957542532778765D+01 74 0.5004061257938835D+01 -0.2894243332689311D+01 75 0.5629568915181190D+01 -0.7268767491484566D+00 76 0.1404902516893226D+01 0.1916053366219000D+01 77 0.8732511351291710D+00 -0.1798357254562880D+01 78 0.3662628247532614D+01 2945883921131993D+01 79 0.2662676026804150D+01 2258514577062989D+01 80 0.9660209891320313D+00 2603256991840835D+01 81 0.3151973342338853D+01 3959307956326497D+01 82 0.1131454158595400D+02 FIRST EQUATION: NUMBER OF TERMS IN X,Y, AND Z 212 NUMBER OF TERMS IN DERIVATIVES = 4 SECOND EQUATION: NUMBER OF TERMS IN X,Y, AND Z 173 NUMBER OF TERMS IN DERIVATIVES = 4 THIRD EQUATION: NUMBER OF TERMS IN X,Y, AND Z 38 NUMBER OF TERMS IN DERIVATIVES = 2 EQUATION = 1 0.4580383756090650D+00 (1 0 100 1) WEIGHT= 3 3 -0.2274962028893635D+00 (0 2 100 1) WEIGHT= 4 0.4542979617731012D+00 (2 0 100 1) WEIGHT= 4 -0.9117631731075615D+00 (1 2 100 1) WEIGHT= 5 0.1047033318986893D-01 (0 0 100 0) WEIGHT= 5 -0.2279327863620046D+01 (2 2 100 1) WEIGHT= -5 0.2849159829525058D+00 (0 4 100 1) WEIGHT= 5 0.5533317215335000D-02 (0 0 100 5) WEIGHT= 5 -0.1474827421103400D-01 (0 1 -100 5) WEIGHT= 5 -0.3244694644985200D-01 (0 2 100 5) WEIGHT= 5 0.5577916761581800D-01 (0 3 -100 5) WEIGHT= 5 0.8993358467574400D-01 (0 4 100 5) WEIGHT= 5 -0.1475003516322400D-01 (0 2 100 6) WEIGHT= 5 0.3051050966554500D-01 (0 3 -100 6) WEIGHT= 5 0.5594097789939300D-01 (0 4 100 6) WEIGHT= 6 0.3540572732474960D-02 (0 0 100 2) WEIGHT= 6 0.3651006063447805D-02 (0 0 100 3) WEIGHT= 0.2277769325483898D-02 (0 0 100 4) WEIGHT= 6
311
312
The Quasi-periodic
Orbits: Equations,
0.1130821099126589D-01 0.1146084029195635D-01 0.2110626269654990D-02 -0.6291203927079598D-02 0.5691399887514294D-02 -0.2271489808865506D+00 0.6078421154050419D+00 0.1709496504967650D+01 0.5523077365001300D-02 0.2263750494520100D-01 0.5816601309255700D-01 -0.7492962513301000D-01 0.1978107538016500D+00 0.3959530423549800D+00 0.7295160093498600D+00 -0.1312492842284500D+00 0.1507534997960008D-02 -0.5647773376616600D-02 -0.3435390242743700D-01 -0.1045664699694100D+00 0.2469317521874700D+00 0.5090696973344700D+00 -0.9314486676242600D-01 0.1480773874148800D-01 0.3058685060092400D-01 -0.5685811618357800D-01 0.1046085509068239D-02 0.7437105243275871D-03 0.7861733999018258D-03 0.2321493855890120D-01 -0.3470272995680272D-01 -0.9117631731075615D+00 0.7597759545400155D+00 0.9801933440843620D-02 0.7138798452883258D-02 -0.4558657346580400D+01 0.5983237745894601D+01 -0.3324020969941445D+00 -0.1120886925085356D-02 0.1028125039496269D-02 -0.9654715077697900D-03 -0.3977480499431300D-02 0.2464546544658300D-02 0.3381629411814900D-01 -0.9322545846114900D-02 -0.1519857096599100D-01 0.2192244982533700D-01 0.3120302984337000D-01 0.9007592104433100D-03 0.4619105338095500D-02 -0.1083587136065700D-02 -0.3275827503894800D-02 0.3671608850439700D-02 0.7412835120791800D-02 -0.2141377054035300D-02
(1 (1 (0 (0 (0 (0 (3 (1 (0 (1 (2 (1 (1 (1 (1 (0 (0 (0 (1 (1 (1 (1 (0 (0 (0 (0 (0 (0 (0 (2 (1 (1 (4 (0 (0 (3 (2 (0 (0 (0 (0 (1 (0 (1 (0 (0 (0 (0 (0 (1 (0 (0 (0 (0 (0
0 0 0 2 2 0 0 4 2 0 0 1 2 3 4 5 0 1 1 2 3 4 5 3 4 5 0 0 0 0 2 0 0 4 4 2 4 6 0 0 0 0 1 2 3 4 5 6 0 0 1 2 3 4 2
Method of Solution and Results
100 100 100 100 100 2 100 100 100 100 100 -100 100 -100 100 -100 100 -100 -100 100 -100 100 -100 -100 100 -100 100 100 100 100 100 2 100 100 100 100 100 100 100 100 100 100 -100 100 -100 100 -100 100 100 100 -100 100 -100 100 100
0) 7) 8) 0) 7) 1) 1) 1) 10) 5) 5) 5) 5) 5) 5) 5) 6) 6) 6) 6) 6) 6) 6) 11) 11) 11) 9) 13) 15) 0) 0) 1) 1) 0) 7) 1) 1) 1) 17) 18) 10) 10) 10) 10) 10) 10) 10) 10) 19) 19) 19) 19) 19) 19) 2e)
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
6 6 6 6 6 6 6 -6 6 6 6 6 6 6 6 -6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 -7 -7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
The Final Equations of Motion for the Collinear 0.1271188686518000D-02 0.3378370466147400D-02 -0.7105717657184400D-02 -0.2290793352003200D+00 -0.7052725232785500D+00 0.1609313031604200D+01 -0.1196571162536700D+01 -0.1854201967968400D+00 0.7673080032467100D-02 -0.1457787959735100D+00 -0.9801401709497800D-01 0.5118382036713971D-03 0.2935381352951189D-03 0.4511452629764966D-03 0.4308829882251162D-03 0.2408129836217583D-03 0.2247188447278992D-03 0.2212539052766846D-03 0.1138279977502859D-01 -0.2284495752792216D-01 0.2279327863620046D+01 0.5698319659050116D+00 0.3418993009935300D+01 -0.7977650327859469D+01 0.1595530065629849D+02 -0.2659216776049748D+01 -0.5151971085381031D-03 -0.4043944461260186D-03 -0.3159582415919906D-03 -0.2444018627201997D-03 0.2401567397045788D-03 0.1256879640407500D-01 0.3860625552705300D-01 0.1211998723254600D+00 -0.6637028164842900D-01 -0.2707027473407900D+00 0.6106707564644200D-01 -0.1236847977409300D+00 0.2003252357417400D+00 -0.1071431125037400D-01 0.3168411490234900D+00 -0.4137721746667200D-01 0.1427344244541600D-01 -0.6636107500088900D-02 -0.2347249271019700D-01 0.2998092862552800D-01 0.6825160679553300D-01 -0.7989922969907500D-02 -0.1347382315103400D-01 -0.3860024386415700D-02 0.3755653997529300D-03 -0.9877071949840900D-03 -0.3241946925264100D-03 0.7908856917718300D-02 -0.1878010307370500D+01
(0 (0 (0 (2 (2 (2 (1 (0 (1 (0 (0 (0 (0 (0 (0 (0 (0 (0 (2 (1 (2 (0 (1 (4 (3 (1 (0 (0 (0 (0 (0 (1 (2 (2 (1 (2 (1 (1 (1 (0 (1 (0 (2 (1 (1 (1 (1 (0 (0 (0 (0 (0 (0 (1 (1
1 2 3 1 2 3 5 6 0 6 6 0 0 0 0 0 0 0 0 2 0 2 2 2 4 6 0 0 0 0 0 1 1 2 3 3 4 4 5 6 6 7 0 1 2 3 4 5 6 4 0 1 0 1 6
-100
100 -100 -100
100 -100 -100
100 100 100 100 100 100 100 100 100 100 100 100 100 2 2 2 100 100 100 100 100 100 100 100 -100 -100
100 -100 -100
100 100 -100
100 100 -100
100 -100
100 -100
100 -100
100 100 100 -100
100 -100
100
21 ) 21 ) 21 ) 5) 5) 5) 5) 5 6 6 11 12 14 16 1 26 27 29, 7' 7 1,
r1 1, i; l, 30] 31: 32: 33] 34] 10:
io: io: io: 10, 0, 10, 10 0 10 10 19 1919 19 19 19 19 35 20 20 21 21 5)
313
Case WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
7 7 7 7 7 7 -7 -7
6 5
7 -7 -7
6 6
8 8 8 8 8 8 8 8 8 8 8 8 8 8 -8
6
8 a 8 8 a 8 8 a 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -8
6
The Quasi-periodic
Orbits: Equations,
0.2480757686235300D+00 0.1594984461962005D-03 0.1408353428629889D-03 0.1967666355979878D-03 0.1095274825095838D-03 0.1482182801231775D-03 0.9115856929868940D-04 0.1373162469330937D-03 0.9221772998549920D-04 0.9786339670281754D-04 0.1175416426466345D-03 0.9775501762545559D-04 0.1248978536630959D-03 -0.7589500348085246D-04 0.9623107521221693D-04 -0.5711038762306606D-01 0.9117314693160802D+00 -0.4558657346580400D+01 0.4283280593250083D-01 0.1196647549172920D+02 -0.8328601123624959D-02 -0.9972062909824335D+00 -0.7977658328149244D+01 0.3589942647665841D+02 -0.1196647549221947D+02 0.3739523591318585D+00 -0.1869402248683973D-03 -0.1433505198749962D-03 -0.1093788117964714D-03 0.1497123234186157D-03 0.1867237603557100D-03 -0.1465603760382500D-03 -0.7580672476865800D-03 0.5038787102203600D-03 -0.1480686572052700D-02 0.7963337706221100D-02 -0.2812092520964400D-03 0.4382381413663100D-03 -0.7467339993266900D-03 0.3562894076591800D-03 0.7185519674039600D-03 0.1322918828142900D-02 -0.2169606174732700D-02 -0.9817263291411100D-01 0.2843993968704800D+00 -0.5675431463427600D+00 0.1018968996839400D+01 -0.1195826476850800D+00 -0.4615660289406200D+00 -0.5456271320795100D-01 -0.1503263063925700D-01 -0.1099761494152100D-01 0.4058767840758800D-01 0.3445744724524100D-01 -0.2377640125585200D-01
(0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (2 (5 (3 (1 (2 (0 (0 (1 (4 (2 (0 (0 (0 (0 (0 (0 (0 (1 (0 (0 (1 (0 (0 (0 (0 (0 (0 (0 (2 (2 (2 (2 (1 (1 (0 (0 (0 (3 (3 (2
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 2 6 4 4 4 6 8 0 0 0 0 0 0 0 2 0 0 2 2 3 2 3 4 5 2 4 4 5 6 7 8 0 0 0 0 1
Method of Solution and Results
-100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 2 100 2 100 2 2 100 100 100 100 100 100 100 100 100 100 100 1 1 100 100 -100 100 -100 100 -100 100 100 100 -100 100 -100 100 2 2 100 100 -100
5) 22) 23) 24) 25) 28) 36) 37) 38) 39) 40) 41) 42) 43) 44) 7) 1) 1) 7) 1) 7) 1) 1) 1) 1) 1) 45) 46) 47) 48) 49) 50) 50) 50) 51) 51) 52) 53) 53) 54) 54) 54) 54) 0) 0) 10) 10) 0) 10) 10) 0) 19) 0) 19) 19)
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
-8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -9 -9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -9 -9 9 9 9 9 9
The Final Equations
of Motion for the Collinear
2 0 -0.9462793536384600D-01 (1 2 0 -0.7989984902552700D-01 (1 2 100 (2 -0.9640139S56549700D-01 (2 3 -100 .1380287256019500D+00 4 100 . 3499630926730800D+00 (2 5 -100 . 8158340295267000D-01 (1 100 6 .1516288996159400D+00 (1 (0 7 -100 .1415357798893700D-01 (0 100 8 .2154134403904600D-01 3 -100 -0.1359111413522600D-01 (1 4 100 -0.3167521736043700D-01 (1 (0 5 -100 0.4498435715635200D-02 100 6 (0 0.7445822343334700D-02 7 -100 0.2762243866966900D+01 (1 100 (0 8 0.3254028050133800D+00 100 (0 0 0.7509530129439980D-04 101 (3 6 -0.3988825164073172D+02 100 8 .3739523591318598D+01 (1 9 -100 (0 .1024169023993000D+00 (2 7 -100 .1679724150248900D+02 100 8 .3952056769016200D+01 (1 9 -100 (0 -0.4124377880996800D+00 100 8 (2 0.2056737975225229D+02 100 (0 10 -0.4113475950450458D+00 100 8 (3 0.8226951980900916D+02 100 -0.4936171140540555D+01 (1 10 100 (2 10 -0.3208511241351357D+02 100 (0 12 0.4456265612987996D+00 100 0.6238771858183195D+01 (1 12 TERMS WITH DERIVATIVES, EQUATION == 1 2 100 (0 0.6683093247027213D-01 1 -100 (0 -0.3341313363288495D-01 100 (0 2 0.1395972549512748D-02 1 -100 (0 -0.8375835297076488D-03 EQUATION = 2 100 (0 1 -0.1536269978504090D+00 1 100 -0.4542979617731012D+00 (1 100 (0 3 0.2279407932768904D+00 1 100 (2 -0.9117631731075615D+00 3 100 0.1139663931810023D+01 (1 1 100 (0 -0.1280492904361100D-01 2 -100 (0 0.2755473328410000D-01 100 (0 3 0.5076993962786300D-01 4 -100 (0 -0.8109792948002300D-01 100 (0 3 0.2769546717299600D-01 0 -100 (0 0.2458370377799402D-02 0 -100 (0 .2919317234866309D-02 0 -100 (0 .1617588490630532D-02 1 100 . 2994806808345556D-02 (0 100 1 (0 .3845857204135967D-02 100 (2 3 0.3418993009935300D+01 (0 5 100 -0.2849160841612750D+00 0 -100 (0 -0.3638817601265300D-02 0 -100 -0.1474827295568800D-01 (1 1 100 -0.6489389094063400D-01 (1
0) 19) 19) 19) 19) 19) 19) 19) 19) 35 ) 35 ) 35 ) 35 ) 5) 5) 55 ) 1 1 21 5 5 5)
5] 5] 5] 5] 6) 56) 57) 58) 0) 7) 1) 1) 5) 5) 5)
Case
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
315
9 9 9 9 9 9 9 9 9 9 9 9 9 -9 -9 9 -10 -10 -10 -10 -10 -10 -11 -11 -12 -12 -13 -13 -14
WEIGHT= WEIGHT= WEIGHT= WEIGHT=
3 4 6 8
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
3 4 -4 5 5 5 5 5 5 5 6 6 6 6 6 6 -6 9 6 6
7 6 8 7 8 8 7 7 8 7 9 8 9 8 9
3
4
316
The Quasi-periodic
Orbits: Equations,
0.1673375028474500D+00 0.3597343387029700D+00 -0.6562464211422300D+00 -0.1222095742597100D+00 -0.4862475698548900D-02 0.1294199838470500D-01 0.1351607816500900D-01 0.6156924805948844D-03 0.7514671727477477D-03 0.6030574064830381D-02 0.5711239381980541D-02 -0.1519551909080031D+01 0.7977650327859468D+01 -0.1994412581964867D+01 -0.1012095468467925D-02 0.6062779712469900D-03 0.2172127806821900D-02 -0.4594343609589000D-02 -0.8557156280438200D-02 0.1351973866432200D-01 0.2052229876104800D-01 -0.2860439709997300D-01 -0.1069874460154000D-02 0.1088453292286500D-02 -0.2968607366685000D-02 -0.6428022649040900D-02 -0.3746480933310200D-01 -0.1978107470251100D+00 -0.1112521180781000D+01 0.1717563855807100D+00 -0.1116157605227800D-02 -0.2950007032644700D-01 0.3113386612948233D-03 0.4442183297899274D-03 0.4781868229738445D-03 0.4403244496417846D-03 0.5361238216393576D-03 0.2931014014351335D-03 0.3081852125997494D-03 -0.1255427695974940D-01 -0.1138279977592859D-01 0.2279407932768904D+00 0.3913008268483868D-01 0.2855519381153303D-01 0.1139663931810023D+01 -0.2279328673290200D+01 -0.9345912590641880D-02 -0.7138800988750139D-02 -0.7977650328149244D+01 0.3324020970062185D+00 -0.2287077360246153D-03 0.2684587555297388D-03 0.2481972650539546D-03 0.2138022986966805D-03 -0.2370690908008197D-03
(1 (1 (1 (0 (0 (0 (0 (0 (0 (0 (0 (3 (3 (1 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (2 (2 (1 (0 (0 (1 (0 (0 (0 (0 (0 (0 (0 (1 (1 (0 (1 (1 (1 (4 (0 (0 (2 (0 (0 (0 (0 (0 (0
2 3 4 5 1 2 3 0 0 3 3 1 3 5 0 0 1 2 3 4 5 6 1 1 2 3 0 1 5 6 0 1 0 0 0 0 0 0 0 1 1 1 3 3 1 1 5 5 5 7 0 0 0 0 0
Method of Solution and Results -100
100 -100
100 100 -100
100 -100 -100
100 100 100 100 100 -100 -100
100 -100
100 -100
100 -100
100 100 -100
100 -100
100 100 -100 -100
100 -100 -100 -100 -100 -100 -100 -100
100 100 2 100 100 2 100 100 100 100 100 -100 -100 -100 -100 -100
5) 5) 5) 5) 6) 6) 11) 59) 60) 0) 7) 1) 1) 1) 18) 10) 19) 10) 10) 10) 10) 10) 19) 21) 21) 21) 5) 5) 5) 5) 6) 6) 61) 62) 63) 64) 65) 67) 71) 0) 7) 1) 0) 7) 1) 1) 5) 7) 1) 1) 17) 30) 31) 32) 34)
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
6 6 6 -6 9 6 6 7 7 7 7 7 7 -7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 -7 -7 7 7 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -8 -8 8 8 8 8 8
The Final Equations of Motion for the Collinear 0.2464545939333500D-02 0.1104615473000300D-01 -0.2796763753834500D-01 -0.6079428386396600D-01 0.1096122491266900D+00 0.1872181790682200D+00 -0.2896405222667100D+00 0.3918501515035900D-01 -0.2129050339709900D-03 0.6551655007789700D-02 0.1545078545538200D-02 0.3631504410210400D-02 0.2965134048316700D-01 -0.4355552073607000D-02 -0.7917909303780100D-02 -0.2157895673002300D-02 0.2777007786342100D-02 0.4867189873158200D-02 -0.8532665450573100D-03 0.1816663109318500D-02 0.1736530380364700D+01 0.2340868425662200D+00 0.1269075842284760D-03 0.1972333825124775D-03 0.1393010792414695D-03 0.1436276529930975D-03 -0.1578916951208013D-03 0.1016797989571835D-03 0.1474626583711266D-03 0.1083240736399351D-03 0.7669155481266617D-04 0.7539581511020320D-04 0.1002446755001841D-03 0.1660052911983742D-03 0.8190161772268982D-04 0.1106145972656179D-03 0.1054990644629008D-03 0.1313768559709016D-03 -0.2284495752792216D-01 0.3418993009935300D+01 -0.5698321683225501D+00 -0.4997160674174975D-01 -0.3988825163929734D+01 0.1595530065629849D+02 0.8328601123927482D-02 -0.2393295098443894D+02 0.2991618873054868D+01 0.1766164822231288D-03 0.1412062119664962D-03 0.1124358320145184D-03 0.8801669030480799D-04 -0.1827678090851681D-03 0.1634594679324000D-03 -0.3654331022616300D-03 -0.6794955259956300D-03
(1 (1 (1 (1 (1 (1 (1 (0 (0 (1 (0 (0 (1 (0 (0 (0 (0 (0 (0 (0 (1 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (2 (2 (0 (1 (1 (4 (0 (3 (1 (0 (0 (0 (0 (0 (0 (0 (0
0 1 2 3 4 5 6 7 0 1 2 3 3 4 5 3 4 5 1 2 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 3 3 7 5 7 0 0 0 0 0 1 2 3
-100
100 -100
100 -100
100 -100
100 -100
100 -100
100 100 -100
100 100 -100
100 100 -100 -100
100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100
100 2 2 100 2 100 100 100 100 -100 -100 -100 -100 -100
100 -100
100
10) 10) 10) 10) 10) 10) 10) 10) 19) 19) 19) 19) 19) 19) 19) 35) 35) 35) 20) 20) 5) 5) 66) 68) 69) 70) 1) 72) 73) 74) 75) 76) 77) 42) 78) 79) 80) 38) 7) 1) 1) 7) 1) 1) 7) 1) 1) 33) 45) 46) 47) 49) 50) 53) 53)
317
Case WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -8 -8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -9 -9 9 9 9 9 9 9 9 9
The Quasi-periodic
Orbits: Equations,
(0 0.3053235984844900D-03 2 (0 0.6551687493492600D-03 3 (0 -0.1193539669090700D-02 4 (0 -0.2024246991014900D-02 5 (2 -0.2708774411416200D-01 1 (2 0.3381629411814900D-01 1 (2 -0.9955542247264300D-01 2 (2 0.1221341512928800D+00 3 (2 -0.2473695954818600D+00 3 (2 0.5008130893543500D+00 4 -0.6428586750224600D-01 5 (1 (2 0.9505234470704600D+00 5 (0 0.1002239522501800D-01 7 -0.4365017056636100D+00 7 (1 (0 0.5087832911472100D-01 8 -0.1083587136065700D-02 0 (1 (2 -0.3318053750044400D-02 0 (2 -0.2347249271919700D-01 1 0.1101482655131900D-01 2 (1 (2 0.4497139293829200D-01 2 0.1365032135910700D+00 (2 3 -0.3994961484953800D-01 4 (1 -0.8084293890620100D-01 5 (1 0.8830527172857900D-02 (0 6 0.1405648578945300D-01 (0 7 -0.1544009754566300D-01 3 (1 -0.5877360659744800D-02 (0 6 0.2603222440107000D+01 7 (1 -0.3060593543599700D+00 (0 8 0.7936836143444494D-04 (0 0 -0.5983237746109758D+02 (4 5 0.1495809436527439D+02 (2 7 -0.3739523591318598D+00 (0 9 0.9738041747603100D-01 (0 9 0.1580822707606500D+02 (2 7 -0.3711940092897100D+01 8 (1 -0.3925764113582900D+00 (0 9 0.5484634600600611D+02 7 (3 -0.4113475950450458D+01 9 (1 -0.2468085570270275D+02 (2 9 0.4113475950450458D+00 (0 11 0.5347518735585596D+01 (1 11 -0.4456265612987997D+00 (0 13 TERMS WITH DERIVATIVES, EQUATION = -0.3341313363288495D-01 (0 2 -0.6683093247027213D-01 (0 1 -0.8375835297076488D-03 (0 2 -0.1395972549512748D-02 (0 1 EQUATION = 3 -0.2263475370678822D+00 (0 0 -0.4542979617731012D+00 0 (1 -0.9117631731075615D+00 (2 0 0.2279407932768904D+00 (0 2 -0.7615417908164055D-02 (0 0 -0.1519551909080031D+01 (3 0
Method of Solution and Results -100
100 -100
100 100 100 -100
100 100 -100
100 100 100 100 -100 -100 -100
100 -100 -100
100 -100
100 -100
100 100 -100
100 -100 -100
100 100 100 100 100 -100
100 100 100 100 100 100 100 2 -100
100 -100
100
54) 54) 54) 54) 0) 10) 10) 0) 10) 10) 0) 10) 0) 10) 10) 19) 19) 19) 19) 19) 19) 19) 19) 19) 19) 35) 35) 5) 5) 81) 1) 1) 1) 21) 5) 5) 5) 1) 1) 1) 1) 1) 1)
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
9 9 9 9 9 9 9 9 9 9 9 9 9 9 -9 9 9 9 9 9 9 9 9 9 9 9 9 -9 -9 9 -10 -10 -10 -10 -10 -10 -10 -11 -11 -12 -12 -13 -14
1) 1) 7) 7)
WEIGHT= WEIGHT= WEIGHT= WEIGHT=
3 4 7 8
1) 1) 1) 1) 0) 1)
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
4 5 6 6 7 7
8
7 6 9 8 7 8 8 7 7 9 8 9 8 9 9
The Final Equations
319
of Motion for the Collinear Case
2 0.1139663931910023D+01 (1 4 (0 -0.2849160841612750D+00 0 (0 -0.5800218773453814D-02 2 (2 0.3418993009935300D+01 4 -0.1994412581964867D+01 (1 0 (0 -0.3482857653243700D-03 0 -0.1480686572052700D-02 (1 2 (0 0.9123632340780100D-03 0 -0.3004794187516400D-01 (1 (2 0 -0.9462793536384600D-01 0 -0.1138279977502859D-01 (1 (0 0 0.2279407932768904D+00 0 0.1139663931819923D+01 (1 (4 0 -0.2279328673290200D+01 2 (3 0.7977650327859468D+01 (2 4 -0.7977650328149244D+01 (0 6 0.3324020970062185D+00 6 0.2991618873054868D+01 (1 (0 2 0.1476111493045600D-01 (0 1 -0.3784652953238600D-03 (2 0 -0.3981668853110600D-02 1 -0.1985621943854800D-02 (1 2 0.5792984540911000D-02 (1 3 (0 0.9904034385888300D-03 3 (0 0.8143627506735400D-03 4 0.1327582635888000D-02 (0 0 0.9574939441010300D-02 (1 (2 0 -0.7989984902552700D-01 (3 0 -0.2333095218202800D+00 0 (3 -0.2222333398452900D+00 2 0.1075912048915500D+00 (1 2 0.1038487596814900D+00 (1 TERMS WITH DERIVATIVES, EQUATION = (0 3 0.3341313363288495D-01 (0 3 -0.8375835297076488D-03
1 1 1 1 1 100 100 100 1 1 1 3 3 1 1 1 1 1 1 -100
100 -100
100 -100 -100
1 1 7 1 1 51 51 51 0 0 7 1 1 1 1 1 i; i:
19:
WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT= WEIGHT=
7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
i: 7)
WEIGHT= WEIGHT=
5 9
o;
51] 51;
si: 5i: 51: 82; 82] 10] i9:
o:
19]
o:
3 -100 -100
Table 7.1 Output of program EQUAP: Nonhalo terms in the equations for the analytic qpo. See 7.1.2 for the meaning of the different indices.
CURRENT VALUE OF SPACECRAFT SECTION IN m**2 DIVIDED BY MASS IN kg. : 1.00 THE MODEL OF THE SOLAR SYSTEM IS: 1 1 19 1 1 1 1 1 1 1 1 0 0 0 100 0 EARTH PERIODICS: 1 5 6 10 11 12 14 15 16 17 20 21 22 24 25 26 28 29 32 35 3 56 57 59 60 63 67 84 85 86 87 88 89 90 93 94 95 96 97 98 104 107 108 110 12 137 140 141 144 145 146 148 152 156 161 165 167 168 172 173 176 177 180 185 219 220 221 222 229 233 234 243 251 270 EARTH+MOON-SUN SYSTEM Z-AMPLITUDE = 8.00E-02 CORRECTION DUE TO LACK OF COHERENCE OF THE MOTION OF THE PRIMARY INCLUDED DAY = 0.1750D+05 T = -0.1310852716498577D+02 POINT NUMBER 1:(X,Y,Z)= 0.1019635506848024D-01 0.4207314348755144D (XD,YD,ZD)= 0.3214430737628839D+00 0.3052075793433040D ANALYTIC ACCELERATIONS EQ1=0.2787791196449789D-01 EQ2=-0.17380478540454 NUMERICAL ACCELERATIONS 0.2831617623458477D-01 -0.17397499774892 DIFFERENCES -0.4382642700868841D-03 8 0.1702123443829584D-02 6 POINT NUMBER 2:(X,Y,Z)= 0.1526361820666357D+00 0.2757152978251851 (XD,YD,ZD)= 0.9177555136739562D-01 -0.7507366206869103 ANALYTIC ACCELERATIONS EQ1= -0.4318683308097236D+00 EQ2=-0.1444924831707 NUMERICAL ACCELERATIONS -0.4316207753353331D+00 -0.1446113075735 DIFFERENCES -0.2475554743905373D-03 8 0.1188244028094726D-02 7 POINT NUMBER 3:(X,Y,Z)= 0.1526361820666357D+00 -0.2757152978251851 (XD,YD,ZD)= -0.9177555136739563D-01 -0.7507366206869102 ANALYTIC ACCELERATIONS EQ1= -0.4366294640467704D+00 EQ2= 0.1414894200729 NUMERICAL ACCELERATIONS -0.4363296620688768D+00 0.1416893347240 DIFFERENCES -0.2998019778936226D-03 8 -0.1999146511140248D-02 6 POINT NUMBER 4:(X,Y,Z)= 0.1019635506848024D-01 -0.420731434875514 (XD,YD,ZD)= -0.3214430737628839D+00 0.305207579343304 ANALYTIC ACCELERATIONS EQ1= 0.1571091346738041D-01 EQ2= 0.17490606556383 NUMERICAL ACCELERATIONS 0.1524813977426549D-01 0.17513982571868 DIFFERENCES 0.4627736931150086D-03 8 -0.2337601548421053D-02 6 POINT NUMBER 5:(X,Y,Z)= -0.1146312230589833D+00 -0.944650880822392 (XD,YD,ZD)= -0.1208028119014905D-16 0.895257017033881 ANALYTIC ACCELERATIONS EQ1= 0.8461889947950317D+00 EQ2= 0.17129275419439
NUMERICAL ACCELERATIONS 0.8468285564866052D+00 0.174874015957949 DIFFERENCES -0.6395616915734897D-03 7 -0.3581261763556044D-03 8 DAY = 0.1850D+05 T = 0.4094264390113667D+01 POINT NUMBER 1:(X,Y,Z)= 0.1019635506848024D-01 0.4207314348755144D+ (XD,YD,ZD)= 0.3214430737628839D+00 0.3052075793433040D+ ANALYTIC ACCELERATIONS EQ1= 0.4168312552713130D-01 EQ2=-0.162728495900233 NUMERICAL ACCELERATIONS 0.4239755839318815D-01 -0.162495370007617 DIFFERENCES -0.7144328660568531D-03 7 -0.2331258926155599D-02 6 POINT NUMBER 2:(X,Y,Z)= 0.1526361820666357D+00 0.2757152978251851D (XD,YD,ZD)= 0.9177555136739562D-01 -0.7507366206869103D ANALYTIC ACCELERATIONS EQl=-0.4409516146104189D+00 EQ2=-0.134093114340757 NUMERICAL ACCELERATIONS -0.4397904713516222D+00 -0.134072549114796 DIFFERENCES -0.1161143258790659D-02 7 -0.2056522596116106D-03 8 POINT NUMBER 3:(X,Y,Z)= 0.1526361820666357D+00 -0.2757152978251851D (XD,YD,ZD)= -0.9177555136739563D-01 -0.7507366206869102D ANALYTIC ACCELERATIONS EQl=-0.4571794416683768D+00 EQ2= 0.130864443015044 NUMERICAL ACCELERATIONS -0.4578616407634685D+00 0.130679003751472 DIFFERENCES 0.6821990950917206D-03 7 0.1854392635724317D-02 6 POINT NUMBER 4:(X,Y,Z)= 0.1019635596848024D-01 -0.4207314348755144 (XD,YD,ZD)= -0.3214430737628839D+00 0.3052075793433041 ANALYTIC ACCELERATIONS EQ1= 0.1809046070186403D-01 EQ2= 0.164182870609200 NUMERICAL ACCELERATIONS 0.1897933354781448D-01 0.163993424237570 DIFFERENCES -0.8888728459584509D-03 7 0.1893863716291744D-02 6 POINT NUMBER 5:(X,Y,Z)= -0.1146312230589833D+00 -0.9446508808223920 (XD,YD,ZD)= -0.1208028119014905D-16 0.8952570179338817 ANALYTIC ACCELERATIONS EQ1= 0.8220081330937653D+00 EQ2= 0.248567059422373 NUMERICAL ACCELERATIONS 0.8214130610115142D+00 0.242763241334202 DIFFERENCES 0.5950720822510414D-03 7 0.5803818088171279D-03 7 DAY= 0.1950D+05 T= 0.2129705594521311D+02 POINT NUMBER 1:(X,Y,Z)= (XD,YD,ZD)=
0.1019635506848024D-01 0.3214430737628839D+00
0.4207314348755144D+ 0.3052075793433040D+
ANALYTIC ACCELERATIONS EQ1= 0.2434152595495066D-01 EQ2=-0.1626485518502 NUMERICAL ACCELERATIONS 0.2417051764236660D-01 -0.1629117121623 DIFFERENCES 0.1710083125840657D-03 9 0.2631603121184489D-02 6 POINT NUMBER 2:(X,Y,Z)= 0.1526361820666357D+00 0.2757152978251851 (XD,YD,ZD)= 0.9177555136739562D-01 -0.7507366206869103 ANALYTIC ACCELERATIONS EQl=-0.4546581708825895D+00 EQ2=-0.1296631136615 NUMERICAL ACCELERATIONS -0.4552989346734423D+00 -0.1297761905444 DIFFERENCES 0.6407637908527261D-03 7 0.1130768829031931D-02 7 POINT NUMBER 3:(X,Y,Z)= 0.1526361820666357D+00 -0.275715297825185 (XD,YD,ZD)= -0.9177555136739563D-01 -0.750736620686910 ANALYTIC ACCELERATIONS EQl=-0.4467273914706543D+00 EQ2= 0.1329909903477 NUMERICAL ACCELERATIONS -0.4481043757875935D+00 0.1330683058488 DIFFERENCES 0.1376984316939230D-02 7 -0.7731550107331342D-03 7 POINT NUMBER 4:(X,Y,Z)= 0.1619635506848024D-01 -0.420731434875514 (XD,YD,ZD)= -0.3214430737628839D+00 0.305207579343304 ANALYTIC ACCELERATIONS EQ1= 0.4141001635079894D-01 Eq2= 0.1617215500774 NUMERICAL ACCELERATIONS 0.3970674229298756D-01 0.1616624863459 DIFFERENCES 0.1703274057811320D-02 6 0.5906373141474630D-03 7 POINT NUMBER 5:(X,Y,Z)= -0.1146312230589833D+00 -9.944650880822392 (XD,YD,ZD)= -0.1208028119014905D-16 0.895257017033231 ANALYTIC ACCELERATIONS EQ1= 0.8201433189314190D+00 EQ2=-0.2032483053048 NUMERICAL ACCELERATIONS 0.8200655554961056D+00 -0.1978060725010 DIFFERENCES 0.7776343531337715D-04 9 -0.5442232803807936D-03 8 Table 7.2 Checks of the analytic model, Sun-Barycenter problem, case L\. Point
323
The Method of Solution of the Equations for the Quasi-periodic Orbit
7.2
7.2.1
The Method of Solution of t h e Equations for t h e Quasi-periodic Orbit General dure
Expression
of the Equations.
The Recurrent
Proce-
In this section, a recurrent way to obtain the coordinates x, y and z of the quasiperiodic solutions near a family of halo periodic orbits around the equilibrium point L\ ox Li is given. We recall that for a given value of the mass parameter /J, and a given equilibrium point Lj, j = 1, 2, the program ANACOM computes x,y and z for the halo orbits as Fourier series in the variable LOT such that each coefficient is a power series in the basic amplitudes a and /?. Each halo family has associated two quantities UJ = 1 + ui and A = A (see Chapter 2, 2.2.2) which can be obtained as power series in a and p. In the next, we will assume that p, and Lj are fixed and so, the coefficients of u> and A are known up to a certain order. We consider the equations in the following way u2x" - 2wj/' - (1 + 2c2)a; 2
u y" +
2LJX'
- (1 - c2)y 2
u?z" + X z where ' = — — r , M = ^
P =
YJ
'
=
M + IEQ1 + wIQXl + wIQYl,
=
N + IEQ2 + wIQY2 + wIQZ2,
=
P + Az + IEQ3 + wIQY3 + wIQZ3,
mijkxiyjzk,
^
N-
n=i+j+k>2
pijk xlyizk
^
nijkxiyjzk
(7.4)
and
n=i+j+k>2
are the halo right terms of the equations, IEQi for
n=i+j+k>2
i = 1,2,3 admit developments of the following type ^2 n>h
Yl
cijkrnxiyjzkF(urt
+ <pr)
(7.5)
i,j,k,r>0
and IQXi, IQYi and IQZi for i = 1,2,3 are developed in the form
v'^2
^crnF{vrt
+ <pr),
(7.6)
n>h r>0
where v' = x' for IQXi, v' = y' for IQYi and v' = z' for IQZi. In (7.5) and (7.6) t is the normalized time (taken in radians per tropic year for practical purposes), F stands for one of the trigonometric functions cosine or sine, v\,i>2,---,Vm, a n d <£i,
324
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
than or equal to their degree, the absolute value of the negative weight computed by the program EQUAP (that is, the degree plus 1) is taken as their weight. The solution of (7.4) can be written as the halo solution plus other terms due to the perturbations in the equations. We write the coordinates of the quasi-periodic solution in the following way
x = xH+xN = y^ xHn + y~^ xNn = y^ xn, n>l
V
=
n>h
n>l
VH + VN = ^ 2 / t f n + ^2 VNn = n>l
n>h
^Vn, n>l
z = zH+zN = y^ zHn + y ] zNn = y zn, n>l
n>h
n>l
where xHn {yHn,ZHn) contains all the terms of weight n corresponding to a; (y, z) of the halo orbit, and in x^n (yNn, ZNn) are included all the nonhalo terms of weight n of the x (y,z) coordinates. In the next subsection we shall explain the recurrent method that gives the terms of weight n > 2, for xn, yn and zn , when all the terms of weight less than n have been computed. 7.2.2
A Lindstedt-Poincare
Device for the Quasi-periodic
Orbit
Let us assume that all the terms of x, y and z are known up to weight equal to n — 1. By substitution of the coordinates x,y and z in the equations we get in the right-hand side some terms which have a weight equal to n. These are cosine or sine terms of the following type m
caiPiF{k\uJT
+ J2 seiyTJ + VrJ)
= c a1 j3j F {kXojT + ar + v),
(7.7)
e=l
where c is a coefficient, i, j , k > 0, F is one of the trigonometric functions cosine or sine, i/ n > • • • i vrm and
The Method of Solution of the Equations for the Quasi-periodic
Orbit
325
The first step of the recurrence uses the halo terms of weight one XHI , ym and ZHI (given by the program ANACOM). It is assumed h > 2 in (7.5) and (7.6). We note that if a = 0 and \k\ = 1 we have a resonant nonhalo term in (7.7). A modified Lindstedt-Poincare method is introduced to deal with the resonant nonhalo terms. We add a nonhalo part u t o u and a nonhalo part A to A such that
U =
l + U} + LO = l+
Y^
d ai J
ij P
i,j>0,i+j>2
A = A + A=
Y,
n>h
ho'? + £
i,j>0,i+j>2
+ Y1 ^2 Uijntf/3j, i,j>0
£ Aijna\0',
n>h i,j>0
where n is the weight associated to each term of Q and A. The coefficients cjijn and Aijn should be computed in a recurrent way according to the resonant terms that appear in the equations. Let us consider a term (7.7) such that a ^ 0 or \k\ ^ 1. Resonant terms will be considered later. We note that we can deal with the first and second equations independently of the third one. So, if (7.7) is a term of the first or second equation, it gives a contribution in the coordinates x and y of the following form x = cxa'P3' Fx(k\ujT + (JT + (p),
y = cyal(33Fy{kXuJT +
The z coordinate is obtained from the integration of the third equation. Therefore from a term (7.7) we have z = czalpjFy(k\ojT
+ (JT + (p).
Table 7.3 gives the coefficients and the character, cosine (s = +) or sine (s = —) of the terms of x,y and z which are obtained from the integration of a term (7.7) depending on the equation which contains that term and its character. In fact, due to the kind of terms that appear in the equations (cosine in the first and third equations, sine in the second one) we have that x and z are series in cosine terms and y is a series in sine terms. In Table 7.3 we put D = AA + A2{c2 - 2) + (1 + 2c 2 )(l - c 2 ), where A = kX + a. If k = 1 and a = 0, then D = 0, and the coefficients in the table are not defined. Let us suppose that we get the following terms in the right-hand side of the first and second equations respectively Cia8/3J coswAr,
C2a'/3J'sinwAr,
with i > 1. In order to avoid terms in cos WAT in a;, we should define a nonhalo term of u of weight n — 1, cDn_ia*-1/?J', and a sine term of weight n in y, ca1^ sinwAr. Let Xtfi = aacosXUJT, yu\ = basinXUIT, and zu\ = c(3cosXLOT, be the halo terms of the solution of weight 1. By substitution of these terms in the equations and equating the terms of weight n in a1 ft, we get the following system for wn-i
326
The Quasi-periodic Orbits: Equations, Method of Solution and Results
X
s
1
+
- c
z
y s
Cy
s
+
2cA
-
i—i
Equations
-
-c(^±i)
-
-2cA
+
2
+
-2cA
-
-c{£*$**)
+
2
-
2cA
+
-c
-
3
+
rC
3
-
C
cx ( * = # * ) •
(£*%**)
-
Table 7.3
Cz
S
1 AS-X2
+
1 A2-A2
The form of the terms obtained by integration.
and c —2A(aA + fo)w„_i — 2Ac = ci, -2A(6A + a)
Description of the Program periodic Orbit
to Obtain
the Analytic
Quasi-
The program QPO computes up to a given weight, the analytic solution of the general equations of motion near a halo orbit. The three components x, y and z of the solution are given as Fourier series in the basic frequency of the halo orbit plus other frequencies that appear in the equations.
The Method of Solution of the Equations for the Quasi-periodic
Orbit
327
The coefficients of that Fourier developments are power series in a and (3. The series involved in the computations are stored in different arrays according to their type. There are two basic types of series, the general Fourier series (as the ones for x, y or z) and the series in a and /? (like UJ or A). The dimensions of these arrays are related with the number of different terms of these series. This number is unknown a priori. So, the dimensions are taken as parameters and the values used in the program are given in the routine DIMEN. Two arrays, GMA(MQ6) and PHA(MQ6) are used to store the frequencies and the phases respectively. Therefore, each pair of frequency vr and phase y r is represented by an index i\ such that GMA(ii) = vT and PHA(ii) = tpr. The terms (7.7) involved in the computation of the quasi-periodic orbit are represented by a coefficient and 6 indices c(i,j,s
•k,ii,i2,h),
(7.8)
where s is a sign denoting a cosine (+1) or a sine (—1) term, i\,i2 and i$ are the indices of the corresponding frequencies, and i,j and k = k have the same meaning as in (7.7). If k = 0, then we take k = 100. For the storage of a series of that kind of terms (a general series), the program uses three arrays, named generically N(MQ1,6), CF(MQl) and NPN(NPMAX). In that way, each term has associated one index IN such that N(IN,1)= i, N(IN,2)= j , N(IN,3)= s • k, N(IN,4)= ix, N(IN,5)=?2, N(IN,6)= «3, and CF(IN)= c. Therefore, the character sine or cosine of the term is contained in N(IN,3). We note that the indices i\,i2 and i% are ordered such that |ii| < |i 2 | < \iz\ , if i\,i2 and i% are different from zero. The indices equal to zero are stored at the end of the row IN. NPN(I) is the number of terms of N which have a weight less than or equal to I. The terms of the series in a and /3 are represented by the coefficient and 3 indices
c(i,j,n), where i is the exponent of a, j is the exponent of fi, and n is the weight of the term. In the program, they are stored in arrays NW(MQ10,3) and CW(MQIO) such that NW(IN,1)= i, NW(IN,2)= j , NW(IN,3)= n and CW(IN)= c. The coefficients of the halo terms of the equations are stored in FM(MAX4), FN(MAX5) and FP(MAX5) and they are computed in the routine SIGMNP via the routine FMNP. In the program QPO, the terms of IEQ1, IEQ2 and IEQ3 in the equations are represented by c(i,j,s-k,i\), where ii is the index of the corresponding frequency. Each term of one equation L where L=l,2,3, has associated one index IN = 1,2,.. .,MQ7 such that IEQ(L,IN,1)= i, IEQ(L,IN,2)= j , IEQ(L,IN,3)= s • k, IEQ(L,IN,4)= h and CFEQ(L,IN)= c, where s and k have the same meaning as before. The number of terms in IEQ(L, , ) which have a weight less than or equal to I is stored in NPEQ(L,I). We remark that all the monomials that appear in the equations are of the same
328
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
type of the ones in the halo part. Therefore, for each degree, the monomials are some of the ones given in Table 1 of Chapter 2. The terms in (7.4) that multiply v' where v = x,y or z, are stored in a similar way in IQV, CQV, NQV, where V = X, Y or Z. Therefore, for one term of the equation L we have IQV(L,IN,1)= s • 100, IQV(L,IN,2)= h and CQV(L,IN)= c, where s is a sign and ii is the index of the related frequency. As before, NQV(L,I) gives the position of the last term of IQV(L, , ) which have weight equal to I. The nonhalo terms of the equations as well as the involved frequencies and phases are read in the routine LLEEQ. Let us assume that all the terms of x,y and z are known up to weight NP-1. For the computation of the terms of weight NP, first we fill some arrays NF, CFF, with the terms of weight NP obtained from the terms of the solution which have a weight less than NP. The arrays NF(L,MQ2,6), CFF(L,MQ2) contain the indices and the coefficients respectively of the terms of the equation L. We remark that the main problem (time and memory) is the computation of the monomials of a given degree. It requires to perform some products according to Table 1 of Chapter 2, in order to generate the monomials of degree NG+1 from the ones of degree NG. These computations are done in the routine GRAUT. The series of the monomials of degree NG are stored in NUX(6,MQ1,J), CFUX(MQ1,J) and NPUX(NPMAX,J), where J = l , 2 , . . .,MQ4 if NG is odd, and J = M Q 4 + 1 , . . .,MQ44, if J is even. We note that if we fix some values of MQ4 and MQ44 (for example 30 and 55 respectively), the maximum degree such that the monomials can be obtained in that way is fixed. We name NGDIR that maximum degree (in the example NGDIR=7). The monomials of degree greater than NGDIR should be computed by direct products in the routine RESPRO. The routine QPR0D2 performs the product of two series. For a given weight it has been convenient to compute first all the possible products of two terms that produce a term of that weight. Therefore, a large list of terms is obtained. The list is ordered by the routine ORDRE in such a way that the terms with the same indices become consecutive. Then, the list is reduced comparing and adding if it is possible, each term with the next one. The order used for the terms of the same weight NP is defined as follows. Let us consider the indices i, j , s-k of & term (7.8). First, the degree NG= i + j increases from 0 to NP. For a fixed degree, the index i goes from NG to 0. Once NG and i are fixed, the order for the third index is taken in the following way: 100, - 1 0 0 , 1 , —1,2, —2,... ,NP,-NP. The three indices of the frequencies are ordered in the usual way according to their absolute value, that is, (0,0,0), (1,0,0), (1,1,0), (1,1,1), (1,1,2), (1,1,3),...,(1,1,IGMA), (1,2,0), (1,2,2), (1,2,3),... ,(1,2,IGMA), ( 1 , 3 , 0 ) , . . . , (2,0,0), (2,2,0),(2,2,3),...,(2,2,IGMA),(2,3,0),...
The Results. Problems Related to Small
Divisors
329
In the sequence above, IGMA is the total number of frequencies. If two terms (i,j,s
-k,ii,12,13),
(7-9)
and (i,j,s-k,j1,j2,J3),
(7-10)
satisfy |ii| - \ji\, \i2\ = IJ2I,1*31 = IJ3I, we set (7.9) before (7.10) if \h + i2 + *31 > lii + h + h I • The opposite holds in other case. We remark that due to the large amount of terms that appear in the intermediate computations, some reduction has been made. Let e be a given upper bound. The terms (7.8) such that \c\tlxt{ < e, are neglected. The parameters tx and tz are the same ones used in the program EQUAP (see 7.1.2). As it was explained in the program EQUAP, some terms in the equations stand with a negative (fictitious) weight, that means, its real weight is less than or equal to its degree. In the program QPO we deal with a maximum weight NN that means the maximum fictitious weight to be considered, and a real weight NNR. We remark that the halo monomials of degree NNR need not be computed because the nonhalo terms of the solution have a weight greater than 1.
7.3
The Results. Problems Related to Small Divisors
7.3.1
Sample
of Results
in Several
Cases
The program QPO has been used to obtain an approximation of the quasi-periodic orbit in the following cases: 1) 2) 3) 4)
Sun-Barycenter, case L\, Sun-Barycenter, case L2, Sun-Barycenter, simplified model, case L\, Earth-Moon, simplified model, case L2.
In any of the first 3 cases the solution was computed up to a real weight equal to 9. During the computation of the terms of a weight NP, the terms (7.8) such that \c\txt{ < l.D-10-fNF-\ w h e r e / = 2.5, were neglected. Due to the memory available in our computer, the values of the dimensions MQ4 and MQ44 in program QPO were taken equal to 30 and 55, respectively. Then, the value of NGDIR was taken equal to 7. This means, in particular, that the contribution of the halo terms of the equations which have a weight greater than 7 was not taken into account in the computed solution. In the fourth case, simplified model means that, due to small divisors problems to be explained in 7.3.2, the equations for the QPO have been modified. As a test, only the frequency related to the mean anomaly of the Moon, i.e., the mean longitude of the Moon minus the longitude of the mean perigee of the Moon, is retained. We skip
330
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
also all the terms in the equations of weight greater than 5. Then a very reduced set of terms appears in the nonhalo part of the equations. With this modified set no problem appeared even running the QPO program up to real weight 9. Table 7.4 displays the results up to weight 5 to prevent from too large lists. We recall that in the displayed results only the nonhalo terms are given. The functions Q and A are also given. As an example, case 1) gives a total of 90 frequencies and 6502 terms (in x, y and z). The functions Q and A have 38 and 35 terms, respectively. The running time under VAX 11/785 is 32 minutes. It reduces to 10 seconds if the weight is reduced to 5. Once the QPO solution is available we can obtain a concrete quasi-periodic orbit if numerical values are assigned to the parameters /3 and t* (see 7.3.3). In this way the solution is given as a Fourier expansion ^2ciF(vit +
7.3.2
The Problem
of Small
Divisors
In the course of the integration of the equations of motion in form (7.4) and (7.5), the Table 7.3 given in 7.2.2 is used to obtain the terms of the solution. The denominator D is zero when we are at exact resonance, i.e., the frequency
The Results. Problems Related to Small
Divisors
331
value (that we have taken as 10). In this case a message appears in an auxiliary file telling us that a small divisor is found and identifying it. 2) In the L\ case for the Sun-Barycenter problem only one of those terms has appeared and it is retained in the solution. It has a frequency equal to the sum of frequencies 1 and 51 in the output given. Frequency 51 is easily identified as coming from the perturbations in longitude introduced in the motion of the Earth by the effect of Jupiter. More concretely, it is associated to a term with frequency (ME+MJ)' where ME and Mj refer to the mean anomalies of Earth and Jupiter. As frequency 1 is exactly ME the total frequency in resonance with A is (2ME + MJ)' = 2.0842006, close to the value A = 2.0864535. In the simplified problem the only perturbing frequencies are multiples of ME, not giving rise to small divisors at low orders. 3) For the L^ case, Sun-Barycenter problem, the results are similar. In this case the unique term in resonance with A up to (real) weight 9 is associated to the sum of frequencies 1 and 59. Frequency 59 comes from the perturbations due to the Moon. It amounts 1.0537249 = (mi —7714 — 771,5)', where m\,m± and 7715 are mean longitude of the Moon, the longitude of the mean ascending node and the mean elongation of the Sun, respectively. Hence, the resonant argument is ME + IE — ^ M , where IE is the mean longitude of the Earth (= mi — 777.5 = ME + wg) and Q M = "^4. The related frequency is 2.0536771 close to the value of A in this case equal to 2.0570143. 4) Finally in the L 2 case, Earth-Moon problem, the influence of small divisors is much larger. They already appear when the solution to fifth order is searched. As the related coefficients (several terms appear with the same resonance) are large and they appear so early, the resulting coefficients in the solution become meaningless. The main resonance is found between the double of the mean elongation of the Sun and the halo orbit angle. We have 2m 5 = 1.850392 and A = 1.862645. These perturbations come from the noncircular motion of the Moon around the Earth and also from the Sun effect. As we have said in 7.3.1 we merely skip those terms and we restrict ourselves to a simplified model in that case.
7.3.3
The Analytic
Expression
of the Nominal
Orbit
Values of a and /? should be substituted in the analytic expressions to get a defined quasi-periodic orbit. The amplitudes a and /3 are related by A(a,/3) = A, where in the A function both the halo and nonhalo terms are included. Given a value of the z-amplitude /3, the x-amplitude a can be determined. Then the basic frequency co{a, (3) is obtained, where in ui the halo and nonhalo terms are also retained. By substitution of a and /3 in the analytic expressions the coefficients of the different terms are obtained. Coefficients multiplying the same cosine or sine functions are collected. From the list of frequencies and the value of UJ already available all the frequencies appearing in the solution are computed. Concerning the phases we recall that the generic argument in the trigonometric functions is of the form
332
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
k\uj(t — t*) + i>t + ip, where t* is an additional parameter of the quasi-periodic orbit. In the halo part of the solution we have written the arguments as kvur, where VH = Xui and r = t — t*. In the nonhalo part the argument is finally expressed as at + b, with a = kXoj + v, b =
0.6231395117299221D+01 0.6179604927418856D+01 0.6127814737538490D+01 0.6076024547658125D+01 0.6024234357777759D+01 0.5972444167897394D+01 0.5920653978917028D+01 0.5868863788136663D+01 0.5817073598256298D+01 0.5765283408375932D+01 -0.2884338825126906D+00 -0.1979167429597718D+01 0.2293632183012776D+01 0.3900981710995600D+01 0.2709879912903800D+01 0.1425662661422312D+01 0.5191770785557459D+00 0.1659447913253400D+01 0.1518778114811500D+01 0.1150705458671403D+01 -0.2167779041033939D+01 0.2643633021351981D+01 0.2714619818594807D+01 0.1881342399767400D+01 0.1417296496991800D+01 0.2292073612553800D+01 0.5092083509087600D+01 0.3952771895950200D+01 0.4683461151616500D+00 9.2553870424499513D+01 -0.3074291866679034D+01 -0.3283894176739517D+00 0.2430331539214389D+01
The Results.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Problems Related to Small
0 .8732511351291710D+00 0 .1915609282611617D+01 0 .8429515884531046D-01 0 .9660209891320313D+00 0 .1250997870014100D+01 0,.1876496805021200D+01 0 .2501995740028200D+01 0,.3127494675035300D+01 0,.2746980187678700D+01 0,.1325524075636900D+02 0..1404902516893226D+01 0,.2831266344494771D+01 0..1932041978264063D+01 0..1625459877970818D+01 0..6335054279964647D-01 0.. 4049592961647623D+00 0,.2658256908820276D+01 0..1084247379573774D+01 0..7470667441925326D+00 0,.3752993610042300D+01 0..4378492545049400D+01 0,.5003991480056400D+01 0..9156600625595800D+00 0..1746980187678700D+01 0,.8869742675313700D+00 0..1053724902883300D+01 0..1773948535062700D+01 0..1048134000056200D+02 0,.1059431795377500D+02 0.3151973342338953D+01 0..1251015314484709D+01 0.,1831314123766307D+01 0..9156570618831535D+00 0.6255076572423544D+00 0..1876522971727063D+01 0.8765707509985993D+00 0..2502030628969418D+01 0.9366016779288175D+00 0.2746971185649461D+01 0..1747018964920997D+01 0..2250967535213173D+01 0..3127538286211772D+01 0..3753045943454126D+01 0..1915609282611617D+01 0.. 2831266344494771D+01 0.,8313619030378430D+00 0..1502078408240954D+01 0..4378553660696481D+01 0..5004061257938835D+01 0.5629568915181190D+01 0..1404902516893226D+01 0..8732511351291710D+00 0.,3662628247532614D+01 0..2662676026804150D+01 0.9660209891320313D+00 0..3151973342338853D+01
Divisors
0 .1916038532792506D+01 -0 .1827920526552135D+01 -0 .3095417103290732D+01 -0 .2258506631948617D+01 0 .2834592993983600D+01 0 .4251889490975400D+01 0 .5669185987967100D+01 0 .8032971777792700D+00 0,.3438110418830600D+01 0..2241533797742100D+01 -0..7233664097316860D+00 0..2182875486824612D+01 0,,1756924709239920D+01 0..1359984598049204D+01 -0,.1145897920449518D+01 0,.9572104907461318D-01 0..3718394402992522D-01 0..1869375022576490D+00 0,.2170478728628369D+01 0..2220593674771200D+01 0..3637890171762900D+01 0..5055186668754700D+01 0,.1146036806276900D+01 0,.1693250981649900D+01 0..3432635595834100D+01 0..4274368206350897D+01 0,.5820858844887000D+00 0..1711238098207900D+01 0,.4509997624599100D+01 0.,2612227390392102D+01 -0. 2891284191112373D+00 0..2289217823911790D+01 -0. 1979628239660955D+01 0.,1425700153600997D+01 0. 1138912762564505D+01 -0. 2167620986141730D+01 0.2556299801139196D+01 0.,5192220030676837D+00 -0.,2914075454189641D+01 0..1864493202009641D+01 -0.,3185521467599869D+00 -0. 2294371900809253D+01 -0.,8816036368470227D+00 -0.,1557393366956654D+01 0.,2080900989865821D+01 0..2713996048062953D+01 0.,2429935316830200D+01 0..5610543682337673D+00 0..1957542532778765D+01 -0..2894243332689311D+01 -0.,7268767491484566D+00 0..1916053366219000D+01 -0..1798357254562880D+01 0..2945883921131993D+01 -0. 2258514577062989D+01 0.,2603256991840835D+01
334
The Quasi-periodic
X 1 X' 1 X 2 X 2 X 2 Y 1 Y 1 Y 2 Y 2 Y 2 X 1 X 1 X 2 X 2 X 0 X 0 X 2 X 0 X 3 X 3 X 3 X 3 X 1 X 1 X 1 Y 1 Y 1 Y( 2 Y 2 Y 0 Y 0 Y 2 Y 0 Y 3 Y 3 Y 3 Y 3 Y 1 Y 1 Z 0 Z 0 Z 1 Z 1 Z 1 Z 2 Z 2 Z 2 Z 2 X 3 X 3 X 4 X 4 X 1 X: i X' 2
Orbits: Equations,
Method of Solution and Results
90 = 0.1131454158595400D+02 0.39593079563264970+01 TOTAL NUMBER OF TERMS= 158 0 1 1L 0 0) = -0 2669356593935684D-01 NP 0 1 -1L 0 0) = 0 1252033081780248D-01 NP 0 100 1L 0 0) = 0 ,9833646461186939D-01 NP 0 2 ]L 0 0) = -0 .1891001862953086D-01 NP 0 2 -1L 0 0) = -0 4412153475217745D-01 NP 0 -1 1L 0 0) = 0 8126898113476926D-01 NP 0 -1 -]L 0 0) = -0 5757800552195134D-01 NP 0 -100 1L 0 0) = 0 9541358355130655D-01 NP 0 -2 3L 0 0) = 0 8255662704913419D-02 NP 0 -2 -1L 0 0) = 0 3996125711596286D-01 NP 0 1 1L 0 0) = -0 7952609015785745D-02 NP 1 -3I 0 0) = 0 0 9007524900828336D-02 NP 0 2 1L 0 0) = -0 2376288753568175D-01 NP 2 -3L 0 0) = 0 0 7822524746302241D-01 NP 2 2 1 0 0) = -0 3688256718919798D-03 NP 2 2 -1L 0 0) = -0 1120591959602091D-02 NP 0 100 JL 0 0) = -0 8466828527037358D-01 NP 2 100 1L 0 0) = -0 9428372672550820D-02 NP 0 1 JL 0 0) = -0 2866400430142627D-01 NP 0 0) = 0 1 -J 0 3701839626643600D-01 NP 0 3 1L 0 0) = 0 154324T716056545D-01 NP 0 0 1916496538595158D-01 NP 3 -1L 0 0) = 2 1 1 0 0) = -0 1749527642252451D-02 NP 2 1 -1L 0 0) = -0 1741409742622264D-02 NN 2 3 -1L 0 0) = 0 6911269745932756D-03 NP 0 -1 1 0 0) = 0 1837787471657781D-01 NP NP 0 -1 -1L 0 0) = -0 2666528991327288D-01 0 -2 1 0 0) = -0 4016119726803939D-01 NP 0 -2 -1 0 0) = -0 6032680215587482D-01 NP 2 -2 1L 0 0) = -0 2145939821559522D-03 NP 2 -2 -1 0 9533859147633840D-03 NP 0 0) = NP 0 -100 3L 0 0) = -0 5529834427508559D-01 2 -100 1L 0 0) = -0 9148130627798677D-02 NP 0 -1 3L 0 0) = -0 2252227160286346D+00 NP 0 -1 -1L 0 0) = 0 3316892405619730D+00 NP 0 -3 1L 0 0) = 0 8489999798965142D-02 NP 0 -3 -1L 0 0) = 0 ,1061462300579955D-02 NP 2 -1 1L 0 0) = 0 1670501784932256D-02 NP NP 2 -1 -3L 0 0) = -0 2012182569754218D-02 1 1 0 0) = 0 2129944582128835D-01 NP -1L 0 0) = -0 3472442678152180D-01 NP 100 JL 0 0) = 0 1914632699216435D-01 NP NP 2 1L 0 0) = -0 5397066891656604D-02 0 9925409151016849D-02 NP 2 -1L 0 0) = 1 3L 0 0) = 0 ,6955925824526413D-01 NN NP 1 -1L 0 0) = -0 7740615473686131D-01 NP 3 1L 0 0) = -0 1771928172609215D-02 3 -3L 0 0) = -0 8575189217254399D-02 NP 1 1L 0 0) = 0 1493758465962166D-01 NP 0 0 1 -3L 0 0) = -0 1105196494242014D+00 NP NP 0 2 1L 0 0) = -0 ,1528399737976488D-01 NP 2 -3L 0 0) = -0 7248098572157560D+00 0 0 2409534664114047D-01 NP 2 1 1 0 0) = 1 -1L 0 0) = 0 .4884232796953952D-02 NP 2 0 .1531112884313373D-01 NP 2 2 1L 0 0) =
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
The Results.
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
2 2 2 0 0 1 1 3 3 1 1 2 2 2 2 2 0 0 1 1 2 4 4 4 2 2 0 3 3 3 3 2 2 2 2 3 3 3 3 4 4 4 4 3 3 4 4 1 1 2 2 2 2 0 0 1
2 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 0
2 2 2 2 2 1 1 3 3 3 3 100 100 2 2 2 100 100 1 1 100 100 4 4 100 4 100 1 1 3 3 100 2 2 100 1 1 3 1 100 2 2 4 -1 -1 -2 -2 -1 -1 -2 -2 -2 -2 -2 -2 -1
-1 1 -1 1 -1 2 -2 1 -1 1 -1 2 0 2 0 -2 0 14 14 -14
-1 -1 2 -2 0 -2 14 14 -14 15 14 -14 -14 -15 14 14 -14 -14 -1 -1 -1 -1 -1 -1 2
Problems Related to Small
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0)
335
Divisors
-0.2760835214642224D-01 -0.1186298033953153D-01 0.1425961038675736D-01 0.3511323737189227D-02 -0.1126240299134378D-01 -0.4072479028357518D-03 -0.1059625294892354D-03 0.4390937319252455D-01 -0.3049745885122305D-01 -0.2333632281776978D-03 0.2228812101228466D-02 0.1402399775468182D-01 -0.1864345213243881D-02 -0.6395837192119324D-03 -0.1338154780994827D-03 0.9923059331405869D-02 -0.1147792623444093D-02 -0.8968126833019414D-05 -0.3500143992903151D-04 0.4950482330025654D-04 -0.5714246073628670D-02 0.6745130924525374D+00 -0.1590111811422762D-01 0.6501804157556853D-02 0.7124432261788821D-01 -0.5496313757792188D-02 -0.5041683997839682D-02 -0.1530168418226505D-02 0.5440842371230224D-02 -0.4028682187663889D-03 -0.6537444824029897D-03 0.2931221671976148D-03 -0.1065317334916862D-03 -0.2141069188077573D-03 0.5565460801675805D-04 0.1938402376148063D-02 -0.1469427491639834D-02 0.7450097163943381D-03 -0.3291544327809975D-03 -0.6379649990960484D-02 0.3089787051357074D-02 0.6217923871091577D-02 -0.2481559333503040D-02 0.4321680584935495D-01 -0.1965852481170879D+00 0.2661212511772143D+00 0.2094975641268155D+00 -0.4323400510629940D-01 -0.1539017628550321D-01 -0.8566693563945978D-02 0.2998592417363558D-01 0.2097594950836090D-02 0.4116126266101141D-01 -0.2147645230774970D-02 0.8121487136113621D-02 0.1009101621492969D-02
NP = NP = NP = NP = NP = NP = NP = NP = NN = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP =
5 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
c •o c
o
-j
cr
N
N
N
N
N
N
N
M
N
N
t
S
l
N
N
N
N
N
K
K
^
^
^
^
^
^
^
^
^
^
CO
cn
to
w
3 o 3
H 33
II
II
I
II
I I
II
II
II
II
II I
II I
II I
II
I
I
I
I I
I I
I
I
I
I
I O
I
II
II
I
I
II
II I
II
II I
II
II I
II I
II I
II
II I
II
*-*•
H* OJ to cn to O ->1 co oo co en en co CO CO CO CO M- i-»- to i-*- CO cn CO cn Mto !-»• co en CO CO CO ^i CO 1-^ o • > co 00 cn o CO -~i o to cn co CO to o to en cn o £> ^i cn cn to co en o -~i CO cn CO to o -~I 00 to to to oo I-*- H*
en co -~l H* CO h* CO to CO
II
*s^fc*01**.^Ji^JiU
I
I
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
enenenencnencnenenenenenencncnencncnenencnenenenencnenen
II
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 13 10 13 13 13 10 13 •O 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H*
H* H* H* en 00 t-*- to !-»• cn co cn o Cn CO CO M- to o *> CO CO O CO cn cn CO t-*- o en h* IO cn1 o co O cn co en to CO --J I- CD CO CO to CO CO » cn CO to * to co co oo H* co co CO -~i CO o cn ^ to o *> * » cn p» co cn en .£» -~l . co co ->i en cn -~I (-*• •-* -^o --j K* en o M- o o CO 00 to ^i co en *> cn to Cn o 1 to • ^ cn *> -»I CO o O cn co I- 00 to -~l * • ->l en CO cn cn co CO M- CO CO H* co h* CO o *» CO CO *» CO *» -to on co o cn ^l ~I C> co co to to 00 to CO *> co co ^ cn cn o a a a o a a O o o o o o o o o o o to o h-^ o H* to 1-^ •-* o to to H* h*
D+0
3 3 13 13
tog
2w
II
D+0
3
CO CO
I
I
o o o o o o o o o o o o o o o o o o o o o o o o o o
II
. • ^ I-*- to i-* •->• H ,-L o CO (O to cn o o •n o CO 00 CO oo CO co D m i o _ ->l CO (O1 M- CD I- cn CO oimiocn 3 o * > ^ c o o
o o
I
O
o o o o o o o o o o o o o o o o o o o o o o o o o o o o
5 °o
13
I
I
o o oo oo o o o o o o o o o o o o o o o o o o o o o o
• - ' S3 w II p II
o > o o
S3
a a
H S3 W 3
I
CO3 r f ^ ^ M s o o i ^ i ^ c o c o i ^ h ^ t o K 3 0 i ^ i ^ ^ M s o o i - - ' a ) t - » i - ' i o r o o w
I
3 CO
o
fa
o
H
tn
H
po . CO H t o en .e. co g * . co ~ i-'
M II --I '-' ° II
_H
I
o o o o o o o o o o o o
W l O O W M O W W W U U U O O W M W W H K K O O ^ i l i ^ * U U W W M W I O W tn w \7i £0 r& &
D+0
The Results. Problems Related to Small
Divisors
337
EXAMPLE OF QUASI-PERIODIC ORBIT FOR THE LI CASE, EARTH+MOON—SUN PROBLEM ONLY COEFFICIENTS GREATER THAN l.D-5 ARE RETAINED FOR THE NONHALO PART ORDER OF THE THEORY FOR NONHALO PART = 11 ORDER OF THE THEORY FOR HALO PART = 15 z-AMPLITUDE = 0.80D-01 x-AMPLITUDE = 0.1406721580148259D+00 OMEGA = 0.9834573393464491D+00 TSTAR =-0.4597131387436053D+01 TAU = T-TSTAR FOURIER DEVELOPMENT OF THE HALO PART x-COMPONENT 0.4157049854675195D-01 * COS (O.OOOOOOOOOOOOOOOOD+00 * TAU) -0.1496721580148259D+00 * COS (0.2051937963795992D+01 * TAU) -0.1652142764859605D-01 * COS (0.4103875927591983D+01 * TAU) 0.1996174144123191D-02 * COS (0.6155813891387975D+01 * TAU) -0.4092680855206494D-03 * COS (0.8207751855183966D+01 * TAU) 0.7948892532718254D-04 * COS (0.1025968981897996D+02 * TAU) -0.1695502931662977D-04 * COS (0.1231162778277595D+02 * TAU) 0.3703708834651033D-05 * COS (0.1436356574657194D+02 * TAU) -0.8365191685526472D-06 * COS (0.1641550371036793D+02 * TAU) 0.1927998899599959D-06 * COS (0.1846744167416392D+02 * TAU) -0.4528808235964133D-07 * COS (0.2051937963795992D+02 * TAU) 0.1678599432413511D-07 * COS (0.2257131760175591D+02 * TAU) -0.2507989213559546D-08 * COS (0.2462325556555190D+02 * TAU) 0.6065508369912068D-09 * COS (0.2667519352934789D+02 * TAU) -0.2033435877789632D-09 * COS (0.2872713149314388D+02 * TAU) 0.5124894637061295D-10 * COS (0.3077906945693987D+02 * TAU) y-COMPONENT 0.4462903402478923D+00 * SIN (0.2051937963795992D+01 * TAU) -0.9485343224882868D-02 * SIN (0.4103875927591983D+01 * TAU) 0.2288953429537220D-02 * SIN (0.6155813891387975D+01 * TAU) -0.3812160243869096D-03 * SIN (0.8207751855183966D+01 * TAU) 0.7909732719394648D-04 * SIN (0.1025968981897996D+02 * TAU) -0.1658351072469369D-04 * SIN (0.1231162778277595D+02 * TAU) 0.3663238302392403D-05 * SIN (0.1436356574657194D+02 * TAU) -0.8280913315098266D-06 * SIN (0.1641550371036793D+02 * TAU) 0.1915949097161194D-06 * SIN (0.1846744167416392D+02 * TAU) -0.4510616993916847D-07 * SIN (0.2051937963795992D+02 * TAU) 0.1076722338164173D-07 * SIN (0.2257131760175591D+02 * TAU) -0.2519075024308943D-08 * SIN (0.2462325556555190D+02 * TAU) 0.6081547916302046D-09 * SIN (0.2667519352934789D+02 * TAU) -0.2034269048673321D-09 * SIN (0.2872713149314388D+02 * TAU) 0.5133044291763707D-10 * SIN (0.3077906945693987D+02 * TAU) z-COMPONENT 0.1296161644970725D-01 * COS (O.OOOOOOOOOOOOOOOOD+OO * TAU) 0.8000000000000000D-01 * COS (0.2051937963795992D+01 * TAU) -0.4128747889169709D-02 * COS (0.410387S927591983D+01 * TAU) 0.6461902427744734D-03 * COS (0.6155813891387975D+01 * TAU) -0.1068102001067884D-03 * COS (0.8207751855183966D+01 * TAU) 0.2084956739123790D-04 * COS (0.1025968981897996D+02 * TAU) -0.4269292404692368D-05 * COS (0.1231162778277595D+02 * TAU) 0.9218892368009590D-06 * COS (0.1436356574657194D+02 * TAU) -0.2052442069937884D-06 * COS (0.1641550371936793D+02 * TAU) 0.4689944336880688D-07 * COS (0.1846744167416392D+02 * TAU) -0.1091057725216870D-07 * COS (0.2051937963795992D+02 * TAU) 0.2582057585115161D-08 * COS (0.2257131760175591D+02 * TAU) -0.6195504530638732D-09 * COS (0.2462325556555190D+02 * TAU)
338
The Quasi-periodic
Orbits: Equations,
Method of Solution and Results
0.1497315418680290D-09 * COS (0.2667519352934789D+02 * TAU) -0.4335384176323811D-10 * COS (0.2872713149314388D+02 * TAU) 0.1089612418841304D-10 * COS (0.3077906945693987D+02 * TAU) FOURIER DEVELOPMENT OF THE NONHALO PART x-COMPONENT -0 481214350648D-2 * COS [0 305189018452D+1 * T + 0 291337850463D+1 0 293599327360D-2 * COS [0 105198574306D+1 * T + 0 301695888439D+1 0 168708819847D-3 * COS Co 999952220728D+0 * T + 0 623139511729D+1 -0 981559283479D-3 * COS [0 510382814832D+1 * T + 0 587854719915D+1 0 861927176494D-3 * COS (0 310392370686D+1 * T + 0 598212757891D+1 0 178746980088D-3 * COS Co 715576611211D+1 * T + 0 256053058649D+1 -0 138299060486D-3 * COS 515586167065D+1 * T + 0 266411096625D+1 0 189236417326D-3 * COS Co 465184240525D+1 * T + 0 286158831475D+1 -0 167194316248D-4 * COS CO 520335223390D-1 * T + 0 306874907427D+1 0 111664213006D-3 * COS Co 199990444145D+1 * T + 0 617960492741D+1 -0 123735441890D-2 * COS CO OOOOOOOOOOOOD+O * T + 0 OOOOOOOOOOOOD+O -0 507278987096D-4 * COS CO 610378036904D+1 * T + 0 582675700927D+1 0 640872851908D-4 * COS CO 410387592759D+1 * T + 0 593033738903D+1 -0 288680392114D-4 * COS 210397148613D+1 * T + 0 603391776879D+1 -0 447077101022D-4 * COS CO 920770407591D+1 * T + 0 552569928100D+1 0 364632311620D-4 * COS 720779963445D+1 * T + 0 562927966076D+1 -0 140790926086D-4 * COS CO 615581389138D+1 * T + 0 261232077637D+1 415590944993D+1 * T + 0 271590115613D+1 0 360232999284D-4 * COS -0 539188850104D-3 * COS Co 125101531448D+1 * T + 0 599475142466D+1 -0 445897653833D-3 * COS Co 915657061883D+0 * T + 0 430491787758D+1 -0 137975502439D-2 * COS CO 183131412376D+1 * T + 0 229363218301D+1 -0 241610286418D-3 * COS 625507657242D+0 * T + 0 142566266142D+1 112596420397D+2 * T + 0 220768266834D+1 0 118562275890D-4 * COS 0 120964903164D-4 * COS Co 110401926540D+1 * T + 0 608570795867D+1 -0 133433217987D-3 * COS 0 936601677928D+0 * T + 0 519177078555D+0 -0 965355655144D-4 * COS 0 876570750998D+0 * T + 0 411540626614D+1 -0 739703135552D-4 * COS 0 831361903037D+0 * T + 0 271461981859D+1 0 124700410407D-3 * COS 0 625498935007D+0 * T + 0 141729649699D+1 0 583223102967D-3 * COS 0 183132012511D+1 * T + 0 229207361255D+1 -0 623627798527D-4 * COS 0 330295327828D+1 * T + 0 267673481200D+1 0 541092990880D-4 * COS 0 800922649311D+0 * T + 0 325360257792D+1 -0 623477223435D-4 * COS CO 113628090191D+1 * T + 0 494433612411D+1 -0 313343876031D-3 * COS Co 398325208756D+1 * T + 0 525880087752D+1 0 570292992740D-3 * COS CO 220623840029D+0 * T + 0 671536511594D+0 0 173663868198D-4 * COS Co 267744562103D+1 * T + 0 439083135593D+1 -0 697938688393D-4 * COS Co 142643030655D+1 * T + 0 153950693309D+1 327354036612D+1 * T + 0 236514374954D+1 0 106837095383D-4 * COS -0 101592156847D-4 * COS CO 416051463365D+1 * T + 0 579777934537D+1 197652297172D+1 * T + 0 113891276256D+1 -0 450365864549D-3 * COS 0 344436299366D-4 * COS Co 251063093756D+0 * T + 0 604654161454D+1 191560928261D+1 * T + 0 425222768770D+1 0 696206043253D-4 * COS 0 259279113211D-4 * COS CO 842951588453D-1 * T + 0 192737723971D+1 -0 420688717192D-4 * COS Co 283126634449D+1 * T + 0 224184199313D+1 174701896492D+1 * T + 0 188134239976D+1 0 179759992768D-3 * COS -0 316384282070D-4 * COS CO 873251135129D+0 * T + 0 191603853279D+1 -0 291330580172D-4 * COS Co 966020989132D+0 * T + 0 402467867523D+1 -0 200278683727D-3 * COS CO 187649689502D+1 * T + 0 425188949097D+1 0 783860315855D-4 * COS Co 250199574002D+1 * T + 0 566918598796D+1 0 281814981694D-4 * COS CO 312749467503D+1 * T + 0 803297177779D+0 274698018787D+1 * T + 0 343811041883D+1 -0 519081124316D-4 * COS -0 131246568684D-4 * COS CO 111533628586D+1 * T + 0 244599161596D+1
co
co co co co co
co co co co
co
The Results.
•0 137298687036D-4 * 0 134158398791D-4 * •0 131800408864D-4 * •0 211718694238D-4 * 0 441726794399D-4 * 0 178181578831D-3 * -0 359249266925D-3 * 0 979584742473D-4 * 0 185113950812D-3 * 0 238163600150D-4 * •0 208270288111D-4 * 0 224065621480D-4 * 0 191465137923D-4 * 0 578971594759D-4 * 0 105123950319D-3 * 0 116551547490D-4 * 0 148109574637D-4 * 0 340739199124D-4 * 0 217615668065D-4 * 0 450520654544D-4 * 0 189732321419D-4 * 0 319829755103D-4 * 0 177771134489D-4 * 0 114838958359D-4 * 0 619469874981D-4 * 0 456392046870D-4 * 0 201311141948D-4 * 0 163629317964D-4 * 0 267159288762D-4 * 0 299641081664D-4 * 0 156924701404D-4 * 0 819593663506D-4 * 0 103963229762D-4 * 0 251785192048D-4 * 0 167924126303D-4 * 0 105487009270D-3 * 0 202034340461D-4 * 0 102764315428D-4 * 0 138822574607D-4 * 0 120089997545D-4 * 0 110421998965D-4 * 0 220716240536D-4 * 0 473529863812D-4 * 0 646981126451D-4 * 0 121652145784D-3 * 0 1173743S9811D-4 * 0 273326272428D-4 * 0 160547521201D-4 * 0 175962330028D-4 * 0 335558755839D-4 * 0 241176825314D-4 * 0 443311393858D-4 * 0 676489600600D-4 * 0 234059194800D-4 * 0 142615595112D-4 *
COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS
Problems Related to Small ((0.117536721279D+1 ((0.288329986683D+1 ((0.122057606075D+1 ((0.267743689880D+1 ((0.142643992878D+1 ((0.388325808891D+1 ((0.220617838676D+0 ((0.392846093552D+1 ((0.175414992068D+0 ((0.535489124207D+1 ((0.285286061310D+1 ((0.501953298947D+1 ((0.318821896570D+1 ((0.593519005135D+1 ((0.227256180382D+1 ((0.472938358483D+1 ((0.347836827034D+1 ((0.210857666985D+1 ((0.230300105755D+1 ((0.180087487003D+1 ((0.396754724640D+1 ((0.136328681184D+0 ((0.488329430829D+1 ((0.566387060610D-1 ((0.259203062896D+1 ((0.274697118564D+1 ((0.312753828621D+1 ((0.193655389865D+1 ((0.283127234584D+1 ((0.288329986683D+1 ((0.227358814539D+1 ((0.222155462305D+1 ((0.287647519245D+1 ((0.150207840824D+1 ((0.140490251689D+1 ((0.193204197826D+1 ((0.633505427996D-1 ((0.404950296164D+0 ((0.375299361004D+1 ((0.915660062559D+0 ((0.886974267531D+0 ((0.330293583381D+1 ((0.800940093781D+0 ((0.392843476881D+1 ((0.175441158774D+0 ((0.455393370382D+1 ((0.450057776232D+0 ((0.695042223982D+0 ((0.455396859276D+1 ((0.450092665173D+0 ((0.695033221853D+0 ((0.379895692871D+1 ((0.304918998874D+0 ((0.842951588453D-1 ((0.185290839237D+1
Divisors T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0.513294773555D+1 0.567978851311D+1 0.250548875922D+0 0.438246519150D+1 0.154787219752D+1 0.525724230707D+1 0.673095081963D+0 0.410408145708D+1 0.182625593195D+1 0.564190350652D+1 0.621877127154D+1 0.395116995943D+1 0.162631951145D+1 0.194078426486D+1 0.363670520602D+1 0.107281474327D+1 0.450467472761D+1 0.283261065086D+1 0.272852500188D+1 0.320181238714D+1 0.934211075038D+0 0.499612631399D+1 0.520701068764D+1 0.615062726352D+1 0.255629989113D+1 0.336910985298D+1 0.398881340637D+1 0.467386888675D+0 0.224028342267D+1 0.530617670830D+1 0.241693393942D+1 0.563137017232D+1 0.108712257268D+1 0.243933153921D+1 0.555981889744D+1 0.175692470923D+1 0.513728738673D+1 0.957210490746D-1 0.222059367477D+1 0.114603680627D+1 0.343263559583D+1 0.579976168850D+1 0.130575700533D+0 0.933872878312D+0 0.499646451072D+1 0.235116937530D+1 0.270401729345D+1 0.472941724313D+0 0.552146849565D+1 0.587431641380D+1 0.403941158472D+0 0.482966189652D+1 0.110067549250D+1 0.192783804978D+1 0.627956146142D+1
339
340
The Quasi-periodic -0.296554164818D-4 -0.921173067590D-4 0.184940026123D-4 0.467718735163D-4 -0.160797881493D-4 0.309012111697D-4 -0.114559117862D-3 0.110968473139D-4 0.701499665941D-4 0.277426434033D-4 -0.317517569277D-4 -0.173813103845D-4 0.376235986088D-4 0.298103346902D-4 -0.329927063719D-4 0.201624111801D-4 -0.451698784554D-4 -0.213103144892D-4 0.471375099072D-4 0.235344683776D-4 -0.172298228860D-4 0.112483159580D-4 0.155734392073D-4 0.172364570538D-4 0.103875162229D-4 0.186262630004D-4 y-COMPONENT 0.135315277880D-1 -0.113460136872D-1 0.253168139320D-3 -0.561288141247D-3 0.421222325415D-3 0.198737060146D-3 -0.158464971510D-3 0.328728251851D-3 -0.195890791133D-3 0.394189002948D-4 -0.317937876577D-3 -0.304395259206D-4 0.368924459643D-4 0.478008078582D-4 -0.408788087651D-4 0.319417178670D-4 -0.185705499936D-4 0.349549595441D-4 0.836308302559D-3 0.383199747580D-3 0.205052365904D-3 0.125390065223D-3 0.122804708677D-4 -0.193612495844D-4 0.373015394167D-2 -0.180001193226D-4 -0.247440015080D-4 -0.274484217627D-4
Orbits: Equations,
Method of Solution and Results
* * * * * * * * * * * * * * * * * * * * * * * * * *
COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS
(0.593519605271D+1 (0.227255589247D+1 (0.598039889931D+1 (0.222735295586D+1 (0.798712801515D+1 (0.432449976762D+1 (0.191568928261D+1 (0.266267602680D+1 (0.174698018767D+1 (0.213623312264D+1 (0.196764289495D+1 (0.398397994206D+1 (0.119895985531D+9 (0.211528850659D+1 (0.198858742099D+1 (0.379891815147D+1 (0.394957776117D+0 (0.396754724640D+1 (0.136328681184D+0 (0.222737912257D+1 (0.432449376626D+1 (0.427929091966D+1 (0.188232130453D+1 (0.208419960930D+1 (0.217183394932D+1 (0.225096753521D+1
* * * * * * * * * * * * * * * * * * * * * * * * * *
T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + +
0.193922569440D+1) 0.363826377648D+1) 0.786064844418D+0) 0.479142462646D+1) 0.490595295938D+1) 0.318688593358D+0) 0.472579194022D+1) 0.294588392113D+1) 0.169325098164D+1) 0.615293689840D+1) 0.606958579780D+1) 0.472209340375D+1) 0.120824398527D+1) 0.181927077406D+1) 0.411106661496D+1) 0.465841967616D+1) 0.127191771286D+1) 0.140777532756D+1) 0.452256206147D+1) 0.167844789805D+1) 0.320247163917D+0) 0.147340801380D+1) 0.298967216706D+0) 0.135147312377D+0) 0.417341267979D+1) 0.594226669818D+1)
* * * * * * * * * * * * * * * * * * * * * * * * * * * *
SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN
(0.305189018452D+1 (0.105198574306D+1 (0.999952220728D+0 (0.510382814832D+1 (0.318392370686D+1 (0.715576611211D+1 (0.515586167065D+1 (0.405184240525D+1 (0.205193796379D+1 (0.520335223390D-1 (0.199990444145D+1 (0.610378036904D+1 (0.410387592759D+1 (0.210397148613D+1 (0.920776407591D+1 (0.729779963445D+1 (0.615581389138D+1 (0.415590944993D+1 (0.125191531448D+1 (0.915657061883D+0 (0.183131412376D+1 (0.625507657242D+0 (0.112596420397D+2 (0.925973759825D+1 (0.183131412376D+1 (0.947918698389D+0 (0.299985666218D+1 (0.110401926540D+1
* * * * * * * * * * * * * * * * * * * * * * * * * * * *
T T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
0.291337850463D+1) 0.301695888439D+1) 0.623139511729D+1) 0.587854719915D+1) 0.598212757891D+1) 0.256053058649D+1) 0.266419096625D+1) 0.286158831475D+1) 0.296510869451D+1) 0.306874907427D+1) 0.617960492741D+1) 0.582675700927D+1) 0.593033738903D+1) 0.603391776879D+1) 0.552569928100D+1) 0.562927966076D+1) 0.261232077637D+1) 0.271590115613D+1) 0.599475142466D+1) 0.430401787758D+1) 0.229363218301D+1) 0.142566266142D+1) 0.220768266834D+1) 0.231126304810D+1) 0.228921782391D+1) 0.316264664392D+1) 0.612781473753D+1) 0.608570795867D+1)
The Results.
Problems Related to Small
0 .123509112151D-3 * SIN ((0.936601677928D+0 0 .110713969657D-3 * SIN ((0.876570750998D+0 0 587319523726D-4 * SIN ((0.831361903037D+0 (0.625498935007D+0 •0 347200263924D-4 * SIN ( -0 217278845601D-2 * SIN ((0.183132012511D+ -0 146583792539D-3 * SIN ((0.330295327828D+ 0 274259321472D-3 * SIN ((0.800922649311D+0 (0.296759502567D+ •0 207267016022D-3 * SIN ( 0 359849667740D-3 * SIN ((0.113628090191D+ -0 203989028933D-3 * SIN ((0.388325209756D+ 0 203127142574D-3 * SIN ((0.229623840029D+0 •0 153452973925D-3 * SIN ((0.267744562103D+ 0 249993037446D-3 * SIN ((0.142643030655D+ 0 115715126022D-4 * SIN ((0.532547332991D+ •0 132105517469D-4 * SIN ((0.327354036612D+ •0 122610439341D-4 * SIN ((0.122169249232D+ 0 131457349536D-2 * SIN ((0.187652297172D+ 0 501030812893D-4 * SIN ((0.225909753521D+ 0 190390972946D-4 * SIN ((0.251063093756D+0 0 757319071646D-4 * SIN ((0.191560928261D+ 0 995918946469D-4 * SIN ((0.283126634449D+ 0 262271712485D-4 * SIN ((0.162545987797D+ 0 959447528174D-4 * SIN ((0.831361903037D+0 0 487411605055D-3 * SIN ((0.174701896492D+ 0 309965852610D-4 * SIN ((0.873251135129D+0 0 180413712723D-3 * SIN ((0.191560928261D+ 0 293307976877D-4 * SIN ((0.966020989132D+0 0 207954137564D-3 * SIN ((0.125099787001D+ 0 759639373180D-3 * SIN ((0.187649680502D+ 0 169041756246D-3 * SIN ((0.250199574002D+ 0 451137264498D-4 * SIN ((0.312749467503D+ 0 107057791354D-3 * SIN ((0.274698018767D+ ( 0 432218126330D-4 * SIN ((0.298853964172D+ ( 0 878637807525D-4 * SIN ((0.111533628586D+ ( 0 357756694095D-4 * SIN ((0.292850871479D+ 0 626952005744D-4 * SIN ((0.117536721279D+ 0 826196677707D-4 * SIN ((0.122057606075D+ 0 885392643234D-4 * SIN ((0.267743689880D+ 0 114344498662D-3 * SIN ((0.142643902878D+ 0 793183339785D-4 * SIN ((0.388325898891D+ 0 251560565866D-4 * SIN ((0.220617838676D+0 ( 0 610903428532D-4 * SIN ((0.392846993552D+ ( 0 454553317292D-4 * SIN ((0.175414992068D+0 ( 0 216220067547D-4 * SIN (0.535489124207D+ « 0 318301810861D-4 * SIN ((0.285286961310D+ ( 0 136007686694D-4 * SIN ((0.591953298947D+ ( 0 194801721643D-4 * SIN ((0.318821886570D+ ( 0 619383023540D-4 * SIN (0.593519005135D+ « 0 463242940782D-3 * SIN ((0.227256189382D+ ( 0 112043464895D-4 * SIN ((0.472938358483D+ ( 0 118665821551D-3 * SIN (0.210857666985D+ « 0 278292898547D-4 * SIN (0.230300105755D+ « 0 624028371830D-4 * SIN (0.180087487003D+ « 0 123227887472D-4 * SIN (0.199029571417D+ « 0 135462823463D-4 * SIN (0.396754724640D+ «
Divisors T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0.519177078555D+0 0.411540626614D+1 0.271461981859D+1 0.141729649699D+1 0.229297361255D+1 0.267673481200D+1 0.325369257702D+1 0.986001264919D+0 0.494433612411D+1 0.525880087752D+1 0.671536511504D+0 0.439083135593D+1 0.153950603309D+1 0.533031244406D+1 0.236514374954D+1 0.568316036220D+1 0.113891276256D+1 0.594296123478D+1 0.604654161454D+1 0.425222768779D+1 0.224184199313D+1 0.137387247154D+1 0.234100801379D+1 0.188134239976D+1 0.191603853279D+1 0.445526478062D+1 0.402467867523D+1 0.283459299398D+1 0.425188949097D+1 0.566918598796D+1 0.803297177779D+0 0.343811041883D+1 0.348434577307D+1 0.244599161596D+1 0.797389653483D+0 0.513294773555D+1 0.250548875922D+0 0.438246519150D+1 0.154787219752D+1 0.525724230707D+1 0.673095081963D+0 0.410408145709D+1 0.182625593195D+1 0.564190359652D+1 0.621877127154D+1 0.395116995943D+1 0.162631951145D+1 0.194078426486D+1 0.363670529602D+1 0.107281474327D+1 0.283261065086D+1 0.272852500188D+1 0.320181238714D+1 0.297779254026D+1 0.934211075038D+0
341
342
The Quasi-periodic
-0 -0 0 0 0 -0 0 -0 0 -0 0 -0 -0 0 0 0 0 0 -0 0 -0 -0 0 -0 0 -0 0 -0 0 -0 -0 -0 -0 -0 0 0 -0 0 0 -0 -0 0 0 -0 0 0 0 0 -0 -0 0 0 -0 -0 -0
173129897832D-4 118469293706D-4 106340207027D-4 107723477156D-4 122390217042D-4 212745906850D-3 146869559146D-3 557288405408D-4 561053062374D-4 713042141539D-4 554256792474D-4 285389407664D-4 455965918348D-4 266772299595D-3 356533826032D-4 579383252029D-4 353901533135D-4 311314134445D-3 414475525751D-4 207027325723D-4 117019720930D-4 282529537971D-3 104982139995D-4 578767947182D-4 693465636304D-4 137850764960D-4 31i668295107D-4 123112646684D-4 265716289442D-4 395043589299D-4 229937378972D-4 172718704846D-4 178753242097D-4 208534432062D-4 387691407915D-4 245874637708D-4 414623139811D-4 684029773665D-4 152442361615D-4 175298760999D-4 306412371417D-4 305276608801D-3 197532951095D-4 165595632318D-3 132697624628D-4 278876317266D-4 242549381324D-4 198653994954D-4 118551537260D-4 108179003649D-4 191978853611D-4 361977178311D-3 119044407741D-4 337821770801D-4 141381014490D-4
* * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * *
Orbits: Equations,
SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN
SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN
* * * * * * * * * * * * * SIN * SIN * SIN
(0 CO (0 CO CO CO CO CO CO CO CO CO CO
Method of Solution and Results
196764280495D+1 213623312264D+1 136328681184D+0 242638252728D+1 842951588453D-1 250203062896D+1 274697118564D+1 312753828621D+1 193655389868D+1 283127234584D+1 831367904399D+0 288329986683D+1 227358814539D+1 222155462305D+1 CO 287647519245D+1 Co 150207840824D+1 10 140490251689D+1 Co 193204197826D+1 [0 265825690882D+1 0 375299361004D+1 0 437849254504D+1 CO 174698918767D+1 CO 886974267531D+0 '0 230300105755D+1 0 180087487003D+1 0 292518909892D+1 0 117868682866D+1 0 301795895292D+1 0 108591697466D+1 0 800940093781D+0 0 392843476881D+1 0 450092665173D+0 0 695033221853D+0 0 379895692871D+1 0 304918998874D+0 0 831361903037D+0 ( 0 185290839237D+1 0 218826664498D+1 0 127260958309D+1 0 327251402455D+1 0 593519605271D+1 0 227255580247D+1 0 598039889931D+1 0 222735295586D+1 0 798712801515D+1 0 432449976762D+1 0 198858742099D+1 0 177394853506D+1 0 238656609859D+1 0 199529925773D+1 0 375304594345D+1 0 191560928261D+1 ( 0 437855360969D+1 0 266267602680D+1 0 999952229728D+0
co
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 + 0
103779145479D+1 489254593423D+1 499612631399D+1 148771584321D+1 192783804978D+1 255629980113D+1 3369109SS298D+1 398881340637D+1 467386888675D+0 224028342267D+1 234386380243D+1 530617670830D+1 241693393942D+1 563137017232D+1 148712257268D+1 243033153921D+1 555981889744D+1 175692470923D+1 371839440289D-1 222059367477D+1 363789017176D+1 169325998164D+1 343263559583D+1 569880171586D+1 321535673164D+0 488120722730D+1 104913916172D+1 706662062568D+0 522367532646D+1 130575700533D+0 933872878312D+0 587431641380D+1 403941158472D+0 482966189652D+1 110067549250D+1 234542237289D+1 627056146142D+1 167810970133D+1 368849539590D+1 358491501614D+1 193922569440D+1 363826377648D+1 786064844418D+0 479142462646D+1 490595295938D+1 318688593358D+0 353613596295D+1 582085884488D+0 521569346089D+1 309772673817D+1 540158167033D+1 472579194022D+1 561054368833D+0 294588392113D+1 623139511729D+1
The Results. Problems Related to Small
0 250653261701D-4 0 153950264584D-4 -0 203115333986D-4 0 295251676799D-4 -0 146434735767D-4 -0 931639378996D-4 0 989568294694D-4 -0 107616347096D-4 -0 991050794382D-4 0 103741121889D-3 -0 123246308165D-4 0 1338679i4640D-4 0 113262074221D-4 -0 120979335585D-4 0 861408979027D-4 -0 168232621337D-4 -0 292275095901D-4 0 338060064906D-4 -0 106095814964D-4 0 131457755680D-4 -0 199364320687D-4 -0 499048333071D-4 0 560084400405D-4 -0 401695687283D-4 0 263112917938D-4 -0 548442043565D-4 0 542913095797D-4 x— -COMPONENT 0 233997959160D-2 -0 207589577517D-2 0 221925231587D-3 -0 244236848225D-3 0 181886557343D-3 0 575334923941D-4 -0 448144769090D-4 -0 127052637961D-4 0 271183290182D-4 0 278910751506D-4 0 161166153547D-3 0 561566962525D-4 -0 173792163020D-4 0 110952064631D-4 -0 306471352429D-4 0 521713660822D-4 -0 359711645179D-4 0 589335225002D-4 -0 379171135090D-4 0 876969647036D-4 -0 306630295654D-4 0 453426932143D-4 -0 118195318183D-3 0 199763234824D-4 -0 129914193183D-4 0 145742705608D-4 0 164323426118D-4
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN
COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS COS * COS * COS * COS * COS * COS * COS * COS * COS * COS * COS
Divisors
(0.225095009074D+ (0.287644992574D+ (0.212754245430D+ (0.274697118564D+ (0.212758606548D+ (0.213623312264D+ (0.196764280495D+ (0.398397994206D+ (0.211528850659D+ (0.198858742099D+ (0.245688825996D+ (0.164698766763D+ (0.113627790123D+ (0.127260358174D+ (0.222737912257D+ (0.160188018756D+ (0.160184529862D+ (0.235685696267D+ (0.432449376626D+ (0.279900470798D+ (0.216732202893D+ (0.188232130453D+ (0.208419960039D+ (0.217183394932D+ (0.235689573991D+ (0.218326664498D+ (0.225096753521D+
* * * * * * * * * * * * * * * * * * * * * * * * * * *
T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
0.278280280410D+1 0.420009930109D+1 0.855087367659D+0 0.181270301212D+1 0.404066359625D+1 0.615293689840D+1 0.606058579780D+1 0.472209340375D+1 0.181927077496D+1 0.411106661496D+1 0.306028974359D+1 0.286944764544D+1 0.181913188824D+1 0.369005396636D+1 0.167844789805D+1 0.261151401066D+0 0.337403758789D+1 0.406584418702D+1 0.320247163817D+0 0.489830128416D+1 0.546295054935D+1 0.298967216706D+0 0.135147312377D+0 0.417341267979D+1 0.423708640738D+1 0.129454544881D+1 0.594226669818D+1
(0.305189018452D+ (0.105198574306D+ (0.999952220728D+0 (0.510382814832D+ (0.310392370686D+ (0.715576611211D+ (0.515586167065D+ (0.920770407591D+ (0.OOOOOOOOOOOOD+0 (0.199990444145D+ (0.210397148613D+ (0.405184240525D+ (0.520335223390D(0.415590944993D+ (0.330295327828D+ (0.800922649311D+0 (0.296759582567D+ (0.113628090191D+ (0.388325208756D+ (0.220623840029D+0 (0.267744582103D+ (0.142643030655D+ (0.105372490288D+ (0.310566286667D+ (0.998213060912D+0 (0.111533622586D+ (0.117536721279D+
* * * * * * * * * * * * * * * * * * * * * * * * * * *
T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
0.291337850463D+1 0.301695988439D+1 0.623139511729D+1 0.587854719915D+1 0.598212757891D+1 0.256053658649D+1 0.266411096625D+1 0.552569928100D+1 0.OOOOOOOOOOOOD+O 0.617960492741D+1 0.603391776879D+1 0.286158831475D+1 0.306874997427D+1 0.271590115613D+1 0.267673481200D+1 0.325360257702D+1 0.986001264919D+0 0.494433612411D+1 0.525880087752D+1 0.671536511504D+0 0.439083135593D+1 0.153950603399D+1 0.427436829635D+1 0.956351593683D+0 0.497398579534D+1 0.244599161596D+1 0.513294773555D+1
343
344
The Quasi-periodic 0.118286227469D-4 0.111645004644D-4 -0.198593833103D-4 0.150693276128D-4 -0.362106447788D-4 0.262979978443D-4 -0.146810937057D-4 0.239904042320D-3 0.109051649762D-4 -0.372711147926D-4 0.203169294315D-4 0.121289013228D-4 0.119960762733D-4 0.166127563603D-4 0.203767855962D-4 -0.130341684022D-4 -0.119025506128D-4 0.148782272737D-3 -0.120264677729D-3 0.100495933488D-4 -0.313787737458D-4 0.672412224683D-4 -0.163789788599D-4 0.170543516801D-4 -0.160100204578D-4 0.210639768098D-4 -0.165567843407D-4 -0.372840312448D-4 0.219738389585D-4 -0.124901259471D-4
Orbits: Equations,
* COS (0 122057606075D+1 * COS (0 267743689880D+1 * COS (0 142643902878D+1 * COS (0 388325808891D+1 * COS (0 220617838676D+0 * COS (0 175414992068D+0 * COS (0 125101531448D+1 * COS (0 183131412376D+1 * COS (0 593519005135D+1 * COS (0 227256180382D+1 * COS (0 180087487003D+1 * COS (0 230300105755D+1 * COS (0 213623312264D+1 * COS (0 175441158774D+0 * COS (0 394918998874D+0 * COS (0 225096753521D+1 * COS (0 191560928261D+1 * COS (0 183132012511D+1 * COS (0 187652297172D+1 * COS (0 227255589247D+1 * COS (0 222735295586D+1 * COS (0 205367712361D+1 * COS (0 213623312264D+1 * COS (0 196764280495D+1 * COS (0 211528850659D+1 * COS (0 198858742099D+1 * COS (0 174701896492D+1 * COS (0 187649680502D+1 * COS (0 193204197826D+1 * COS (0 183028778219D+1 Table 7.5
7.4
Method of Solution and Results
* * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0.250548875922D+0 0.438246519150D+1 0.154787219752D+1 0.525724230707D+1 0.673095081963D+0 0.182625593195D+1 0.599475142468D+1 0.229363218301D+1 0.194078426486D+1 0.363670520602D+1 0.320181230714D+1 0.272852500188D+1 0.489254593423D+1 0.499646451072D+1 0.110067549250D+1 0.594226669818D+1 0.425176687763D+1 0.229207361255D+1 0.113891276256D+1 0.363826377648D+1 0.479142462646D+1 0.422257801647D+1 0.615293689840D+1 0.606058579780D+1 0.181927077406D+1 0.411106661496D+1 0.188134239976D+1 0.425188949097D+1 0.175692470923D+1 0.351340344960D+1
Output of program ANAQPO.
References [1] R. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin, 1978. [2] V. Arnold. Les Methodes Mathematiques de la Mecanique Classique. Mir, 1967. [3] E.W. Brown and C.A. Shook. Planetary Theory. Dover, 1964. [4] H. Poincare. Les Methodes Nouvelles de la Mecanique Celeste. GauthierVillars, 1892, 1893, 1899. [5] C.L. Siegel and J.K. Moser. Lectures on Celestial Mechanics. SpringerVerlag, 1971. [6] S. Sternberg. Celestial Mechanics. Benjamin, 1969.
Chapter 8
Numerical Refinement of the Quasi-periodic Orbit: The Final Numerical Determination of the Orbit and of the Projection Factors
For the station keeping, it is important to have a good nominal orbit (i.e., with a very small residual acceleration) to minimize the fuel consumption due to the maneuvers. The purpose of this chapter is to obtain an orbit, very close to one of the quasi-periodic orbits of the preceding chapter, such that it is a solution of the differential equations of motion in the solar system. In principle, this can be considered as a two-boundary problem. However, for large time intervals, the instability implies an extremely large sensitivity to the initial conditions. For instance, for the L\ case and the orbits near halo ones of the Sun-Barycenter problem, the amplification of errors after 4 years reaches the value 10 26 . Therefore, we have selected the parallel shooting method to solve the problem. Several approaches are possible, concerning the two end equations. Two of them are explained and implemented and several others are discussed. Finally, we describe a program that, starting with the results of the parallel shooting algorithm, produces the nominal orbit. The orbit is given at equally spaced epochs, and it is possible to recover the required position and velocity at any intermediate epoch using Lagrange interpolation. Simultaneously, a kind of numerical Floquet modes for the nominal orbit is obtained. From them we get the instantaneous projection factors. They are also given at equally spaced epochs.
8.1
8.1.1
A Parallel Shooting Method for the Numerical Refinement of the Quasi-periodic Orbit The Input Parameters
to Get the Nominal
Orbit
Till now we have obtained an analytic quasi-periodic orbit (qpo). To improve it numerically, we shall use a parallel shooting algorithm. Two slightly different approaches will be described. In both the initial data are: 345
346
Numerical Refinement
of the Quasi-periodic
Orbit
1) An initial epoch to, 2) A value of z, in normalized coordinates, when y (normalized) equals zero. Therefore, if (xo,yo,zo,xo,yo,zo) are the normalized initial coordinates for t = to, we fix ?/o = 0 and zo and the other variables are left free. We remark that those data determine one quasi-periodic orbit. The only thing to be added, to avoid ambiguities, is if we desire the sign of the z-amplitude, positive or negative. For the halo orbit it is clear that, belonging to a one-parameter family, it is enough to fix the value of z, when y = 0, at a given time. From the characteristic curve of the family, analytically expressed by A(a,8) = 0, the z-amplitude, a, can be obtained from the z-amplitude, 8. It is true that 8 does not coincide with zo, but the expression of z when the halo angle is zero: z = 8 + 0 2 (a,/3), where Oi means terms of second order in a, 8, shows that z and 8 are close. An iterative procedure can be used to determine 8. This is exactly what is done for the quasiperiodic orbit case. The terms added to the halo part of the orbit by program QPO (see Chapter 7) depend on a, 8 and t. All the remaining coefficients depend on the analytic model of the solar system and are kept fixed. Hence, for a given to the values of xo,yo,zo,&o,yo,zo depend on a and B, and a, 8 should satisfy the A condition. They also depend on t*. This is the epoch at which the halo part of the qpo crosses the y = 0 hyperplane, with z having the sign assigned to 8. If the quasi-periodic perturbations were zero, the time t* will coincide with to (modulus the period of the halo orbit) if the sign of B and z0 agree. Otherwise to and t* differ in a half period (also modulus the period). When the quasi-periodic part of the orbit is included, to and t* are close but they are not forcedly equal (or they differ, roughly, in a half period of the halo part). First of all, we have used an iterative procedure to determine 8 and t*, from z and to- This is implemented in the routine ESTQPO. We proceed as follows: a) We start with an initial value of the parameters B and t*. If nothing better is available, we use 8 — ±zo, t* = to + ST/2, where the sign of 8 is chosen in order to agree with the previously assigned sign. In the expression of t*, the parameter S is set equal to zero if 8 and z0 have the same sign, and 5 = 1 otherwise. T refers to the approximate period of the halo orbit. As a and 8 are unknown, this period is not available. However, being concerned with small and medium size halo orbits, the period of them changes slightly along the family (provided we avoid large amplitudes). In any family {L\, L 2 cases, Sun-Barycenter and Earth-Moon problems) we have adopted as approximate value of T, the one which corresponds, roughly, to B — 0.08. When a qpo has been determined, for a given pair (z0,t0), i.e., we have computed 8 and t*, to obtain the parameters 8 and t* corresponding to slight variations of (zo,h), we start with the previously computed values.
Parallel Shooting for the Numerical Refinement
of the Quasi-periodic
Orbit
347
b) When an approximation of (/?,£*) is available, we compute (using the routine ANAQPO) the corresponding values of y and z (in fact, we compute all the coordinates). The standing equations are y(/3,t*,t0) = 0,z(/3,t*,t0) = z0c) The previous equations are solved by Newton's method. For this we need the partial derivatives: dy
dy
dz
dz
dfj' &F' W di*' They are computed using numerical differentiation, using a step, e, given by the user. After some checks, we have adopted the value e = 10~ 6 . d) When the partial derivatives are available, Newton's formula gives the corrections to be applied to (/3,i*). The procedure is iterated till convergence. The value 1 0 - 1 1 , in the corrections of /? and t*, have been used as stopping criteria. e) As we intend to use a parallel algorithm approach, we require initial conditions at the ends of some selected time intervals. Let us suppose that, given to and ZQ for yo = 0, we wish to produce the nominal orbit for a large (4 years or 6 years, for instance) time interval. As mentioned at the beginning of the chapter, the strong instability prevents the use of a direct shooting method. The full time interval is split into N intervals. These intervals have been selected such that each corresponds to a "half revolution" or a "complete revolution". Here, half revolution means the time between two successive passages through y = 0. A complete revolution means the time between two successive passages through y = 0 with the same sign of y. Having already determined /? and t*, we know the full initial conditions (XQ,yo,zo,Ao,Vo,zo) at t = to. Now it is required to determine, for the qpo, the times, t\,... ,tjv, of the successive passages through y = 0. The separation ti+\ — tj is a "half revolution" or a "complete revolution". When ti is known, we determine an approximate value of U+i, by adding to £; either T / 2 or T. The routine PREDYO determines the corrections to be applied to ti+x to get y = 0. This is done using again Newton's method. In this case, the required derivative, y, is already available from routine ANAQPO. By iteration (up to an error less than 10 - 1 0 ) of A.
_
y(U+i)
A*i+1 - - T T 7
r,
y{u+i) we obtain the value tt+iThen, we determine the initial conditions (xi,yi,Zi,Xi,yi,ii) for t = U, i = 1,2,..., N.
(with j/j = 0)
348
Numerical Refinement
of the Quasi-periodic
Orbit
Therefore, the initial conditions, to be entered at the iterative procedure, leading to the solution of the parallel shooting problem, are: Q —
(xo,x0,y0,zo,ti,xi,zi,xi,yi,zi,...,tN,xN,zN,xN,yN,zN)
the total number of variables being 6N + 4. 8.1.2
A First Shooting Used to this End
Procedure.
Description
of the
Program
We define a Poincare-like map, P, (associated to a half revolution or to a complete revolution) through y = 0 (in normalized coordinates), by the forward flow in the solar system. The image of a point (t, x, z, x, y, z) is (t,x,z,x-,y-,i)
=
P(t,x,z,x,y,z).
As the system of differential equations is nonautonomous, the time has to be kept in the representation of an initial and final point. Let Qi = (ti,Xi, Zi,±i,yi, £») be the part of Q which refers to the ith point of the partition of the full time interval. Then, we should impose the matching conditions: Fi(Q) = P(Qi) - Qi+i = 0,
i=
0,...,N-l,
where F denotes the vector of 6 TV + 4 equations to be satisfied by variable Q. F, gives the (i + l)th block of 6 scalar equations. In this way we obtain 6N equations. These matching equations should be imposed in any parallel shooting approach to the problem of obtaining the nominal orbit. The different approaches differ in the election of the remaining four equations. In the first approach that we expose, the last 4 equations are taken as follows. Any quasi-periodic orbit, near a halo orbit, is determined through /3 and t*. For an ideal qpo, we would obtain a solution of the equations of motion. In the real world, the qpo is slightly changing and, hence, the parameters j3 and t* change accordingly. From the values of t and z at the end of the time interval, tw and ZJV, it is possible to determine values fix and t*N. In this way, "theoretical" values of the remaining coordinates at the last point can be determined: X
N
=
x(PN,t*N,tjv),
X% =
x(PN,t*N,tN),
VN
=
y(PN,t*N,tN),
*N
=
z(0N,tN,tN)-
Asking to the final variables to satisfy XN
= xN,
±N
— xN, yjv =
VN> *N
— zN,
Parallel Shooting for the Numerical Refinement of the Quasi-periodic Orbit
349
the final point would be on an (approximated) analytic quasi-periodic orbit. In short, we had left the initial x0 coordinate and the initial velocity (io,yo,z0) free and we impose that the final point be in an analytic qpo. The intermediate matching conditions are a technical matter to help in the solution of the problem, but they are, conceptually, irrelevant. This approach has been slightly modified due to the following reason. We suppose that near the (approximated) analytic qpo, there is a real quasi-periodic solution of the equations of motion of the full solar system. This real solution has stable and unstable directions. As we force the final point to be in an analytic qpo, the real corresponding (with the same tjy and ZN) qpo has final conditions slightly different. If we denote with the superscript r the "real" solution, we have, for t = tjy, differences XN—XN,
XN — XN,
2/jV — 2//\r,
z
N~zNi
such that it can give some unstable and stable components with respect to the real qpo. In this case, the unstable component is not dangerous, but the stable one is. If we go back in time towards the initial epoch, to, the stable component increases. This means that very large corrections to the initial values xo,xo,yo,zo should be applied to reach the desired ending point. If this method is implemented, the linear system involved in the iterations of Newton's method is ill-conditioned. We have left as last 3 equations the ones concerning velocities: FQN+2
=
XN — ±M = 0,
F6N+3
=
VN ~ VN = 0,
FeN+i
=
zN ~ ZN = 0.
The first one of the last 4 equations, has been modified as follows: F6N+I
=x0-x0-
(xN - x*N).
In this equation xQ is the (theoretical) value of x for the estimated analytic qpo such that y(/3o,tQ,to) = 0, z(/?o,*o,£o) = ZQ. AS /?O and t* are determined at the beginning, using the method explained in 8.1.1, x0 is kept fixed through the iterations. The value a;^ is the value of x for the estimated analytic qpo such that y(/3o,tQ,t0) = 0, z(Po,to,to) = ZQ. AS the final point, QN, changes through the iterations, also xlN changes. The equation 6./V -I- 1 means that we allow for some displacement of the x coordinates, at the extrema epochs, with respect to the corresponding analytic quasi-periodic orbits estimated at both ends. Both displacements should be equal. This has an additional advantage. Suppose that the analytic qpo has been obtained with a given value of the s/m parameter (cross section of the spacecraft to the radiation pressure/mass of the spacecraft). If systematic errors are discovered in this s/m value, the parallel shooting program can be run again with the corrected
350
Numerical Refinement
of the Quasi-periodic
Orbit
value of the parameter. An increase (decrease) of its value implies that, globally, the orbit is slightly shifted towards the Earth (towards the Sun), if the L\ case for the Sun-Barycenter problem is considered. Hence, the Xi variables should be displaced by, roughly, the same value. This is what F6N+I requires. From the numerical point of view, the suggested approach is also clearly advantageous. The inclusion of x0 in -F6JV+I produces a feedback effect and the condition number of the matrix DF(Q) is dramatically decreased. The problem is quite well conditioned. As a summary of what we have said and denoting, as before, Q -
(xo,xo,yo,zo,ti,xi,zi,xi,y1,zi,...,tN,xN,zN,iN,yN,ZN),
we have the system of equations: F\{Q)
=
F2(Q)
=
P2(t0,xo,zo,x0,yo,z0)
- xi = 0,
Fe{Q)
=
P6(to,xo,zo,xo,yo,z0)
- zx = 0,
=
Pl(tN-l,XN-l,ZN-l,XN-l,yN-l,ZN-l)
~tN
F6N(Q)
=
Pe(tN-l,XN-l,ZN-l,XN-l,yN-l,ZN-l)
— ZN = 0,
F6N+i(Q)
=
x0 -XoitotZo)
F6N+2(Q)
=
±5V(*JV,ZJV) ~ ^N
F6N+3(Q)
=
yN^NtZN)
-VN = 0,
FeN+4{Q)
=
ZN(tN,ZN)
- ZN = 0,
F6N-5(Q)
Pi{to,xo,zo,xo,yo,zo)-t1=0,
= 0,
- (xN -a;^(tjv,zjv)) = 0, =
°'
where Pi(ti,Xi,Zi,Xi,yi,Zi),...,P6(ti,Xi,Zi,Xi,yi,Zi), mean the components of the image of the point (*»,£», Zi,iri,2/»,ij) under the Poincare map. In the first 6 equations and also in the equation number 6iV + 1, the parameters *o and ZQ appear. They are the initial fixed data. We shall denote the equations in the short form F(Q) = 0. Let Q(°} be the initial value of all the variables as obtained in 8.1.1. Then, the corrected values are obtained by Newton's iteration: DF(QW)(QU+V
-Qij))
= -F(QV>).
Parallel Shooting for the Numerical Refinement of the Quasi-periodic Orbit
351
The differential matrix DF(Q) has the following structure /
^o
-I A!
DF(Q) =
-I A2
-I
iJV-l
V BN
-I AN
j
where A*, i = 1,2,..., N -1 denote the 6 x 6 matrix DP(Qi), the differential of the Poincare map at the point Qi and A0 is the 6 x 4 matrix obtained from DP(Q0) skipping the columns 1 and 3 (related to to and ZQ that do not change). The matrix BN is a 4 x 4 matrix with all entries equal to zero, except the element in the first row and column which is set equal to 1. The matrix AN is a 4 x 6 matrix and it has the structure / ax
\
-1 0 a-2 0 a-z 0 O-A
a5 a6 a7 as
\ -1 - 1 /
where dx N ax = dt N a5
a2 =
dx*N dt JV
a3
= ^k dt N
di
dx N
dx*N dZN '
a6 =
_ dyN a 7 ~ dzN ' dzN'
=
dzN dt N dzN
as = "° dzN
As usual, in the expressions of DF(Q) and AN the boxes or elements left blank mean that they are filled with zeroes. The computation of /?, t* has been explained in 8.1.1. The derivatives en,..., ag could be obtained using relations as ai =
d: '"NdPN
dpN dtN
dxN dt*N dt*N dtN''
but we have chosen to compute them directly using numerical differentiation. We turn to the effective computation of the Poincare map and its differential. Let f, f i , . . . , fk, be the ecliptic coordinates (centered at the center of masses of the solar system) of the spacecraft and of bodies number 1 to A; of the solar system. The lack of coherence and radiation pressure masses, are included in the masses of the corresponding bodies (Sun and Earth, and Sun, respectively). Then, the equations of motion are r = — 2~J Grrii j=i
d?
352
Numerical Refinement
of the Quasi-periodic
Orbit
where rrii is the (total) mass of the ith body, G is the gravitational constant and di =
\\r-ri\\2.
The Poincare map is expressed in normalized coordinates. Hence, given initial conditions t, x, z,x,y, z (y = 0), they are converted to days and ecliptic position and velocity. Then, the numerical integration of the Newton equations is started. First, we perform the integration for a time interval which is close to, but a little bit less than, half the period or the full period of the halo part of the analytic qpo, depending on the type of intervals that we have chosen. Then, after each step in the numerical integration, the point is transformed back to normalized time and coordinates and the condition y = 0 is searched. When at some step a change of sign of y is detected, a Newton method is used, through At = —y/y, to obtain the final time, Pi(t, x, z, x, y, i ) , under the Poincare map. The remaining variables, (x, z, x, y, z) give the other 5 components of the image of the Poincare map. To obtain the differential, DP, of the Poincare map, the equations of motion should be integrated simultaneously with the variational equations. As the system is nonautonomous, we have also variations with respect to the initial time. First, we work in ecliptic coordinates. Let x\, x2, x$, X4, X5, x§ denote ecliptic position and velocity. The equations of the autonomized system are ±0
=
X\
=
1, X4,
X2
=
X5,
£3
=
x6, k
&i =
-xi:1)dl3,
~y^Gmi{x1 i=l k
x5
=
-y^Gmi(x2
x6
=
- ^
-Xit2)d~3,
k
Gmi(x3 -
xit3)d~3.
i-\
The variational equations can be written in the form V = D • V, where V and D are 7 x 7 matrices and V is initialized to the identity matrix. The matrix D has the block structure D =
/ 0 0 \ G
0 0 H
0 \ I3 , 0 /
where I3 denotes the 3 x 3 identity matrix, H is a 3 x 3 matrix and G is a 3 x 1 matrix. The vector G denotes G =
o7(*4, £5,2:6),
Parallel Shooting for the Numerical Refinement
of the Quasi-periodic
Orbit
353
and the matrix H is the Jacobian matrix of X4,xs,x6 with respect to x\,X2,x3. We note that G appears because the coordinates Xij, i = 1,2,... ,k, j = 1,2,3, of the bodies of the solar system depend on t. Let Vij, i,j — 0 , 1 , . . . , 6 be the components of the matrix V. Prom the variational equations, it is immediate that i>oi = 0, i = 0 , . . . , 6. Hence «oo = 1 and v0j = 0 for j = 1 , . . . , 6, and only 42 components of the variational matrix should be computed. Using block matrices, we have «10 «20
(.
«30
Vu
vu
l>13
«21
VIZ
«23
V31
V32
^33
V14
V\h
«16
V24
«25
«26
«34
^35
«36 «40
(.
W 60
U41
ViZ
«43
^51
«52
«53
l>61
^62
«63
Vi4
W45
«46
f54
«55
«56
vu
«65
^66
The components of the vector G are given by
G =
~ I
_
—5
E i = i Gmi[-xia + 3qi{x2 - Zj,2)K : " E i = i Gmi[-±j i 3 + 3%(a;3 - 0^,3)]^
5
where qi denote auxiliary variables defined by
+ (x3 -
and the components of the matrix H by
H
=
h\i
hi2
hi3
h-21
fl22
h23
h3i
h32
h33
Xit3)xit3,
354
Numerical Refinement
of the Quasi-periodic
Orbit
where k
8=1
k
h12
=
-^2Gmi[-3(xi
-
xiA)(x2-Xii2)}d~5,
t=i k
h13
=
/«21
=
h22
=
- ^ 6 , m i [ - 3 ( a ; i - xiA){x3
-x^3)]d^5,
i=l hi2, k
-Y^Gmi[l-Z{x2-xi>2)2]d-\ i=l k
h2z
=
-"^2 Gmi[-3(x2
^31
=
hi3,
h32
=
h23,
h33
=
- xia){xz
-
xi>3)]d~b,
i=l
k
-YJGmi[l-i{x3-x^3f]d-\ i=l
When the integration of the variational matrix, V, is finished we should do two things: a) To obtain the differential matrix of the Poincare map P, in normalized coordinates. b) To obtain, also in normalized coordinates, the matrix of the partial derivatives of x,y,z,x,y and i at the time ij+i, with respect to the values of x,... ,z at t = ti. In the case of a halo orbit this matrix would be the monodromy matrix. The point b) is not used by the parallel shooting algorithm, but will be used in the course of the determination of the numerical projection factors. First of all, we require to express the 7 x 7 matrix V in normalized coordinates, Vn. We have Vn =
DT2-V-DT1,
where DT\ is the differential of the transformation, T\, from normalized variables to ecliptic ones: Ti(t,x,y,z,x,y,z)
=
(td,x1,x2,x3,X4,x5,x6),
Parallel Shooting for the Numerical
Refinement
of the Quasi-periodic
Orbit
355
evaluated at the initial point, and DT2 is the differential of the inverse transformation, T2, at the final point: T2(id,x1,X2,x3,Xi,x5,xe)
-
(t,x,y,~z,x,y~,~z).
The over lined variables mean the image variables, and td refers to the time expressed in Julian days, instead of adimensional (normalized) time units. Using the routines TRANSLI, to go from normalized to adimensional variables, and TRANS, to go from adimensional to ecliptic variables, the transformation T\ is obtained. T2 is given by the inverse. The differentials DT\, DT2 have been evaluated by numerical differentiation. The step used in the variables is a magnitude given by the user. We have used the value 1 0 - 6 as more convenient. We shall come back to this point in 8.1.6. When Vn is available, the matrix referred to in b) is obtained easily by deleting the first row and column. The matrix of a) requires a little bit more work. We put
(At} Vn
Ax 0 Az Ax Ay
{ Az )
(
( X* ^ y z
+ St
c0\ Cl
C2
=
C3
X
C4
y
c5
\<% J
\ 2 Jf
The amount St is left free, in order to have c2 = 0. The components, (x, y, z, x, y, 'z)f, of the vector field at the last point, in normalized coordinates, are obtained again from routines TRANS and TRANSLI. If the element (i, j) of matrix Vn is denoted by V„ij, i, j = 0 , . . . , 6, 6t is determined through Vn20At + K21 Ax + Vn23Az + Vn2iAx + Vn25Ay + Vn26Az + Sty = 0. If this value of St is substituted in the expressions of c 0 , c 3 ) ... ,c 6 , we obtain Co =
VnooAt-rVn01Ax ~ {-)
c6
+ Vn03Az-rVn04Ax
+
Vno5Ay-rVn06Az
(vn2oAt + Vn21Ax + Vn23Az + Vn2iAx + Vn25Ay + Vn2eAz)
=
(vnoo-^f)
=
Vn6oAt-rVneiAx
At + ...(vn06-^f)
Az,
+ Vn63Az + Vn64Ax + Vn65Ay + Vne6Az
356
Numerical Refinement
- ( 4J T/
VnGO
of the Quasi-periodic
Orbit
(Vn20At + Vn21Ax + Vn23Az + Vn24Ax + Vn25Ay + Vn26Az) zVn20 \ :—
At + . . .
y Jf
(
yn66
zVn26\ :
.
—
Az.
y Jf
\
The components of c 0 , c 1; c 3 , . . . , c6 (seen as linear forms) give the matrix DP: (DP)U
=
[Vn00.:....
Vn20 y
n
(DPU = (V„ 66 -^p) . The computation of the image under the Poincare map and its differential, is done in the routine POINCP. The routine DERIVP contains the vector field in dimension 48 obtained adding to the equations of motion, the variational equations (we remark that the equation ±Q = 1 and the related variational equations, Voi = 0, i = 0 , . . . , 6 can be skipped). With the initial assignation of values to Q and the iterative procedure, the parallel shooting program (first approach), PS1, is almost ready. We iterate till convergence and the final value of Q is obtained. In the program PS1 we have added several other computations that are the starting point of program NUNOPF to be explained in Section 8.2. We defer to this section the explanation of the remaining part of PS1. 8.1.3
Numerical
Results
and Discussion
of the First
Procedure
Several cases are studied. First, the program PS1 has been run. Then, program NUNOPF (see 8.2) allows to obtain the nominal orbit and the projection factors at equally spaced epochs. These results are used in program CONSIM, which performs the simulations of the maneuvers, and that will be explained in Chapter 9. The computations have been done in the following cases: a) Sun-Barycenter system, case L\, simplified model. b) Sun-Barycenter system, case L\, c) Sun-Barycenter system, case L2. The L2 case for the Earth-Moon system is very interesting for the applications. However, we have not done runs for this case because, as remarked in 5.1.5, the theory that we have used, i.e., the part of Brown's theory given in the book of Escobal, is a poor approximation to the real motion of the Moon. The neglected terms are not important for L\ or L2 near halo orbits of small and medium size of the Sun-Barycenter system. But they are important for halo orbits of the Earth-Moon system. Going back to the results of Chapter 5, we have that several neglected terms produce residual accelerations of the order of 10~ 3 mm/s. However, preliminary
Parallel Shooting for the Numerical
Refinement
of the Quasi-periodic
Orbit
357
explorations indicate that the program PS1 can produce the parameters for a good nominal orbit if a better model of the motion is used (for instance, JPL tapes). See further comments later. The cases b) and c) refer to the full solar system including radiation pressure. The value s/m = 0.01 has been used. It is a pessimistic value because for the real spacecraft roughly 1/3 of that value is foreseen. The case a) requires an explanation. The computation of the position, velocity and acceleration (and when required, over-acceleration) of the bodies of the solar system is done using analytic formulas. The full model includes 263 periodic terms coming from the perturbations of the planets on the Earth, and 45 periodic terms in the motion of the Moon around the Earth. This is very time consuming and, under VAX 11/785, the simulation represents, on the average, 2 s of CPU time for 1 physical day in the L\ and L% cases of the Sun-Barycenter system. For that reason, we have studied and done the bulk of simulations for a simplified model. In this model we only consider the major perturbations due to the noncircular motion of the Earth, where the periodic planetary perturbations are neglected. The radiation pressure has also been included. The simulation of this model is at least 12 times faster than for the full model. A sample of results is shown at the end of this section in Tables 8.2-8.4. The following input data has been used (see Table 8.1) in cases a), b) and c): -
Initial epoch, t0 = MJD 18000. Initial value of the normalized z, ZQ = 0.08. Positive /? is requested. Number of intervals: 16. Each interval is one half revolution. Lower bound for the terms retained in the analytic qpo: 3 — 5 • 10~ 6 . The procedure has been stopped when final error of the functions ||.F(<3)||oo is less than 10~ 6 , or the final correction ||AQW||oo is less than 1 0 - 7 .
Usually 3 iterations are enough to stop the procedure. The corrections to the foreseen final time are of the order of a few (< 5) minutes. The determinant of the linear system which appears in the Newton iterations is large (see table 8.2). It is close to the value of the dominant eigenvalue, Ai, in the halo orbit approximation, raised to a power equal to the number of revolutions. For 8 revolutions we get the value w 10 26 . Concerning the changes in /? from /30 to fiN, different behaviors have been observed. In the case a) the change is less than 1 %, while in cases b) and c) it is near 10 %. In fact, the equations do not bound these variations in /?. How to modify PS1 to bound variations of will be explained in 8.1.4. However, the observed variations of the z-amplitude using PS1 are admissible. Runs done also for z$ = 0.16 show the same behavior. At this point we wish to comment what happens if the analytic (or numerical) halo orbit is taken, instead of the analytic quasi-periodic orbit. Of course this will imply bad conditions at the final epoch. However, the procedure is still convergent
358
Numerical Refinement
of the Quasi-periodic
Orbit
for the L\ and L2 cases of the Sun-Barycenter problem. The number of iterations is increased to 6-8. A reduction in CPU time is obtained if we run 2 or 3 iterations first with a simplified model. As the remaining perturbations are small, a few iterations first with a simplified model produce a good starting Q for the full system, at low cost. The total number of iterations remains unchanged. For the £2 case in the Earth-Moon system, if we try to start with the analytic halo orbit, even if only a few large terms of the noncircular motion of the Moon are included, the procedure breaks down. For other approaches and recommendations we refer to 8.1.6. 8.1.4
A Second Shooting
Procedure
To prevent from one of the possible failures of the first approach, implemented in program PSl, that is, the possible important changes in the ^-amplitude, we have also analyzed a second procedure that has additional advantages. The equations F{Q) = 0, coincide in this case with the equations of 8.1.2 in the first 6 x N components, i.e., the matching part. For the remaining 4 equations we have done the following modifications: 1) The first of them states that the allowed displacement of the initial and final values of x, with respect to the predictions done by the analytic qpo orbit are equal. Furthermore, in this case the analytic qpo used for both estimations is the same. It has the parameters /?o, t$ estimated from the initial data to and ZQ. 2) The second of them states that the final value of z coincides with the value predicted by the qpo initially estimated. The final time, tjv, however, is left free. 3) Let x0, 2/Q 1 ZQ be the initial values of the components of the velocity at the first point, as predicted by the qpo. Changes of these values are, of course, allowed. Let ±Q, yo, ZQ be the searched values. Then, the third equation is written as 7r4(io - ±0) + TT5(y0 - yl0) + n6(z0 - i£) = 0, where ir4, its and TTQ are the last projection factors. These projection factors are obtained from the analytic theory using as values of a and /? the ones corresponding to the halo part of the estimated qpo. We recall, however, that in the A relation for a and /3, the terms coming from the resonant part of the quasi-periodic equations, have been included (see Chapter 7). The estimation of n^, 775 and TTQ is done at the initial epoch using the routine MAGCON to be described in Chapter 9. 4) The fourth equation is similar to the third one, but the last point is used instead of the first one. The projection factors are the same, because we are using only the part coming from the halo orbit, and this part is periodic.
Parallel Shooting for the Numerical Refinement
of the Quasi-periodic
Orbit
359
Summarizing the full equations, we have that to and ZQ are fixed and then ZN is fixed. This prevents from systematic variations of f3. A link is established between x0 and XN, quite similar to the one used in the first approach. The initial velocities io, 2/o, zo are left free but, with respect to the analytic qpo the changes in the initial velocity should not contribute to the initial value of the unstable component. The same is asked for the final point. Another advantage of this approach is that the end conditions are more favorable to a continuation of the mission. The value of ZN is fixed and the value of tjv, that can vary, changes in fact very few (see 8.1.3 and 8.1.5). Then, if we wish to start a new parallel shooting for N intervals, the conditions z 0 = ZM, to ~ ^N hold, where the over-line denotes the values corresponding to the new parallel shooting process. The variable xjy changes slightly from the initial Q(°) to the final Q^ (see 8.1.5, where changes less than 1 0 - 6 are found in adimensional units). As the variations of the velocities at the end epoch t^ and initial new epoch t have zero unstable component according to 3) and 4), the total variation in the unstable component at the matching epoch is, at most, of the order of 10~ 6 . Hence it can be necessary, at most, a maneuver similar to the usual ones (see 8.3). An improvement in this approach consists in considering nominal orbits starting at epochs to and t0 with some overlap, i.e., to < fjv- Then, the shift from one nominal arc to the other can be done at a point such that the unstable components, with respect to both nominal orbits and related projection factors, are equal. We can state 1) to 4) more formally: F6N+1
= X0 - XQ - (xN
- XlN)
= 0,
where x0 = xa ((30, t^, to) and xN = xa(/30,to,tN) with tN chosen such that yN = ya(Po,to,tN) = 0. Here the superscript a denotes analytic quasi-periodic orbit. FQN+2 = ZN - zN
where zN — za{Po,to^N)
— 0,
with the same t^ used before.
^6JV+3 = 7i"4(a;o - ±o) + ^5(2/0 - 2/0) + ne{zo - z%) = 0, F6N+4 = T^i{XN ~ XN) + 7T5(2/JV where, as usual, x0 = xa(/30,to,t0), similar for yN, zN. 8.1.5
Numerical
Results
VN)
+ KQ(ZN - ZN) = 0,
similar for y0, z\ and xN = xa(P0,to,tN)
and Discussion
of the Second
and
Procedure
The results are quite similar to the ones given in 8.1.3, except that now the initial and final values of /3(/30,/3?v) are very close. For instance, for the L\ case in the Sun-Barycenter problem, using the same data given in 8.1.3, the successive values
360
Numerical Refinement
of the Quasi-periodic
Orbit
of z when the orbit crosses the surface y = 0 (normalized coordinates) with z > 0 are (approximately): 0.08, 0.0813, 0.0819, 0.0827, 0.0827, 0.0827, 0.0822, 0.0813, 0.0803. Hence we have only small fluctuations which, translated to km, are of the order of 4000 for 4 years. Seen from the Earth this means a change in the angular distance to the Sun, when the spacecraft is in conjunction with the Sun, which is less than 10'. For the L\ case in the Sun-Barycenter system, the variation between the starting and the adopted values (after j iterations) of the x at the initial and final epochs: JJ) _ jo) XQ
d CU1U
XQ
JJ) _ _(o) JJ jy
Xjy >
6
are 0.75 • 10~ in adimensional units. The variation of the final epoch t(N' — vlj is near 1/2 hour. In 4 years this represents a relative change less than 1.5 • 1 0 - 5 . These results are slightly better for the simplified L\ case and slightly worse for Z/2- We always refer to the Sun-Barycenter system. The convergence of the second approach is roughly equal to that of the first one. Usually 3-4 iterations are enough to have final errors in the equations less than 10~ 6 (in normalized units, i.e., 1.5 km in position and 0.3 mm/s in velocity). The matrix involved in the computations is well conditioned. 8.1.6
Comments
on Different
Shooting
Approaches
We have presented two slightly different approaches to get the initial conditions for the nominal orbit. Here we discuss some additional alternatives that we have tried and we do some recommendations for future work that will improve the results. As it has already been explained in 8.1.2, the approach that imposes conditions on the final point, i.e., the final values of x,i,y,z are chosen equal to the values predicted by the initially estimated analytic qpo, is ill-conditioned. In 8.1.2 we have given geometrical reasons for this. In general, any procedure that leaves xo, io, yo, zo free and specifies the values of xjy, XJV, i/N, ZN to be equal to given quantities is illconditioned. To get well conditioned methods some feedback is required. A simple approach consists in fixing to, ZQ and to leave XQ, XQ, yo, io, as well as £;v, free. Then we impose XN = XO, ZN — zo, XN = io, VN — VO, ZN = zo- This would produce periodic orbits, if this is possible. But the real quasi-periodic motion is relatively far from this one and the approach seems not too suitable. A handicap of this approach is also that the ending conditions are not appropriate for possible extensions of the mission. Some other tested approaches try to minimize the sum of the squares of the variations in x,x,y,z, with respect to the initially estimated qpo, in the initial and final epochs, that is (x-o - 4 ) 2 + ( i 0 - iof
+ (l/o - 2/o)2 + («d ~ 4 ) 2
Parallel Shooting for the Numerical Refinement
of the Quasi-periodic
Orbit
361
+ (xN - x%)2 + (xN - x%)2 + (yN - ylN)2 + (zN - i ^ ) 2 . This minimum condition should be supplemented with 3 additional equations. But again ill-conditioning has been observed. Now we give some recommendations that can improve the practical application of the algorithms described in 8.1.2 and 8.1.4. As the work has been kept in a general form, ready to be adapted to any perturbed three-body problem, the normalized coordinates have been selected. However, if we study the Sun-Bary center problem, cases L\ or Li-, the plane of the ecliptic can be used as a Poincare plane, instead of the extremely moving y — 0 plane. Then, all the computations can be done in ecliptic coordinates avoiding changes that introduce lots of rounding errors. The algorithms as they are stated, can also deal with the Moon. The use of only ecliptic coordinates for the Moon requires a Poincare section (or some other device, for instance, fixed intermediate time values, t\,..., £;v-i) to carry out the parallel shooting. Another improvement should be done in routine DTRAN and, in general in all the routines which use numerical differentiation. Some tests done with routine DTRAN show that the best election of the step used for the numerical differentiation, e, is near 10~ 6 . This is the step in normalized units (of position, velocity and time), and the equivalent quantities have been used in ecliptic coordinates (i.e. 1.5 km, 0.3 mm/s, 5 s, approximately). Two calls of DTRAN to compute the differentials of the transformation from adimensional to ecliptic and its inverse transformation, give matrices that, by multiplication give a matrix which differs from the identity by less than 10~ 6 . It seems that a better numerical scheme would be required to improve this result to 1 0 - 8 at least.
CURRENT VALUE OF SPACECRAFT SECTION IN m**2 DIVIDED BY MASS IN kg = 0 . 0 1 THE MODEL OF THE SOLAR SYSTEM I S : 0 0 11 0 0 0 0 0 0 1 0 0 0 0 0 0
EARTH+M00N-SUN SYSTEM: POINT LI IS USED NUMBER OF INTERVALS AND HALF TURNS OF EACH INTERVAL= 16, 1 INITIAL TIME (IN MJD SINCE 1950) = 18000.00 INITIAL Z-AMPLITUDE = 0.08, POSITIVE Z AMPLITUDE USED STEP FOR NUMERICAL DIFFERENTIATION 1.00E-06 BOUNDS FOR THE ERRORS IN EQUATIONS AND CORRECTIONS = l.E-06 l.E-07 BOUND FOR THE COEFFICIENTS TO BE RETAINED IN ANAQPO = 3.00E-06 Table 8.1 Input of program PS1.
362
Numerical Refinement ITERATION NUMBER 0 .
10
11
12
13
14
15
-4.507131387436E+00 -0.115559058913E+00 1.586662621646E-03 -2.944961694502E+00 0.160396465955E+00 3.893129567529E-04 -1.390069945741E+00 -0.116065730501E+00 -1.294266460115E-03 0.112212590003E+00 0.164234910912E+00 -8.385592440359E-05 1.617669477550E+00 -0.115842424716E+00 1.438505383673E-03 3.176024613866E+00 0.160377548387E+00 -4.731114250831E-05 4.735261565475E+00 -0.115781032636E+00 -1.474363536853E-03 6.241662475811E+00 0.164229628817E+00 1.299358200709E-04 7.743149461809E+00 -0.116126700390E+00 1.251755185586E-03 9.297025134860E+00 0.160406829765E+00 -4.816695385722E-04 10.859920052638E+00 -0.115498817096E+00 1.611703307126E-03 12.371063610591E+00 0.164175618640E+00 3.440060280824E-04 13.869326566390E+00 -0.116404589241E+00 1.046162545422E-03 15.418170341974E+00 0.160483500655E+00 -8.931069239843E-04 16.983942434419E+00 -0.115226279337E+00 -1.688641448835E-03 18.500335332837E+00 0.164074322267E+00 5.587165318448E-04
of the Quasi-periodic INITIAL
Orbit
CONDITIONS
-6.634894615582E-13 0.886262554630E+00
8.000000000238E-02 -3.359451465726E-04
-8.315084516352E-12 -0.944520578098E+00
-6.441438439598E-02 1.262505285705E-04
1.713459788021E-11 0.894306514131E+00
8.011265667490E-02 1.646811961546E-04
2.084762028124E-12 -0.100778533910E+01
-6.465065788279E-02 3.226584954547E-05
-1.546079619399E-11 0.890747614487E+00
8.007352369407E-02 -2.413673198202E-64
5.432939212509E-13 -0.944216928013E+00
-6.442740081182E-02 -1.547852926205E-05
3.876921786695E-11 0.889773002479E+00
8.005986675923E-02 2.623513471166E-04
-1.194032310525E-12 -0.100769819133E+01
-6.464701846985E-02 -4.980317810673E-05
-3.540822771433E-11 0.895282019401E+00
8.012047583758E-02 -1.439826177579E-04
1.422349216381E-12 -0.944686977924E+00
-6.440732009544E-02 -1.554428698314E-04
7.129775161465E-11 0.885313393210E+00
7.998090560363E-02 3.549183998220E-04
-6.471857345435E-13 -0.100680667396E+01
-6.461023564241E-02 -1.266748595605E-04
-6.231062182666E-11 0.899748818271E+00
8.014060073148E-02 -5.377988403884E-05
5.071997783184E-13 -0.945919057002E+00
-6.435652150040E-02 -2.778362301887E-04
9.483296070106E-11 0.881037190447E+00
7.987921242033E-02 4.316839062689E-04
-9.560332931332E-14 -0.100513266175E+01
-6.454338139981E-02 -1.903525237791E-04
Parallel Shooting for the Numerical Refinement
16
19.996199454819E+00 -0.116668969914E+00 8.401378212713E-04
-8.764237700257E-11 0.904029289257E+00
ITERATION NUMBER 0. Z( Z( Z( Z( Z(
1) 3) 5) 7) 9)
= = = = = Z 11) = Z 13) = Z 15) = Z 17) = Z( 19) = Z 21) = z 23) = z 25) = z 27) = z 29) = z 31) = z 33) = z 35) = z 37) = z 39) = z 41) = z 43) = z 45) = z 47) = z 49) = z 51) = z 53) = z 55) = z 57) = z 59) = z 61) = z. 63) = z, 65) = z> 67) = z: 69) = z: 7D = z: 73) = z, 75) = z: 77) = z: 79) = z: si) = z; 83) = z: 85) = z[ 87) =
of the Quasi-periodic
-1 0603443386570377E-03 1 7464018840434269E-04 -2 0730854264346676E-03 1 4153459373772437E-04 1 4978835393756294E-04 -4 9399275783292007E-04 -4 4184537736297394E-05 1 2606120916730176E-04 4 8050403322563717E-05 -6 3736676533809877E-05 1 5971436205586796E-04 3 9981384214993199E-04 1 5402817724069484E-04 1 3353602516375310E-04 2 5849541084049799E-04 -2 7258015413300640E-04 1 7861031912340744E-04 7 1424961057554859E-04 1 0962375591306861E-03 7 2704797798670701E-05 2 6140357110502610E-03 -3 3449817715802688E-04 1 8060272276864374E-04 1 1836574281922224E-03 1 3129383670174022E-03 7 9624967664559954E-05 2 5004514218872620E-03 -6 7104350297175763E-04 1 8739868573115076E-04 1 8205708367341755E-03 2 1457300651135380E-03 1 4914551769327697E-05 4 9548048390121169E-03 -5 9653176521257123E-04 1 8909484887316697E-04 1 9509477469835529E-03 2 2867867770570705E-03 -1 9013963828478850E-05 4 4052317353530240E-03 -1 0115089479887374E-03 1 7577534643216895E-04 2 7132688917243519E-03 2 9886065235009696E-03 -4 .1422427459985103E-05
Orbit
8.013616288594E-02 2.120805064254E-05
MATCHING FUNCTIONS
= = = = Z( 10) = Z 12) = Z 14) = Z 16) = Z 18) = Z( 20) = Z( 22) = Z( 24) = Z( 26) = Z( 28) = Z( 30) = Z< 32) = Z( 34) = Z( 36) = Z( 38) = Z 40) = Z 42) = Z 44) = Z 46) = Z 48) = Z( 50) = Z( 52) = Z( 54) = z 56) = z 58) = z 60) = z 62) = z 64) = z 66) = z 68) = z 70) = z' 72) = z: 74) = z 76) = z 78) = z[ 80) = z: 82) = z: 84) = zI 86) = zI 88) = Z( Z( Z( Z(
2) 4) 6) 8)
1 3 -3 4 8 4 5 2 5 -1 -5 5 -1 -5 -1 -6 -1 3 -1 -4 1 -9 -2 1 -1 -4 -1 -1 -4 5 -2 -8 2 -1 -4 3 -2 -7 1 -2 -6 7 -3 -1
1766145477597918E-03 5238906940230457E-03 2146163732526214E-04 1460657619859544E-04 9734025841540387E-04 7731645428449474E-05 5606654756689550E-05 3068848193741626E-04 7542505939712785E-05 8962722335983881E-04 9312291862311345E-04 3927467862016728E-06 6770777732458622E-04 7178466821177676E-04 6775661296775241E-04 8824072804298149E-04 7899428735633036E-03 1620372535266168E-04 2977049432958930E-03 1030988179649815E-03 6738183193372882E-04 3999023560083043E-04 3754961778442477E-03 5299100450927476E-04 4596620205202457E-03 4999405999980309E-03 0961446619640961E-05 7179066475936453E-03 2654477559714776E-03 5834202086318001E-04 5413195759869493E-03 0808085865100804E-03 5669604231053421E-04 6718723100767920E-03 1297676932006070E-03 0785746556620603E-04 5552588833336574E-03 8319178648624242E-03 2993546887955123E-04 5653960019222637E-03 2711884396090345E-03 4777181786813919E-04 5381753014289696E-03 1254912252027549E-02
363
364
Numerical Refinement
of the Quasi-periodic
Z( 89) = 6.8100020657311661E-03 Z( 90) Z( 91) = -8.2329224873900486E-04 Z( 92) Z( 93) = 1.8377095617027814E-04 Z( 94) Z( 95) = 2.6190206354932272E-03 Z( 96) Z( 97) = -8.6080448324921122E-14 Z( 98) Z( 99) = -6.1314842092485833E-13 Z(100) ERROR EQUATIONS = 1.1254912252027549E-02 ITERATION NUMBER 0.
Orbit
3.1607109625912515E-04 -2.3088335672208828E-03 -5.6733447332411573E-03 4.5354694341825527E-04 8.2245270218838512E-11 -2.5544449498696360E-11
MATRIX DZ
L-INF NORM OF DZ = 133.4031159666282 L-l NORM OF DZ = 186.9591118207345 DETERMINANT OF DZ = -4.7245633079049304E+25 ITERATION NUMBER 1.
INITIAL CONDITIONS
ITERATION NUMBER 1.
MATCHING FUNCTIONS
ERROR EQUATIONS = 6.1092839099010927E-05 ITERATION NUMBER 1.
MATRIX DZ
L-INF NORM OF DZ = 133.2354397664145 L-l NORM OF DZ = 186.7804933113461 DETERMINANT OF DZ = -4.8380262451765111E+25 ITERATION NUMBER 2. -4.507131387436E+00 -0.115686035693E+00 1.662145503771E-03 -2.944986885522E+00 0.160462989414E+00 2.410996205515E-04 -1.390101121246E+00 -0.116051504741E+00 -1.392989283615E-03 0.112221634409E+00 0.164246649988E+00 -1.601830841756E-04 1.617685126852E+00 -0.115818192636E+00 1.361232807429E-03 3.176027697283E+00 0.160443483379E+00 -5.388682273332E-05 4.735286970192E+00 -0.115756262473E+00 -1.383197817337E-03
INITIAL CONDITIONS
-6.634894615582E-13 0.886619986829E+00
8.000000000238E-02 -1.248383245332E-03
-8.315084516352E-12 -0.944828894383E+00
-6.432276175955E-02 1.006673130742E-03
1.713459788021E-11 0.894433763998E+00
8.021023385595E-02 -4.450113179182E-04
2.084762028124E-12 -1.007769437558E+00
-6.463682862906E-02 8.899990915711E-04
-1.546079619399E-11 0.890862544613E+00
8.025532591716E-02 -9.499532671739E-04
5.432939212509E-13 -0.944468964591E+00
-6.446792906590E-02 6.600343519173E-04
3.876921786695E-11 0.889877036738E+00
8.031358466230E-02 -1.524633753834E-04
Parallel Shooting for the Numerical Refinement 7
8
9
10
11
12
13
14
15
16
6.241680612742E+00 0.164238018241E+00 1.735901781248E-04 7.743208542115E+00 -0.116088567875E+00 1.363717494576E-03 9.297025862681E+00 0.160470780432E+00 -3.389433917171E-04 10.859966217055E+00 -0.115471188638E+00 -1.339025813437E-03 12.371059677020E+00 0.164184225262E+00 5.025598934296E-04 13.869396506301E+00 -0.116360702705E+00 1.331788891989E-03 15.412134662789E+00 0.160546943009E+00 -6.163694956370E-04 16.983964031346E+00 -0.115203349549E+00 -1.262612584261E-03 18.500275985466E+00 0.164082989988E+00 8.058326846019E-04 19.996177882840E+00 -0.116790032336E+00 8.392487449267E-04
= = = = = = = = = = = = = = = = =
Orbit
-1.194032310525E-12 -1.007626646699E+00
-6.475292532840E-02 5.217763180122E-04
-3.540822771433E-11 0.895310614979E+00
8.043882307934E-02 -6.543388871216E-04
1.422349216381E-12 -0.944902661390E+00
-6.455460479629E-02 2.977289079794E-04
7.129775161465E-11 0.885413348387E+00
8.034039511493E-02 1.402946790738E-04
-6.471857345435E-13 -1.006706360562E+00
-6.480320434719E-02 1.414393276787E-04
-6.231062182666E-11 0.899715421773E+00
8.054298298118E-02 -3.401635232377E-04
5.071997783184E-13 -0.946124973913E+00
-6.458067265322E-02 -7.123822495844E-05
9.483296070106E-11 0.881152594680E+00
8.029037593750E-02 4.255544497979E-04
-9.560332931332E-14 -1.005026401806E+00
-6.478674596167E-02 -2.397015175106E-04
-8.764237700257E-11 0.904142555551E+00
8.056908842050E-02 2.151118683039E-05
ITERATION NUMBER 2. Z( 1) Z( 3) Z( 5) Z( 7) Z( 9) Z( 11) Z( 13) Z( 15) Z( 17) Z( 19) Z( 21) Z( 23) Z( 25) Z( 27) Z( 29) Z( 31) Z( 33)
of the Quasi-periodic
1 2955636563560802E-10 1 6243471845367452E-11 2 2417728784418500E-10 - 6 9661443280466528E-11 1 5343264853084904E-11 2 4831739442454648E-10 88.6184146624868063E-11 - 6 2423243657461214E-12 2 1267548833137084E-10 - 5 9042742917014834E-11 7 9257676810495781E-12 2 2832385981885750E-10 9 3719365601430127E-11 - 88.2706081566685796E-12 2 1932704263871727E-10 - 66.1675997642396396E-11 - 1 4048345819972496E-12
MATCHING FUNCTIONS Z( 2) Z( 4) Z( 6) Z( 8) Z( 10) Z( 12) Z( 14) Z( 16) Z( 18) Z( 20) Z( 22) Z( 24) Z( 26) Z( 28) Z( 30) Z( 32) Z( 34)
= = = = = = = = = = = = = = = = =
-1.2128505144648472E-10 -1 - 3 6700905543332889E-10 - 2 1110258398120141E-11 - 2 0230545190458304E-10 - 5 4565544620123647E-10 5 0857929955079595E-11 - 9 5418180301454214E-11 - 3 4150180042020182E-10 - 2 1087698617470660E-11 - 1 8321299685708503E-10 - 4 9971036962876860E-10 4 5057360132435414E-11 - 1 0807278683078181E-10 - 3 5463608673639413E-10 - 2 8640350169055993E-11 - 11.9557018331173293E-10 - 5 3477865004695167E-10
365
366
Numerical Refinement
of the Quasi-periodic
35) = 2.2573451441409986E-10 Z( 36) 37) = -5.1773696441159700E-10 Z( 38) 39) = 3.3415556779936573E-11 Z( 40) 41) = -1.7317429990004740E-09 Z( 42) 43) = -8.5042084485564828E-11 Z( 44) 45) = -1.8774825444323184E-12 Z( 46) 47) = 3.1208449713382436E-10 Z( 48) 49) = 2.3176194297036545E-10 Z( 50) 51) = -9.5623283596912856E-12 Z( 52) 53) = 4.6364306838242442E-10 Z( 54) 55) = -2.4409112599005126E-09 Z( 56) 57) = 2.6637189329270505E-10 Z( 58) 59) = 1.5408458647891976E-08 Z( 60) 61) = 4.8525161666646000E-10 Z( 62) 63) = -2.2185897216586703E-11 Z( 64) 65) = 1.0794049265516747E-09 Z( 66) 67) = -2.4316637592391999E-10 Z( 68) 69) = 5.0330468959192132E-12 Z( 70) 71) = 7.0046506095433614E-10 Z( 72) 73) = 7.1250916278131626E-10 Z( 74) 75) = -5.0458512368400932E-11 Z( 76) 77) = 1.4901212486151394E-09 Z( 78) 79) = -2.9180391436511854E-10 Z( 80) 81) = -4.6401984685195963E-11 Z( 82) 83) = -1.6497515853419742E-10 Z( 84) 85) = 1.3705037105182782E-09 Z( 86) 87) = -1.3303291974964271E-10 Z( 88) 89) = 3.3974356106192261E-09 Z( 90) 91) = -6.0766192078176573E-10 Z( 92) 93) = 5.1680493218242418E-11 Z( 94) 95) = 1.7392653567371852E-09 Z( 96) 97) = 2.0719412296976714E-11 Z( 98) 99) = 3.3033395463455406E-10 Z(100) ERROR EQUATIONS = 3.1539561302890802E-08
Orbit
3.9367213461804444E-11 7.5081368205998089E-10 2.4348056762534388E-09 -9.2777328070006541E-11 -2.6759293739186951E-10 -7.4355561445926983E-10 5.2035251690732247E-11 -2.4850148327981714E-10 -8.0019358082342824E-10 -5.9246304422774093E-12 -1.2302051405344017E-08 -3.1539561302890802E-08 1.9802161673647747E-09 -5.5791259806481364E-10 -1.6326811463397446E-09 1.0966664978472734E-10 -6.1284008423534431E-10 -1.6831666239003774E-09 9.8060302275947402E-11 -8.1139825067189086E-10 -2.3446966727121848E-09 1.6827905237314382E-10 5.8456772408788105E-11 1.0165694214149187E-10 -1.3370175061218955E-10 -1.7302219552928211E-09 -4.8853910899072494E-09 4.9811485195756918E-10 -1.5268724548690510E-09 -4.1653095477975355E-09 1.7115996247348250E-10 1.8636550080399460E-11 -3.9729996081538552E-12
Table 8.2 Output of program PSl. Results of the iteration towards the final solution. First, the initial epochs and initial conditions, for each interval of the parallel shooting, are given. After, the values of the matching equations, Z(i), are displayed. Finally, information related to the differential of the matching equations, DZ, is given. The table has been shortened. Note that the second iteration already provides the final orbit.
Parallel Shooting for the Numerical Refinement 1 3 5 7 9 11 13 15
0.1809080761671210D+05 0.1826852345487359D+05 0.1844662280886862D+05 0.1862482952058976D+05 0.1880243704667951D+05 0.1898113094089391D+05 0.1915825771569728D+05 0.1933742290018521D+05
2 4 6 8 10 12 14 16
of the Quasi-periodic
Orbit
0.1818119328227665D+05 0.1835603619881526D+05 0.1853726270692905D+05 0.1871211348985509D+05 0.1889329092637503D+05 0.1906822941119053D+05 0.1924927953407722D+05 0.1942437982764563D+05
Table 8.3 Output of program PSl. Final time (in MJD), for each interval of the parallel shooting procedure.
REVOLUTION NUMBER 1: EIGENVALUES 0.1786494138267907D+04 0.0000000000000000D+00 0.OOOOOOOOOOOOOOOOD+OO 0.5637089970989911D-03 0.9169311746184862D-01 0.1001733915293097D+01 0.1001733915293097D+01 -0.9169311746184862D-01 0.9148021367869823D-02 0.1004673821860350D+01 -0.9148021367869823D-02 0.1004673821860350D+01 REVOLUTION NUMBER 1: EIGENVECTORS 0.3626035858133893D+00 0.0000000000000000D+00 -0.1218989788206588D+00 0.0000000000000000D+00 -0.8489172315157018D-02 0.0000000000000000D+00 0.0000000000000000D+00 0.8356180591299494D+00 0.0000000000000000D+00 -0.3913144459056467D+00 0.0000000000000000D+00 -0.4693267681061035D-01 REVOLUTION NUMBER 2: EIGENVALUES 0.1681325825143609D+04 0.0000000000000000D+00 0.5929472683337834D-03 0.0000000000000000D+00 0.5504941972837015D-01 0.9952177776192929D+00 0.9952177776192929D+00 -0.5504941972837015D-01 0.9982010815697566D+00 0.2775102408761454D-01 0.9982010815697566D+00 -0.2775102408761454D-01 REVOLUTION NUMBER 2: EIGENVECTORS 0.3649109427021232D+00 0.0000000000000000D+00 0.0000000000000000D+00 -0.1233126423292467D+00 0.0000000000000000D+00 -0.8517356467805011D-02 0.0000000000000000D+00 0.8350016441270509D+00 0.0000000000000000D+00 -0.3900111034594093D+00 0.0000000000000000D+00 -0.4717037481643692D-01 REVOLUTION NUMBER 3: EIGENVALUES 0.1780248633976915D+04 0. OOOOOOOOOOOOOOOOD+OO 0.5612444044661386D-03 0.OOOOOOOOOOOOOOOOD+OO 0.9951299503032858D+00 0.9103821971873141D-01 0.9951299503932858D+00 -0.9103821971873141D-01 0.9993917766143136D+00 0.8860161915787859D-02 0.9993917766143136D+00 -0.8966161915787859D-02
367
368
Numerical Refinement
1 2 3 4 5 6
REVOLUTION NUMBER 3: 0.3637205874292893D+00 -0.1220160063553767D+00 -0.8594310464509669D-02 0.8355231596326938D+00 -0.3904404373449051D+00 -0.4695124897188449D-01
EIGENVECTORS 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00
1 1 1 1 1 1
REVOLUTION NUMBER 4 0.1687981912964943D+04 0.5952419864938448D-03 0.1003466287800010D+01 0.1003466287800010D+01 0.1001852509031028D+01 0.1001852509031028D+01 REVOLUTION NUMBER 4: 0.3637840413340302D+00 -0.1231908433829183D+00 -0.8472752665024491D-02 0.8350937725591245D+00 -0.3908944483936553D+00 -0.4725802669973034D-01
EIGENVALUES 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.5598872431697979D-01 -0.5598872431697970D-01 0.2753250298303385D-01 -0.2753250298303385D-01 EIGENVECTORS 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO
1 1 1 1 1 1
REVOLUTION NUMBER 5 0.1772532546718421D+04 0.5593012850952188D-03 0.9885971303508935D+00 0 9885971303508935D+00 0.9941590522489543D+00 0.9941590522489543D+00 REVOLUTION NUMBER 5: 0.3648497864551821D+00 -0.1221467306152026D+00 -0.8510023941993586D-02 0.8354218026667695D+00 -0.3895647496889848D+00 -0.4692660700387003D-01
EIGENVALUES 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.9021774004289062D-01 -0.9021774004289062D-01 0.8428068827937931D-02 -0.8428068827937931D-02 EIGENVECTORS 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO
1 1 1 1
REVOLUTION NUMBER 6 0.1695792671058510D+04 0.5979778774538078D-03 0.1011462750422482D+01 0.1011462750422482D+01 0.1005653771719521D+01 0.1005653771719521D+01 REVOLUTION NUMBER 6: 0.3626674958191477D+00 -0.1230532653295172D+00 -0.8419730297104159D-02 0.8351902906402237D+00
EIGENVALUES 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.5799670725351659D-01 -0.5709670725351659D-01 0.2696170655557521D-01 -0.2696170655557521D-01 EIGENVECTORS 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00
1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 5 6 1 2 3 4
Orbit
1 1 1 1 1 1
1 2 3 4 5 6 1 2 3 4 5 6
of the Quasi-periodic
Parallel Shooting for the Numerical Refinement 5 6
1 1
-0.3917648157286513D+00 -0.4729478921752832D-01
of the Quasi-periodic
Orbit
0.OOOOOOOOOOOOOOOOD+00 0.OOOOOOOOOOOOOOOOD+00
REVOLUTION NUMBER 7: EIGENVALUES 0.OOOOOOOOOOOOOOOOD+OO 0.1763868446013948D+04 0.OOOOOOOOOOOOOOOOD+00 0.5577963843030978D-03 0.8879965796349758D-01 0.9823194002129516D+00 -0.8879965796349758D-01 0.9823194002129516D+00 0.7303087930321156D-02 0.9891260526050620D+00 -0.7303087930321156D-02 0.9891260526050620D+00 REVOLUTION NUMBER 7: EIGENVECTORS 0. OOOOOOOOOOOOOOOOD+OO 0.3659626246125810D+00 0. OOOOOOOOOOOOOOOOD+00 -0.1222877895376673D+00 0.OOOOOOOOOOOOOOOOD+OO -0.9546147515853732D-02 0.OOOOOOOOOOOOOOOOD+00 0.8353166776324223D+00 0.OOOOOOOOOOOOOOOOD+OO -0.3887092952062111D+00 0.OOOOOOOOOOOOOOOOD+00 -0.4685969761451993D-01 REVOLUTION NUMBER 8: EIGENVALUES 0.1704089203814202D+04 0.OOOOOOOOOOOOOOOOD+OO 0.OOOOOOOOOOOOOOOOD+00 0.5985766460713765D-03 0.5993782065521413D-01 0.1018347644053552D+01 -0.5993782065521413D-01 0.1018347644053552D+01 0.2445714882029143D-01 0.1010102213441894D+01 -0.2445714882029143D-01 0.1010102213441894D+01 REVOLUTION NUMBER 8: EIGENVECTORS 0.OOOOOOOOOOOOOOOOD+OO 0.3616152374044021D+00 0.OOOOOOOOOOOOOOOOD+00 -0.1229266612557326D+00 0.OOOOOOOOOOOOOOOOD+OO -0.8356389257807582D-02 0.OOOOOOOOOOOOOOOOD+00 0.8352534244549467D+00 0. OOOOOOOOOOOOOOOOD+OO -0.3926461689864306D+00 0.OOOOOOOOOOOOOOOOD+00 -0.4726869687872015D-01
Table 8.4 Output of program PSl. Eigenvalues and eigenvectors associated to each revolution of the final nominal orbit. Both for the eigenvalues and eigenvectors the left and right columns display the real and imaginary parts. The table has been shortened.
369
370
8.2 8.2.1
Numerical Refinement
of the Quasi-periodic
Orbit
The Final Nominal Orbit and Projection Factors The Problem
of the Floquet Modes for a Quasi-periodic
Orbit
In the case of the periodic halo orbits, the Floquet modes are associated to the eigenvalues of the monodromy matrix. Now, for a quasi-periodic orbit, as the initial and final points are different, the monodromy matrix properly does not exist, nor the associated eigenvalues (or their logarithms: the characteristic exponents). The characteristic exponents for a periodic orbit are replaced by the Lyapunov exponents for a general orbit. The maximal Lyapunov exponent starting at a point P under a flow (f>t is defined by A ^ l i m l m a x l o g p t : ™ 1 ) & t^oo ti€TPM \ ||£|| ) where £ is a nonzero tangent vector at the base manifold M on the point P. This limit exists under mild hypothesis. The value Am measures the maximal averaged rate of escape from a given orbit. It plays the role of the dominant characteristic exponent, logAi in the case of periodic orbits, where T is the period. The vector £, on which the maximum is attained, depends on t, in general, but it converges to some vector £ m that replaces the maximal eigenvector of the periodic orbits. It corresponds to the fastest escaping direction. If we replace £ by a couple of vectors, and a two-dimensional measure is used instead of a norm, the corresponding limit, A, plays the role of the sum of the two more important characteristic exponents. As the dominant one is already available, we can compute the second Lyapunov exponent. Replacing couple by A;-ple and two-dimensional measure by A;-dimensional measure, we get the sum of the k more important characteristic exponents. From this, the value of the fcth one follows. In this way all the Lyapunov exponents are computed by iteration of the process. The corresponding "eigenvectors" (eventually complex) can be determined as follows. Let (£, T]) define a limit two-plane for which the maximum of the logarithm of the quotient between image area and initial area is obtained. The vector £ m should forcedly be in this plane. If it is not so, taking a suitable vector in the (£, rj) plane and £ m , a faster increase of the area would be obtained. Then, £ m is a linear combination of £ and rj. Unless £ m = 77, £ m and 77 are a basis of this plane. All the directions but one in this plane, have a nonnull £ m -component and, therefore, they escape as fast as £ m in the limit. The remaining direction gives the second "eigenvector" at the point P. Again recurrently, all the "eigenvectors" can be obtained. Let £1, £2, • • •, £n be vectors associated to the Lyapunov exponents Ai, A 2 , . . . , A„.
The Final Nominal
Orbit and Projection
371
Factors
In a parallel way to the periodic orbit case, we can define £(*) = &(t) exp(-Ait),.. .,!„(*) = Ut)
exp(-A„i).
The vectors £ • (i) are quasi-periodic, functions of time and they replace the classical Floquet modes of the periodic orbits. In our problem, a process quite similar to the one used for the analytic qpo orbit in Chapter 7, can be carried out for the solution of the variational equations, as they are given in 3.5. Formal expressions for the quasi-periodic Floquet modes are not difficult to obtain (but it is an enormous task!). Formal means that the diverse terms are obtained by recurrence without taking care of convergence problems. Fortunately, as the quasi-periodic corrections to the analytic Floquet modes (and, therefore, projections factors) are small, the analytic halo approach is efficient enough as we will show in Chapter 9. Concerning numerical values of the projection factors for the numerically refined nominal orbit, we present the adopted procedure in 8.2.2. 8.2.2
The Adopted
Procedure
to Obtain the Projection
Factors
Letting aside theoretical considerations and as going to infinity is a too expensive computer task, we have used an expeditive method. First of all, as the tangent spaces at two different points of M6 can be identified, we have used the variational matrix as if it was a monodromy matrix. In fact, the qpo is not too far from the halo orbit. An important difficulty is that, after A; full revolutions, the dominant eigenvalue is close to A*, where Ai is the dominant one in the halo case. On the other side, the most contractive direction has eigenvalue near Aj~*. For k = 4 and Ai = 1700, the relative values of the maximal and minimal eigenvalues are, roughly, 1026 to 1. Hence, we shall lost all the significant digits in the numerical computation of the minimal eigenvalue, and an important part in the intermediate ones. This has been observed, in fact, in our tests. Then we have adopted the criterion of computing the eigenvalues and vectors just every one revolution. Let Ai, A2,..., A/, be the variational matrices associated to the 1st, 2nd,i... , M i revolution. We have k = N or k = N/2. Then, we have computed (real) eigenbases Bx, JB 2 , . . . , Bk at the beginning of each revolution. It is certainly true that, if we select the first vector of B\, for instance, bu, then we have A1611 ^ &21, where 621 is the first vector of B2 • They will coincide if we were dealing with the periodic orbit. This lack of continuity produces a corresponding lack of continuity on the projection factors, but the (small) discontinuities are innocuous. In the program PS1 (or PS2), when the final results for the unknown variable Q are obtained, we have the matrices A\, A2,... ,A& at our disposal, because they have been computed (except in what refers to some changes of coordinates), by routine POINCP. Then, the eigenvalues and eigenvectors of A\, A2, •. •, Ak are computed. A
372
Numerical Refinement
of the Quasi-periodic
Orbit
list of results can be seen in the output of programs PSl and PS2. We have observed that the variations, with respect to the halo results, are small, and for the L\ or L2 cases of the Sun-Barycenter problem clearly show the effect of the eccentricity in every two revolutions. Let Ai, A2, A3, A4, A5, A6 be the eigenvalues of one of the matrices A{. First of all, the largest and the smallest ones are detected. They correspond to the unstable and stable directions, respectively. The related eigenvectors, suitably normalized, are taken as initial vectors ei and e2- Then we examine the remaining eigenvectors. If there are conjugate complex eigenvectors, a real basis is obtained using the real and imaginary parts. The four vectors obtained are called 1*3,1x4, « 5 and u§. Then, to avoid bad conditioning in the numerical computations, and taking into account, as stated in Chapter 4, that what is relevant is the set of minors of the first column of the Floquet basis, a partial orthogonalization is done. The Gramm-Schmidt procedure has been used to replace 1*3,1x4, u§,u§ by a set e3,e4,e5,e 6 such that, together with e 2 , give an orthonormal basis of the subspace generated by e 2 , U3, U4, 1x5, u§. These vectors are the initial conditions for the variational equations at the beginning of each revolution. If the parallel shooting method uses half revolutions, each one of the matrices Ai can be written as Ai = A\ ' A\ , where A\ ' means the variational matrix corresponding to the first half revolution and A\ ' to the second one. The vectors Uj = A\ 'ej can be defined. Then, as in the previous case, we take the basis ei = u i / | | u i | | , e2 = U2/HU2II and S3, e^, e$, e~e, such that e 2 , . . • ,§6 are an orthogonal basis of the subspace generated by H2,... ,Ue- These new vectors, ej, j = 1 , . . . , 6, are taken as initial conditions, for the variational equations, at the intermediate half revolutions. All those vectors, e\,..., e§, e~i,..., e~e, for each revolution, are computed in programs PSl and PS2 (see Table 8.4) and used in the program NUNOPF to be describe in what follows. 8.2.3
A Program for the Final Nominal and Discussion
Computations.
Results
The available output of PS is organized as follows: a) For each initial epoch of a full revolution or a half revolution, the time ti and the initial conditions Xi, yi = 0, Z{, if, i/i, ii are known in normalized coordinates. b) For the same epochs the (partially orthonormalized) Floquet basis is known. Then we proceed to integrate simultaneously the equations of motion and the variational equations. Using a fixed time step in the integration (small enough), nominal points at equally spaced epochs are computed. The integration of the
The Final Nominal Orbit and Projection
variational equations gives the current Floquet basis, ei(t),... projection factors are computed using the formula m
•Ki =
i|lei|| • •, — , 2=
373
Factors
,e6(t).
Then, the
a l,...,0,
det where m* is the ith (signed) minor of the current Floquet basis and det is its determinant. Hence, also the projection factors are available at equally spaced epochs. When the nominal orbit and the projection factors are available at equally spaced epochs, T0,...,Tq they can be computed for intermediate orbits using Lagrange interpolation:
j= — r
where / is the desired function (a coordinate of the orbit or a projection factor), Tj is the nearest available epoch to the current epoch t, and r is one half of the degree of the interpolation polynomial. Usually r — 5 or 6 has shown to be enough. The Lagrange polynomials fj(t) are given by r <)
yS (*)=
r T
n
(*- <+*)
k = —r k^j
/
n
(Ti+j-Tt+k).
k — —r kjtj
If the nearest point Tj, to the epoch t, in the available lattice has index less than r or greater than q — r then the value of i is changed to r and q — r, respectively. As it will be explained in Chapter 9, the derivatives of some of these functions, with respect to time, are required. They can also be obtained from the Lagrange interpolation formula by
/'(*)« £ /(r!+j)^f(t). j=-r
An explicit formula for the time derivative of the Lagrange polynomials is
jtv?v= £ ( n it-™) / n fo+i-Ti+*) •
/ = —r
k = —r
k = —r
These Lagrange formulas are implemented in routine LAG and will be used in the next chapter. A program called NUNOPF has been implemented to compute, at equally spaced epochs, the nominal orbit and the projection factors. A shortened sample of results is given at the end of this section in Tables 8.5 and 8.6. Usually a time step of 0.6
374
Numerical Refinement
of the Quasi-periodic
Orbit
days has been used for the numerical integration. The points obtained are stored at epochs spaced 1.8 days. This is enough for the interpolation process. Finally we should add a word of caution concerning the unavoidable discontinuities produced at the matching epochs. These discontinuities are not dangerous for the projection factors. However, despite that they are smaller, they can be dangerous for the nominal orbit. An error in the matching influences, with changing sign, epochs ranging from —rh to rh with respect to the matching epoch. Here h refers to the step in the lattice: h = TJ+I — Tj. In the worst case, and only due to these numerical problems, repeated maneuvers with opposite sign would be required by the control algorithm. An easy way to avoid these problems is to perform a smoothing of the data for the nominal orbit. However this has not been implemented.
The Final Nominal Orbit and Projection
0.180000D+5 0.180018D+5 0.180036D+5 0.180054D+5 0.180072D+5 0.180090D+5 0.180108D+5 0.180126D+5 0.120144D+5 0.180162D+5 0.180180D+5 0.180198D+5 0.180216D+5 0.180234D+5 0.180252D+5 0.180270D+5 0.180288D+5 0.180306D+5 0.180324D+5 0.180342D+5 0.180360D+5 0.180378D+5 0.180396D+5 0.180412D+5 0.180432D+5
-0.113101994973D+00 0.950943329824D-03 -0.112700886451D+00 0.249412631348D-01 -0.111596144304D+00 0.487116726452D-01 -0.109689158312D-00 0.720037320238D-01 -0.107106852367D+00 0.946752195529D-01 -0.103832985458D+00 0.116691415248D+00 -0.998897971256D-01 0.137891505760D+00 -0.953022282269D-01 0.158261206749D+00 -0.900989082867D-01 0.177638882583D+00 -0.843127598499D-01 0.195881573093D+00 -0.779811078842D-01 0.212850350534D+00 -0.711453363498D-01 0.228424099302D+00 -0.638501505579D-01 0.242511167767D+00 -0.561425156126D-01 0.255058499448D+00 -0.480703765380D-01 0.266055818934D+00 -0.396814322997D-01 0.275525377401D+00 -0.310227160486D-01 0.283476498784D+00 -0.221421412487D-01 0.289833586382D+00 -0.130912230363D-01 0.294458657320D+00 -0.392474640822D-02 0.297301539285D+00 0.530303597442D-02 0.298436083738D+00 0.145408673673D-01 0.297969293921D+00 0.237403469708D-01 0.295968932290D+00 0.328549604881D-01 0.292490909920D+00 0.418393622700D-01 0.287593349612D+00
Factors
0.139007960301D-11 0.852160016609D+00 0.263574191015D-01 0.849685798829D+00 0.525867647957D-01 0.843891511415D+00 0.785861448874D-01 0.834861379089D+00 0.104257792941D+00 0.822731116261D+00 0.129507013260D+00 0.807595068051D+00 0.154241746224D+00 0.789508729440D+00 0.178371379552D+00 0.768521714691D+00 0.201807089448D+00 0.744702272409D+00 0.224462593325D+00 0.718144383681D+00 0.246254783776D+00 0.688969213674D+00 0.267104924169D+00 0.657321485056D+00 0.286938875984D+00 0.623362328546D+00 0.305687651235D+00 0.587258558662D+00 0.323287321094D+00 0.549166993642D+00 0.339678384933D+00 0.509213001666D+00 0.354804512738D+00 0.467476771133D+00 0.368611545275D+00 0.424031370325D+00 0.381048239921D+00 0.379043818240D+00 0.392072363073D+00 0.332757352003D*00 0.401645213923D+00 0.285372855811D+00 0.409739909192D+00 0.237017845290D+00 0.416314729638D+00 0.187790024449D+00 0.421357390341D+00 0.137791185507D+00 0.424841404466D+00 0.871399974889D-01
375
0.799999999945D-01 -0.997598068523D-02 0.795689837546D-01 -0.178555369929D-01 0.788949401017D-01 -0.256652019383D-01 0.779807026391D-01 -0.333631191971D-01 0.768301651102D-01 -0.409294796397D-01 0.754476696224D-01 -0.483440201468D-01 0.738377838887D-01 -0.556109088943D-01 0.720054090571D-01 -0.627116204168D-01 0.699559504450D-01 -0.696284284419D-01 0.676954395228D-01 -0.763399756641D-01 0.652305897735D-01 -0.828227858817D-01 0.625687937347D-01 -0.890567575074D-01 0.597180677816D-01 -0.950227427095D-01 0.566899517094D-01 -0.100705883963D+00 0.534843713891D-01 -0.106096220715D+00 0.501194853384D-01 -0.111188388240D+00 0.466016025932D-01 -0.115976533194D+00 0.429403691876D-01 -0.120442773918D+00 0.391462294048D-01 -0.124555306989D+00 0.352305739978D-01 -0.128288586199D+00 0.312053290838D-01 -0.131632987903D+00 0.270825982139D-01 -0.134583718194D+00 0.228747003524D-01 -0.137132191574D+00 0.185942880908D-01 -0.139264766290D+00 0.142544913835D-01 -0.140964751879D+00
376 0.180450D+5 0.180468D+5 0.180486D+5 0.180504D+5 0.180522D+5 0.180540D+5 0.180558D+5 0.180576D+5 0.180594D+5 0.180612D+5 0.180630D+5 0.180648D+5 0.180666D+5 0.180684D+5 0.180702D+5 0.180720D+5 0.180738D+5 0.180756D+5 0.180774D+5 0.180792D+5 0.180810D+5
Numerical Refinement
0.506491137621D-01 0.281215913878D+00 0.592408314283D-01 0.273488959597D+00 0.675726865179D-01 0.264444272249D+00 0.756052259690D-01 0.254175151076D+00 0.833024961903D-01 0.242815761373D+00 0.906334206284D-01 0.230547329826D+00 0.975732047544D-01 0.217590831246D+00 0.104103933229D+00 0.204155583530D+00 0.110212655899D+00 0.190335549089D+00 0.115887102229D+00 0.176100370381D+00 0.121114740069D+00 0.161502171450D+00 0.125887952808D+00 0.146770978733D+00 0.130205834823D+00 0.132189230724D+00 0.134078053362D+00 0.117994300421D+00 0.137519035371D+00 0.104360214774D+00 0.140548121380D+00 0.914061649417D-01 0.143187613788D+00 0.792055412390D-01 0.145461465674D+00 0.677925584469D-01 0.147394161908D+00 0.571684966724D-01 0.149009819701D+00 0.473099657849D-01 0.150331596236D+00 0.381806509559D-01
of the Quasi-periodic
0.426748659515D+00 0.359744516653D-01 0.427065596862D+00 -0.155497896093D-01 0.425783704699D+00 -0.672632186769D-01 0.422899891111D+00 -0.118988414300D+00 0.418416449892D+00 -0.170549038000D+00 0.412341123082D+00 -0.221784174529D+00 0.404685997656D+00 -0 272570648582D+00 0.395466137595D+00 -0.322841924612D+00 0.384698212138D+00 -0.372543513388D+00 0.372402190590D+00 -0.421493936712D+00 0.358606193292D+00 -0.469368779920D+00 0.343348373615D+00 -0.515875001595D+00 0.326674197629D+00 -0.560815775331D+00 0.308634766104D+00 -0.604032366455D+00 0.289285974851D+00 -0.645355691155D+00 0.268689430106D+00 -0.684587904999D+00 0.246913352115D+00 -0.721499757157D+00 0.224033529537D+00 -0.755832900049D+00 0.200134137688D+00 -0.787303299376D+00 0.175308435639D+00 -0.815611209410D+00 0.149659125087D+00 -0.840447950797D+00
Orbit
0.986898976117D-02 -0.142213660045D+00 0.545204301167D-02 -0.142992640641D+00 0.101848791333D-02 -0.143283425194D+00 -0.341629231050D-02 -0.143069090141D+00 -0.783641723591D-02 -0.142334485198D+00 -0.122255655822D-01 -0.141066240543D+00 -0.165670202119D-01 -0.139251869710D+00 -0.208436546789D-01 -0.136876676026D+00 -0.250377952271D-01 -0.133919629322D+00 -0.291310527640D-01 -0.130357351806D+00 -0.331044363891D-01 -0.126175708701D+00 -0.369386679639D-01 -0.121398871333D+00 -0.406143098597D-01 -0.115931304291D+00 -0.441117232055D-01 -0.109856697991D+00 -0.474111208603D-01 -0.103141236382D+00 -0.504926684848D-01 -0.957869540257D-01 -0.533397218000D-01 -0.878042529309D-01 -0.559241127892D-01 -0.792137639709D-01 -0.582364892651D-01 -0.700477292157D-01 -0.602566863082D-01 -0.603506009107D-01 -0.619690982594D-01 -0.501784148222D-01
Table 8.5 Beginning of the output of program NUNOPF. Epoch, position and velocity of the nominal orbit. Sun-Barycenter problem, L\ equilibrium point, f) = 0.08.
The Final Nominal Orbit and Projection
0.180000D+5 0.180018D+5 0.180036D+5 0.180054D+5 0.180072D+5 0.180090D+5 0.180108D+5 0.180126D+5 0.180144D+5 0.180162D+5 0.180180D+5 0.180198D+5 0.180216D+5 0.180234D+5 0.180252D+5 0.180270D+5 0.180288D+5 0.180306D+5 0.180324D+5 0.180342D+5 0.180360D+5 0.180378D+5 0.180396D+5 0.180414D+5 0.180432D+5
0.157475089845D+01 0.529266452909D+00 0.157331019393D+01 0.532199676197D+00 0.157250729337D+01 0.535260695367D+00 0.157230291005D+01 0.538348203330D+00 0.157256234902D+01 0.541414370158D+00 0.157326158574D+01 0.544483037985D+00 0.157447411327D+01 0.547590779965D+00 0.157630515236D+01 0.550757564814D+00 0.157885416295D+01 0.553982061086D+00 0.158220602429D+01 0.557246361252D+00 0.158642657100D+01 0.560524287632D+00 0.159156148360D+01 0.563782921606D+00 0.159763704647D+01 0.566994712395D+00 0.160466445355D+01 0.570143263952D+00 0.161265562599D+01 0.573234208564D+00 0.162197125487D+01 0.576306581750D+00 0.163190936284D+01 0.579423981221D+00 0.164368470288D+01 0.582607202528D+00 0.165710909007D+01 0.585766477651D+00 0.167201089724D+01 0.588805144474D+00 0.168831318478D+01 0.591727764939D+00 0.170614238943D+01 0.594591335796D+00 0.172569961335D+01 0.597443419234D+00 0.174717565854D+01 0.600305588140D+00 0.177072452542D+01 0.603175924967D+00
Factors
-0.481386384187D+00 0.180731083008D+00 -0.505355647694D+00 0.177049270484D+00 -0.528801625372D+00 0.173710964472D+00 -0.551737533052D+00 0.170683061950D+00 -0.574242420566D+00 0.167990214464D+00 -0.596318897833D+00 0.165560540424D+00 -0.617910523528D+00 0.163503432245D+00 -0.638946451354D+00 0.161800058898D+00 -0.659366102222D+00 0.160453680231D+00 -0.679126180264D+00 0.159463046984D+00 -0.698203665136D+00 0.158825540770D+00 -0.716595091716D+00 0.158540033461D+00 -0.734312767819D+00 0.158609333550D+00 -0.751379974502D+00 0.159042277097D+00 -0.767800708033D+00 0.159859506178D+00 -0.783561363592D+00 0.161074499313D+00 -0.798571176451D+00 0.162717963552D+00 -0.812721728684D+00 0.164829254853D+00 -0.826011270257D+00 0.167363402928D+00 -0.838506936101D+00 0.170321865046D+00 -0.850202249798D+00 0.173729908673D+00 -0.861023647722D+00 0.177622253740D+00 -0.870876329712D+00 0.182034344205D+00 -0.879663740906D+00 0.186988940755D+00 -0.887289229016D+00 0.192501474288D+00
377
-0.671090390847D-01 -0.110203637406D-01 -0.655280939664D-01 -0.976274748340D-02 -0.637804991104D-01 -0.846027478986D-02 -0.619077723875D-01 -0.711187155287D-02 -0.599056969046D-01 -0.571730664503D-02 -0.577497410132D-01 -0.427800569063D-02 -0.554231200387D-01 -0.279614213713D-02 -0.529204210829D-01 -0.127411091808D-02 -0.502431703737D-01 0.285581996588D-03 -0.473998002264D-01 0.188028829598D-02 -0.443959601938D-01 0.350717947179D-02 -0.412389971590D-01 0.516319974789D-02 -0.379318434627D-01 0.684507619827D-02 -0.344708049387D-01 0.854928364765D-02 -0.308422934245D-01 0.102720880663D-01 -0.270218473260D-01 0.120096279816D-01 -0.229860913124D-01 0.137578791383D-01 -0.187437010502D-01 0.155117730271D-01 -0.143343453184D-01 0.172640936810D-01 -0.977128512857D-02 0.190074766765D-01 -0.503164336170D-02 0.207366456724D-01 -0.892585767243D-04 0.224471645861D-01 0.507207288761D-02 0.241338193460D-01 0.104599853416D-01 0.257901317024D-01 0.160766014452D-01 0.274083819023D-01
378
Numerical Refinement
0.180450D+5 0.180468D+5 0.180486D+5 0.180504D+5 0.180522D+5 0.180540D+5 0.180558D+5 0.180576D+5 0.180594D+5 0.180612D+5 0.180630D+5 0.180648D+5 0.180666D+5 0.180684D+5 0.180702D+5 0.180720D+5 0.180738D+5 0.180756D+5 0.180774D+5 0.180792D+5 0.180810D+5
0.179645672409D+01 0.606034629130D+00 0.182443641261D+01 0.608849496995D+00 0.185467894023D+01 0.611581577549D+00 0.188714944530D+01 0.614191897969D+00 0.192176628992D+01 0.616650588719D+00 0.195842368282D+01 0.618950740448D+00 0.199707514529D+01 0.621128609303D+00 0.203791832641D+01 0.623271283918D+00 0.208141513862D+01 0.625432639380D+00 0.212755490428D+01 0.627469113947D+00 0.217545373170D+01 0.629136025160D+00 0.222427152703D+01 0.630337662079D+00 0.227361331512D+01 0.631103267316D+00 0.232321751573D+01 0.631471941745D+00 0.237273001799D+01 0.631448813711D+00 0.242163994310D+01 0.631006605336D+00 0.246925806084D+01 0.630089851625D+00 0.251475952857D+01 0.628624007364D+00 0.255715962105D+01 0.626522982057D+00 0.259537013718D+01 0.623698439881D+00 0.262823265405D+01 0.620071631691D+00
of the Quasi-periodic
-0.893654376759D+00 0.198584455939D+00 -0.898656402494D+00 0.205246481365D+00 -0.902184440264D+00 0.212495456676D+00 -0.904113786355D+00 0.220339995747D+00 -0.904296161115D+00 0.228791474301D+00 -0.902541633463D+00 0.237867212717D+00 -0.898587813376D+00 0.247595502010D+00 -0.892080222948D+00 0.258016384411D+00 -0.882669620088D+00 0.269149484146D+00 -0.870190773835D+00 0.280931706306D+00 -0.854524895460D+00 0.293256027212D+00 -0.835385418877D+00 0.306070293645D+00 -0.812407505403D+00 0.319362657451D+00 -0.785254197200D+00 0.333109716429D+00 -0.753646224157D+00 0.347255701690D+00 -0.717377789387D+00 0.361710046590D+00 -0.676339850310D+00 0.376348883816D+00 -0.630549463746D+00 0.391017423845D+00 -0.580180675129D+00 0.405533553666D+00 -0.525591243035D+00 0.419693735832D+00 -0.467339121205D+00 0.433282096768D+00
Orbit
0.219204076701D-01 0.289797246902D-01 0.279873741470D-01 0.304943182762D-01 0.342719704488D-01 0.319414829489D-01 0.407683367127D-01 0.333099256087D-01 0.474717251119D-01 0.345880962465D-01 0.543804808025D-01 0.357648194349D-01 0.614972837993D-01 0.368303702437D-01 0.688220957528D-01 0.377771714665D-01 0.763266398826D-01 0.385957142921D-01 0.839389496817D-01 0.392654607467D-01 0.915793224179D-01 0.397599555731D-01 0.991859475590D-01 0.400613357528D-01 0.106695801922D+00 0.401592575226D-01 0.114032517499D+00 0.400444442708D-01 0.121098589112D+00 0.397066312844D-01 0.127778569426D+00 0.391350380419D-01 0.133941562894D+00 0.383194306526D-01 0.139445327304D+00 0.372512557933D-01 0.144141959824D+00 0.359247861811D-01 0.147884902336D+00 0.343382769360D-01 0.150536114735D+00 0.324951098599D-01
Table 8.6 Beginning of the output of program NUNOPF. Epoch and coordinates of the projection factors. Sun-Barycenter problem. Li equilibrium point. /3 = 0.08.
References
8.3
379
References [1] R. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin, 1978. [2] R. Bulirsh and J. Stoer. Foundations of Numerical Analysis. Springer Verlag, 1981. [3] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer Verlag, 1983. [4] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley & Sons, 1966. [5] J.B. Pesin. "Characteristic Lyapunov exponents and smooth ergodic theory" Russ. Math. Surv., 32, 55-114, 1977. [6] V. Szebehely. Theory of Orbits. Academic Press, 1967.
Chapter 9
The On/off Control Strategy: Simulations and Discussion
This is the closing chapter concerning the quasi-periodic motion of a controlled spacecraft in the vicinity of a halo orbit of the Sun-Barycenter system. Final results for the main goal of the work, i.e., station keeping, are given here. The first step is the election of a control strategy: When and how a maneuver should be done. The second step is the elaboration of a simulation program for the behavior of the controlled spacecraft. Several runs, with different parameters, allow us to detect the influence of the distinct factors in the total fuel consumption. As a last step we discuss the feasibility of the radiation pressure control. 9.1
9.1.1
A Simulation Program for the Motion of the Controlled Spacecraft The Equations of Motion. Introduction of Random and Systematic Noise in the Solar Radiation Pressure Effect
The standing equations of motion for the noncontroUed motion are the classical Newton's equations r = -G >
rnAlF——^
where A runs over all the bodies of the solar system and the coordinates are ecliptic centered at the barycenter of the solar system. The on/off controls are supposed to act in a very short time (except in the case of radiation pressure maneuvers). Then, when a control is applied we merely shift the velocities by the suitable amount. The simulation program is suited to this approach because we have used a onestep method (a Runge-Kutta-Fehlberg algorithm of order 7/8 and automatic step size control). The mass of the Sun has been altered, as explained in Chapter 5, to account for 381
382
The On/off
Control Strategy: Simulations
and
Discussion
the radiation pressure effects. As the effects of the radiation pressure have some uncertainties, we have added a random contribution to the acceleration given above. In order not to produce conflict with the numerical integration scheme, the random forces have been kept fixed at each step of the integration. The "standard" random errors in the radiation pressure consist in a relative error, in the modulus of the radiation pressure acceleration, which is supposed distributed according to a centered normal law with typical deviation 5%. Normally distributed errors, with zero mean and typical deviation equal to 0.05 rad, have been used for both ecliptic latitude and longitude of the radiation pressure acceleration. These standard values can be modified using an amplification (or reduction if less than 1) factor. A systematic noise can be introduced in the following way. The nominal orbit is computed with a given value of s/m (spacecraft section facing to the Sun divided by mass). If the simulation is done with a value of s/m greater (less) than the nominal one, a net acceleration outwards (towards) the Sun will result. In all computations (except for the introduction of systematic errors), the adopted value of s/m has been 0.01. This is pessimistic because, probably, the real figure will be 1/3 of that one.
9.1.2
The Effect of Tracking Errors of Maneuvers
and Errors
in the
Execution
The current point will be known, in the applications, through tracking. As specified by the Agency, for the L\ and L2 cases of the Sun-Barycenter problem, the tracking errors have been supposed to be distributed according to centered normal laws with 2(7 deviations equal to 3, 5 and 30 km, 2, 2 and 6 mm/s in x, y, z, x, y, z, respectively. Here the orientation of the coordinate axes is the same as the adimensional system. When the simulation is started, at a given epoch, the nominal point is computed. Then, random variations in the 6 coordinates are introduced due to tracking errors according to the given laws. The integration of the motion of the spacecraft in the solar system field is done with the random errors of 9.1.1. At every step, the unstable component is computed, but to this computation (not to the current point) again tracking errors are applied. Hence, for a given epoch we have 3 different points: The nominal one, the real one and the estimated point. When a too large unstable component forces to the execution of a maneuver, the x- and y-components of the jump in velocity are computed. Then, again some execution errors are introduced. They can be due to wrong direction for the maneuver or wrong modulus of the same. The "standard" assumptions on those errors are the following. We have supposed that, if an {x,y) maneuver should be done, the x- and ^-components are modified
A Simulation
Program for the Motion of the Controlled Spacecraft
383
with a centered normal deviation with 2a value equal to 5% of the modulus of the scheduled maneuver. For the ^-component (theoretically zero) we have used a 2% of the same amount. If x only or y only maneuvers are done it is supposed, also, that the errors are of 5% in the active component and 2% in the nonactive ones. Both the standard values of the tracking and the execution of the maneuver errors, can be modified using amplifying factors.
9.1.3
How to Decide
When a Control Should be
Applied
It is clear that to do a maneuver when the unstable component is too small is nonsense. The small instability can be due to tracking errors. In Chapter 3 it has been found that, taking a box, centered at the origin, with 2a half sides in each of the six variables, the maximal unstable component, changing from one point in the orbit to another one, is close to 2 • 1 0 - 7 in adimensional units. Furthermore, the random errors in the acceleration should cancel on the average, but locally can have some importance. With the used values, their amount can be estimated in 1 • 1 0 - 7 , approximately, in the unstable component (u.c. for short). Hence, maneuvers with an u.c. less than 2, 3 or 4 times 10~ 7 should not be done. A value is given, by the user of the simulation program, for this lower bound of the u.c. in modulus. Below this value no maneuver should be done. When the u.c. is greater than the given value, a maneuver can be useful. However, too frequent maneuvers should be avoided because some time interval is necessary to settle down the tracking errors. Typically a time interval of one month, at least, has been required, between two consecutive maneuvers. If the u.c. is greater than the lower bound and the time since last control is large enough, we must be sure that the u.c. is increasing in an exponential way. If this is not so, the deviations can be due to the presence of small oscillations in the motion around the nominal orbit, because of a not accurate enough nominal orbit, as happens when an analytic one is taken. If the u.c. increases by a factor Ai (the dominant eigenvalue) in one period, T, in a step of integration, Ai, should increase, in theory by a factor exp [At • ij^). A value, m, slightly smaller than J ^ has been used. If for 3 consecutive steps of integration, the quotient of successive u.c. is greater than exp(mAt), then a clear exponential behavior is present. In any case an upper bound of the u.c. must be given such that, if the u.c. is greater than this upper bound, a maneuver is done unconditionally. From the unstable character of the behavior it follows that the best choice (from the optimal point of view, i.e. the one such that the foreseen fuel used divided by the time interval between two consecutive maneuvers reaches a minimum) is to perform maneuvers at a value of the u.c. roughly equal to e = exp(l) times the sum of the total effect of the different errors. Using a lower bound 0.4 • 10~ 6 , a value of the upper bound of 10~ 6 is suitable.
384
The On/off
9.1.4
Description
of the
Control Strategy: Simulations
and
Discussion
Program
A program (CONSIM) has been produced for the simulation of the control according to what has been said in 9.1.1 to 9.1.3. For the nominal orbit and for the projection factors several possibilities are offered: (1) Numerical halo orbit (in this case, the projection on the Floquet modes 3 and 4 is also available optionally). (2) Analytic quasi-periodic orbit (generated by routine ANAQPO from the output of ANACOM and QPO) and analytic parameters of control (it is enough to use the ones of the RTBP) generated by program CONA from the output of ANAVAR. (3) Refined numerical quasi-periodic orbit and related normalized projection factors. They are generated by programs PS (PS1 or PS2) and NUNOPF. To perform checks, a nominal orbit of any kind can be used with projection factors of any kind. To allow for this possibility several additional parameters can be requested. The determination of a point in the orbit can be done as follows: I) The point in the nominal orbit is computed at the current time. II) It is computed at a time near the current one such that the distance from the actually computed (by integration) point to the selected point in the nominal path be a local minimum. This is done writing d2 = (x - xnf
+ (y- ynf
+ (z - zn)2 ,
where xn, yn, zn are the nominal values and x, y, z the real ones. Then the nominal ones are considered functions of time and the others are constant. By time differentiation - 2 ^ ) ' = (x~
x
n)x + (y- yn)y + {z- zn)z = 0.
This equation is solved for t using Newton's method. The nominal orbit is computed in routine NOMORB. The type of the maneuvers can also be selected: a) b) c) d)
Full optimal control ((z,y)-plane maneuvers). x-axis maneuvers. y-axis maneuvers. Radiation pressure maneuvers.
The random generator used to obtain normally distributed points (for the noise in acceleration and also for tracking and maneuvers errors) is called a given (by the
Numerical Results of the
Simulations
385
user) number of times before starting the proper computations. This allows to do statistics with all the other data fixed. Each time a maneuver is done, written output is produced related to it. At the end of the run a statistics of the maneuvers is done. The available information is: • number of maneuvers, • total amount of Av required (in adimensional and physical units), • minimum and maximum observed time between two consecutive maneuvers (in Julian days), • maximal and minimal maneuver (in adimensional and physical units). The normalized projection factors are computed by routine MAGCON. From them the unitary controls can be computed in any case. The numerical RTBP values are read from the output of program PAPUS. They are given as Fourier series and the only thing to do is the evaluation of the series at a given angle. The analytic values are obtained from the output of CONA. From this output and with the x- and ^-amplitudes determined when the nominal orbit is computed (if the analytic orbit is used) or directly requested otherwise, a Fourier series with numerical coefficients is obtained for the projection factors, determinant and first Floquet mode. From a given angle (note that the period should be given if the orbit chosen is the numerical one) the three magnitudes can be determined and from them the normalized projection factors. Finally, if numerically refined projection factors are used, the only thing to do is to obtain them at a given epoch using the Lagrange interpolation routine LAG.
9.2 9.2.1
Numerical Results of the Simulations A Summary
of
Results
First of all we present tables of a summary of the results in the L\ case SunBarycenter problem for the initial epoch t0 = 18 000 MJD50 (since 1950.0) and z0 = 0.08. Table 9.1 refers to the simplified model using numerically refined nominal orbit and projection factors. The bulk of the simulations is done in this case because of CPU time reasons. Table 9.2 refers to the full model also with numerical values. Some examples of fully analytic control (i.e., analytic qpo and analytic projection factors) are given. The results are quite similar in the full and simplified models. This is due to the fact that, if the nominal orbit is equally good, what matters for the instability are the tracking, perturbing noise and maneuver execution errors. The results are not sensitive to the value of /? (within moderate values) and they are essentially unchanged if Li is used instead of L\ (with a small improvement due
386
The On/off
Control Strategy: Simulations
and
Discussion
to a minor rate of instability). As a summary of the Tables we can say that, for the standard values of the different errors at most 20 cm/s per year are required. The time interval between maneuvers ranges between 2 and 6 months. This is changed if the standard errors are altered as it will be explained in 9.2.2. In the most pessimistic case (errors 2,2 and 4 times the standard ones and a systematic error of 10% in the radiation pressure) at most 50 cm/s per year are required. The analytic case is (of course) worse. Roughly, it requires 1 cm/s per day on the average. Reductions of this result seen not too difficult to obtain if more terms are kept in the analytic expansions, but then the computing time of the solution will be substantially increased. All the computations have been done with the option: minimal distance from the nominal to the current point. In the interactive runs of CONSIM additional information appears which allows to check the values of the changes of the nominal point in time. They rarely exceed 15 m in runs covering 4 years controlled by an on/off algorithm. In the Table Wu max,mm
At ampi, i = 1,2,3
control pr calls man Av -t
min,max
y
min,max
refer
to the upper and lower bounds for the u.c, to the desired minimum time interval between maneuvers, to the amplifying factors of errors in tracking, execution of maneuvers and radiation pressure, to the type: 1 - (x, y), 2 - (x), 3-(y), to the systematic error in the radiation pressure, to the number of previous calls of the random number generator, to the number of maneuvers done, to the total amount of increment of velocity required (cm/s), to the minimum and maximum experimental values of the time interval between maneuvers (jd), to the minimum and maximum values of the maneuvers (cm/s).
X
s ^
Tf
•
o> T-H T-H
T-H
r~
•f
IO Ol
T-H
*
T-H
T-H
T-H
T-H
*
to
CO O)
to
CO CO CO
h-
•*f
T-H
CN T-H CN
T—t
co O) t~
-*
o OS CN IO Tf to
Simulations
*
t~ •
T-H
T-H
o to
T-H
•
*
IO
T-H
I-- IO T-H to IO IO IO CO
0 0 l-~
r^
M< o •
*
T-H
T-H
387
o to
o CN o T-H o r~- T-H T-H T-t
CN CN
to 0 0 f- to Ol IO IO IO IO IO
T-H
T-H
CO lO
r-
|-~i^
OO
IO
to
o CN to to
o
r^
h-
CO
CO
r~ o>
CN OO IO
on
T-H
•<*-*to *tf r~ to r- 0 0
on M1
T-H •*f
CN T-H
oo co oo oo o
to to
T-H T-H
o oo o> OO o T-H T-t
CO co oo 05 CO CO o CN CN CO CN CN CN CN CN CN T-H
T-H
o M< M< IO •*f o T-H T-H T-H
T-H
T-H
T-H
IO CN CN to CO I-- to a> CO CO CN CO CO t- IO to
T-H
T-H
Tf CN IO cn O CO CN
o-i T-H
rn
CD
rj o <->t> » <-)Tf
on
T-H T-H
<-)
in M- on IO on to on o T-H 0 0 to IO on on CN CN CN CO T-H T-H T-H T-H T-H T-H CN CN T-H T-H T-H T-H T-H
^
o
•
o
T-H
*
o
T-H
CN
•
o
T-H
T-H
T-H
IO IO IO to to to i-- f- r^ OO on CO CO
O
T-H
_
IO
T-H
O
T-H
T-H
Tf
M< •*t<
T-H
on o on to
r^
T*
1^ Cn IO IO CO T-H CN
T-H
IO f~ on cn CN co CN IO
CN CN T-H
T-H
T-H Tf T-H co t- CN to to to to to to
Numerical Results of the
•
~&
r~ c-> on to r^ cn
T-H
r~- o a>
r-~ •f to o to
<M CO CN CN CN CN
Tf IO Tf
Tt< CN
T-H
to •«f f> on r> on r> CN o o o cn Oi o T-H T-H T-H T-H T-H
CO O ) o O ) O ) CO CO T-H o o CN •
T-H
T-H T-H
o
T-H
• f r> to to
T-H
CO IO CN CO
r~
to to
IO
T-H
r^
IO T-H
T-H
T-H T—t
T-H
t~ oo
o> o IO 0> T-H CN 0 0 OS T-H co f- 0 0 IO IO IO o> CM o> CM CN CO IO lO IO
T-H
05 0 0
s
T-H
o>
ft
aeS ,_, ft
acS
-* t-
o
T-H
T-H
CN
^*
o
T-H
T-H
T-H
CN CN CN CO CO CO •*f CO CO o co co co co f- T-H -*J< r~ T-H
o
T-H
T-H
T-H
T-H
o
T-H
T-H
T-H
O o o T-H T-H T-H o r-> TC o i> o o l>o T-H o
T-H
T-H
T-H
T-<
T—1
T-H
T-H
T-H
IO
to
Tf
r~- IO on
T-H
CO rr> IO IO IO IO IO to
T-H
CN
CN IO <M IO CO CO
T-H
6
a
3
J a
••^
<» 13 (S
6 w ^3
H
T-H
•f
o to
T-H
CN
to
p
o
p
<->
^
T-H
co to
o
T-H
o to
T-H
o to
T-H
o to
• o*
to
p
*
o
to
in
o
o to CO
o to
to
o to
to
<
to
to
to
to
to
to
to
•
to
M< o
Tf
to
to
• o*
CO
o
Tf
to
o
to
T-H
to
o
to
T-H
p T-H
o
to
^J1
to
c
p
p Tf o
p
P
o
Q CN
p
o
Q 00
p
Q
X c4
T-H
p o
p T~-<
p T-H
o
p o
p p
o o
Q IO
T-H
CN
Q o
o
o
T-H
1—f
p
o
o
^t
IN
1
ft
CO
o u
ntrol
The On/off
in to en en rH to CO o CO CO CO to lO lO to to lO
00 IV
en
o
rH
CO
O
Control Strategy: Simulations
rH
rH 0 0
to IV
o o CO rH
rH to lO cn M 1 CM lO CO CO CO
7—<
rH CM
and Discussion
rH
to
CM to CM en to to lO in lO to to to in
in in in en CO CO iv to IV Tl" CM CM CM CO CO CO CM CM CM CO
o 00 CO
©
rH en CO CM CM
CO
o en rH
en
rH
T-^
rH
O to
rH
r^
rH
-10%
l.OD-6
0.4D-6
O to
rH
rH
rH
-20%
0.2D-6
0.8D-6
O to
CM
CM
rH
10%
rH
o to
l
Q
CD rH
Tt<
rH
0.4D-6
i—1
CO to
l.OD-6
CM CM
rH lO
tv CO CO in to en tv to to tv en en to
en
CM
rH
to
20%
388
i—»
to
6.1
0.4D-6
IV 00
00
o
rH
O to
to
12.3 11.5 11.5
l.OD-6
to rH IV 00 lO m 0 0 0 0 iv CM CO IV 00 CM rH 1—1 rH i—t rH r-i CM CM rH CM CM CM
134
156 100 149 i—t CM CM CM
137 199 189 200 151 132 142 204 194 203 169 172 186
10%
o
5.9 5.8 5.8 6.1 6.1 5.9 5.9 6.1 5.8 5.9 0.4D-6
rH i—t CM CM CM
rH
rH
0.4D-6
rH
rH
O to
l.OD-6
rH rH
rH
0.4D-6
in
O to
l.OD-6
rH
20.2 19.6 19.7
308
0.4D-6
711 112 412 712 113 413 713 l.OD-6
1-H
O
T—t
•st"
rH
rH
O to
0.4D-6 l.OD-6
414 714 115 415 715 116 416 716 117 417 717 118 418 718 119 419 719
00 rH
6.0 5.8 6.4 5.9 5.2 6.8 6.8 6.8
1.8 2.2 1.8 1.9 2.4 2.4 2.6 2.4 2.4 4.5 4.0 2.8 3.2 3.8 3.8 4.0 3.7 3.9 3.5 3.4 4.0 3.7 3.6 3.9 3.7 2.3 116 109 126 106 149 151 102 122 105 138 246 102
5.7 5.9 2.5 107 103 410 710
s B
S
u g
H-i
S
5 P
<1 a it
a CO
13 o ft
r - •*« f - • ^ 10 m 10 i n
Numerical Results of the
in
(M
T"H
h^ T - H CM i n T f CN r^- CO O l
T-H
o
T-H
o
o
to
T-I
T-H
to
T-H
CO CM T-H T-H Tj< t ^ *tf CO CM T-H Tt< t>m •* n H
o
T-H
to
to
to
m
in
m
o to
l—1
Q
d
5
-3
3
O
Simulations
in
M" O
^ T-H
T-H
co co co T-H T-H
to o to oo o w oi n T-H CO CO CO
T-H
CTl
T-H
iv
T-H
to o o CM CM • *
T-H
T-H
•*!«
CM " o ^ c i o i o o " ^ " ^ CO CO TJ< ^
o>
OO t o to
-^ T-H
CT> a>
t o CM CM T-H o
t o 0 5 0 0 -tf t o CO T-H Tj< OS rj< CO CO co co CO i n co T-H
T-H
T—t
co TJ" <M o> I-- t o °°. ° > CM CM 0 0 to
tH
T-H lO T"H
•*
CN t o CM T f
m
T-H
t o T-H W CM I M
lO T-H
- *
T-H
O
• > *
m -^ m
T-H
T-H
•f in to
CM CN Tt" CM t O O «V T-H t ~ CN CM CM CM T-H CM CM CM CM
T-H m m Tf r~ O IO N S r~- r- t o o
T-H
T-H
T—<
«> Ol i~~ r-- r-
I-H
1—<
N
h - on t o i n t o r- t ^ t o lO t o 00 I V
-*
T-H
T-H
6? o
co T f i n t o CM CO • * l O CN CO T-H
o
T-H
T—1
T-H
(M
T-H
• f
1—1
CM
o
T-H
i-H
Q
o
c
Q
to
Q
T-H
Q
00
Tf
Q
CM
* * *
T-H
o
Sf
03
s
ft
^
(S
S
ft
c^
<s
g
ft
rt
o u
PI
rol
390
The On/off
Control Strategy: Simulations
and
Discussion
At the end of this section a sample is given of results of CONSIM. 9.2.2
Discussion tudes
on the Effect of the Different
Errors
and
Magni-
The standard values of W ^ a x and W^m in the runs have been 1 0 - 6 and 0.4 • 10~ 6 . An increase in these values (except in the fully analytic models) is not suitable. A decrease is possible without producing too closer maneuvers. This produces a reduction on Av of roughly 25% if W^in m a x are halved. The comparison of results for different values of ampi shows that the tracking errors are responsible (with the standard values taken) of one half of the total Av required. Hence, it is important to reduce as much as possible the tracking errors. The errors in the execution of the maneuvers are responsible for some 10% of the total Av. Therefore, not too strong technical conditions are necessary to be asked to the control device. The random errors in the radiation pressure mean some 15% of the total Av (even in our case whose a large s/m is used). This means that the remaining 25% is due to inaccuracies of the model and to the numerical simulation errors. This can be seen as the action of unknown or neglected terms in the acceleration. Furthermore, as already stated in the results of PAPUS (see Chapter 3), the (a;)only control increases Av in 15%, approximately, and the (y)-only control more than doubles it. In some cases it is even 4 times worse than the full control, again in agreement with Chapter 3. Finally, the systematic errors in the radiation pressure have a strong influence. A 10% error doubles the value of Av.
THE MODEL OF THE SOLAR SYSTEM IS: 0 0 11 O O O O O O I O O O O O O , SPACECRAFT EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 19424 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADIM. SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 60. AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1.0 TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GENE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED AT SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+00 INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF TH X = -0.13591794407808D+09 Y = -0.59435605455003D+08 Z = 0.120168487902 XD = x0.98740705136901D+06 YD = -0.23624156175959D+07 ZD = 0.134270560980 APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS TIME W U AMP 18089.10721 0.10344D-05 -0.10413D-05 -0.82399D-06 -0.13446D-07 -0.310 18177.36989 0.81852D-06 -0.13828D-05 -0.56575D-06 -0.49433D-08 -0.411 18250.56504 0.92106D-06 -0.11003D-05 -0.61727D-06 -0.18208D-07 -0.327 18357.75792 0.53203D-06 -0.88446D-06 -0.29374D-06 -0.65669D-08 -0.263 18426.18114 0.45583D-06 -0.54239D-06 -0.31701D-06 -0.34139D-08 -0.161 18489.16308 0.10392D-05 -0.13721D-05 -0.10594D-05 -0.90790D-08 -0.408 18552.82845 0.62040D-06 -0.10327D-05 -0.24911D-06 -0.69310D-08 -0.307 18615.64729 0.10574D-05 -0.10872D-05 -0.77369D-06 -0.20739D-09 -0.323 18724.63105 0.80538D-06 -0.13539D-05 -0.41457D-06 -0.39690D-08 -0.403 18788.78775 0.53632D-06 -0.59559D-06 -0.38209D-06 -0.27080D-08 -0.177 18894.86110 0.10746D-05 0.18339D-05 0.65841D-06 0.15804D-07 0.546 18955.00892 0.10872D-05 -0.13462D-05 -0.66851D-06 -0.11559D-07 -0.400 19065.09675 0.10417D-05 -0.18211D-05 -0.79303D-06 -0.10273D-07 -0.542 19186.86664 0.10101D-05 -0.11626D-05 -0.97816D-06 -0.17867D-08 -0.346 19301.48566 -0.10213D-05 0.14280D-05 0.61501D-06 0.13025D-07 0.425 19355.69985 0.10498D-05 0.10548D-05 0.11009D-05 -0.15147D-08 0.314 19409.02120 0.10498D-05 -0.16800D-05 -0.83260D-06 -0.10598D-08 -0.500 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 17 AMOUNT OF DELTA V (ADIM) = 0.23810D-04 = 0.70919D+02 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 53.3214, 121.7699 MIN AND MAX MANOEUVRES 0.62825D-06 (ADIM) = 0.18713D+01 CM/S 0.19863D-05 (ADIM
Table 9.3
Output of program CONSIH. Sun-Barycenter problem, simplified model. L
THE MODEL OF THE SOLAR SYSTEM IS: 0 0 11 O O O O O O I O O O O O O , SPACECRA EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 194 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADI SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 6 AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 2 TYPE OF MANOEUVRES : (X.Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED A SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+00 INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF X = -0.13591794868700D+09 Y = -0.59435604007100D+08 Z = 0.12014524774 XD = 0.98740684976919D+06 YD = -0.23624156458289D+07 ZD = 0.16977645144 TIME W U AMP APP.CONTROLS(X.Y.Z) INCL EXEC ERRORS 18079.92184 -0.20064D-05 0.21142D-05 0.16689D-05 0.61128D-07 0.62 18141.23172 -0.13623D-05 0.18616D-05 0.12787D-05 - 0 . 2 6 5 5 5 D - 0 7 0.55 18244.59704 -0.20779D-05 0.24348D-05 0.13173D-05 0.72 0.78330D-07 18288.84013 -0.20831D-05 0.21986D-05 0.65 0.21686D-05 -0.29777D-07 18362.82336 -0.21243D-05 0.33208D-05 0.98 -0.10287D05 -0.47561D-07 18405.21541 -0.20004D-05 0.28660D-05 0.85 0.10139D-05 - 0 . 4 6 6 5 2 D - 0 8 18460.74088 -0.21767D-05 0.20922D-05 0.62 0.21685D-05 -0.65331D-07 18542.46865 -0.19473D-05 0.30784D-05 0.91 0.13067D-05 0.D60615-08 18604.56545 -0.20318D-05 0.26365D-05 0.78 0.15574D-05 - 0 . 3 3 8 2 7 D - 0 8 18714.21011 -0.21047D-05 0.31651D-05 0.94 0.75685D-06 -0.92166D-07 18752.92893 -0.21973D-05 0.34513D-05 0.10 0.13302D-05 0.44590D-09 18909.41920 -0.15286D-05 0.27307D-05 0.81 0.75246D-06 -0.28675D-07 18976.70766 0.11989D-05 •0.12004D-05 0.35 -0.89576D-06 -0.49584D-07 19053.39523 -0.20790D-05 0.37372D-05 0.11 0.17372D-05 0.75831D-07 19151.13512 -0.97447D-06 0.95642D-06 0.28 0.80717D-06 0.32425D-07 19197.05238 -0.20029D-05 0.25753D-05 0.76 0.20760D-05 - 0 . 2 1 4 1 0 D - 0 7 19262.32596 -0.20932D-05 0.34492D-05 0.10 0.70299D-06 -0.92395D-07 19309.87220 -0.22591D-05 0.29846D-05 0.88 0.14349D-05 -0.35284D-08 19363.10094 -0.20534D-05 0.69 0.21458D-05 0.12972D-07 0.23289D-05 FINAL STATISTICS FOR THE RUN AMOUNT OF DELTA V (ADIM) = 0 : NUMBER OF MANOEUVRES = 19 56715D-04 = 0.16893D+02 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 5 3 . 3 2 1 4 , 1 2 1 . 7 6 9 9 MIN AND MAX MANOEUVRES 0.12519D-05 (ADIM) = 0.37290D+01 CM/S 0.41219D-05 (AD Table 9.4
Output of program CONSIM. Sun-Barycenter problem, simplified model.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 l l l l l l l l l O O O O , SPACECRAFT EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 19424 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADIM. SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 100 AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1.0 TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GENE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED AT SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+00 INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF TH -0.13715466804472D+09 Y = -0.59539470779197D+08 Z = 0.1604883421592 YD= -0.23638836160428D+07 ZD= 0.1214589667611 XD= 0.98781159117598D+06 APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS TIME W U AMP 0.10319D-04 -0.15219D-04 18045.34670 .47952D-05 0.13170D-06 -0 4533 .10162D-04 0.16626D-04 18193.94425 0 4952 .59954D-05 -0.16721D-06 . 10033D-04 -0.12088D-04 18247.00742 -0 3600 .65876D-05 -0.54176D-07 . 10697D-04 -0.16962D-04 -0 5052 18331.65427 .79218D-05 0.37546D-06 .10877D-04 -0.17256D-04 -0 5139 18374.86321 -0.44487D-05 -0.26866D-06 .10043D-04 -0.12029D-04 18424.02042 -0 3582 -0.62405D-05 -0.10449D-06 .10370D-04 0.16124D-04 0 4820 18515.91125 0.78726D-05 -0.28793D-06 -0.10150D-04 0.14530D-04 0 4327 18586.88898 0.47526D-05 0.98306D-07 0.10264D-04 -0.10940D-04 18615.32036 -0.79489D-05 -0.60409D-08 0.3258 .10271D-04 0.11516D-04 18651.00884 0.10371D-04 0.17906D-06 0.3430 .10283D-04 -0.17674D-04 18724.26484 -0.55724D-05 0.66575D-08 0.5264 .10204D-04 0.13215D-04 18846.13370 0.10726D-04 0.17078D-07 0.3936 .10030D-04 -0..80187D-05 -0.16470D-04 18877.83490 0.71693D-07 0.4905 .10996D-04 -0..57933D-05 -0.14831D-04 18947.58869 -0.17241D-06 0.4417 .10895D-04 -0..79999D-05 -0.12173D-04 18968.38169 0.12487D-06 0.3625 .10329D-04 0..98708D-05 0.15784D-04 19035.25517 -0.13673D-06 0.470 .11329D-04 -0..81117D-05 -0.18499D-04 19054.39404 -0.28295D-07 0.5510 .10207D-04 -0..40229D-05 -0.16116D-04 19103.19117 0.15733D-06 0.4800 0.11203D-04 -0..72537D-05 .13500D-04 19136.34014 -0.15512D-06 0.402 0.10903D-04 -0..88470D-05 .10945D-04 19158.22168 -0.37212D-07 0.3260 0.11007D-04 -0..10151D-04 .17669D-04 19218.58767 -0.17679D-06 0.5262 0.10649D-04 -0..58238D-05 17719D-04 19250.38971 0.37417D-06 0.5277 -0.10269D-04 16221D-04 19288.77084 0.53016D-05 0.31778D-06 0.483 0.11191D-04 -0.12259D-04 19323.00640 -0.79567D-05 0.57829D-07 0.365 0.10073D-04 -0.10269D-04 19354.06220 -0.94468D-05 0.85058D-07 0.3058
19403.50755 0.10136D-04 -0.16868D-04 -0.83134D-05 0.17633D-06 -0.50 19422.51196 0.10973D-04 -0.18948D-04 -0.83019D-05 -0.19848D-07 -0.56 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 27 AMOUNT OF DELTA V (ADIM) = 0 . 4 5 3 1 0 D - 0 3 = 0.13496D+04 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 1 9 . 0 0 4 4 , 1 4 8 . 5 9 7 5 MIN AND MAX MANOEUVRES 0 . 1 3 5 2 3 D - 0 4 (ADIM) = 0.40280D+02 CM/SJ 0.20687D-04 (A Table 9.5
Output of program CONSIM. Sun-Barycenter problem, simplified model.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 l l l l l l l l l O O O O , SPACECRAF EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 1942 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADIM SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 60 AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1. TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GEN USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED AT SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+OO INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF T Y= -0.59541256018711D+08 Z = 0.160408655928 X= -0.13716046038108D+09 XD=0.98750290163574D+06 YD = -0.23631678023408D+07 ZD = -0.229961410683 W U AMP APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS TIME 18118.60671 -0.53969D-06 0.60722D-06 0.53752D-06 0.55303D-08 0.188 18204.69377 0.10040D-05 -0.16480D-05 -0.43639D-06 -0.71202D-08 -0.490 18266.11602 0.81179D-06 -0.83813D-06 -0.63146D-06 -0.17467D-08 -0.249 18335.68565 0.10584D-05 -0.16472D-05 -0.79862D-06 0.91319D-08 -0.490 18385.68293 0.10533D-05 -0.16594D-05 -0.38746D-06 0.12258D-07 -0.494 18449.35155 0.11135D-05 -0.11635D-05 -0.96788D-06 -0.54088D-08 -0.346 18513.87225 -0.74847D-06 0.12001D-05 0.57957D-06 -0.18927D-07 0.357 18612.11158 0.68332D-06 -0.74099D-06 -0.54423D-06 -0.20089D-07 -0.220 18719.17343 0.71723D-06 -0.11952D-05 -0.41158D-06 -0.10288D-07 -0.355 18816.80107 0.50647D-06 -0.48240D-06 -0.46832D-06 -0.92279D-08 -0.143 18890.66459 -0.59666D-06 0.10164D-05 0.34733D-06 -0.74222D-08 -0.302 18946.54703 0.11153D-05 -0.15144D-05 -0.61912D-06 -0.80250D-09 -0.45 19012.58407 0.52557D-06 -0.62742D-06 -0.53585D-06 -0.65867D-08 -0.186 19080.41092 0.10710D-05 -0.18099D-05 -0.59672D-06 -0.11798D-07 -0.539 19193.86704 -0.10932D-05 0.13628D-05 0.10682D-05 0.24395D-08 -0.405 19348.95524 -0.40323D-06 0.40628D-06 0.40073D-06 -0.71948D-08 0.12 19419.48534 0.72569D-06 -0.11967D-05 -0.39809D-06 -0.37669D-08 -0.356 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 17 AMOUNT OF DELTA V (ADIM) = 0.21807D-04 = 0.64953D+02 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 49.9973, 155.0882 MIN AND MAX MANOEUVRES 0.57070D-06 (ADIM) = 0.16999D+01 CM/S 0.19058D-05 (ADI Table 9.6
Output of program CONSIM. Sun-Barycenter problem, simplified model.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 l l l l l l l l l O O O O , SPACECRA EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 194 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADI SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 6 AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1 TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED A SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+OO INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF X = -0.13716046264417D+09 Y = -0.59541259054386D+08 Z = 0.16040011240 XD= 0.98750317843358D+06 YD= -0.23631678262200D+07 ZD= -0.22960248861 APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS TIME W U AMP 18098.13458 -0.10905D-05 0.10754D-05 0.94448D-06 -0.25458D-08 0.32 18165.77963 0.84882D-06 -0.14076D-05 -0.64330D-06 0.47942D-08 -0.41 18316.87091 0.58839D-06 -0.83395D-06 -0.55104D-06 -0.87184D-08 -0.24 18406.17686 0.10125D-05 -0.14165D-05 -0.41198D-06 0.11328D-07 -0.42 18466.28574 0.58435D-06 -0.57760D-06 -0.57510D-06 0.35460D-08 -0.17 -0.33 18528.02033 0.68707D-06 -0.11317D-05 -0.45525D-06 0.15493D-07 -0.43 18587.81926 0.10275D-05 -0.14749D-05 -0.52026D-06 -0.47637D-08 18673.15121 -0.61050D-06 0.88606D-06 0.58227D-06 0.15839D-07 0.26 -0.52 18744.85855 0.10539D-05 -0.17661D-05 -0.44069D-06 0.94373D-08 18807.39981 -0.96009D-06 0.94417D-06 0.84290D-06 -0.40000D-08 0.28 -0.40 18953.69594 0.10764D-05 -0.13444D-05 -0.64026D-06 -0.10493D-07 -0.30 18998.91007 0.10039D-05 -0.10330D-05 -0.95614D-06 0.28838D-07 -0.50 19064.27039 0.10149D-05 -0.16859D-05 -0.57471D-06 0.12911D-07 -0.37 19131.32723 0.10244D-05 -0.12634D-05 -0.64064D-06 -0.15290D-08 -0.32 19178.89802 0.10820D-05 -0.10813D-05 -0.99760D-06 0.39466D-08 -0.49 19242.23161 0.94355D-06 -0.16605D-05 -0.60481D-06 -0.84678D-08 -0.28 19310.75131 0.75332D-06 -0.95001D-06 -0.49321D-06 -0.66266D-08 19354.44277 0.10450D-05 -0.10068D-05 -0.10456D-05 0.93763D-08 -0.29 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 18 AMOUNT OF DELTA V (ADIM) = 0.25054D-04 -0.74626D+02 MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 43.6915, 151.0913 MIN AND MAX MANOEUVRES 0.81509D-06 (ADIM) = 0.24278D+01 CM/S 0.18203D-05 (AD Table 9.7
Output of program CONSIM. Sun-Barycenter problem, simplified model.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 l l l l l l l l l O O O O , SPACECRAF EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L I . INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 1942 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADIM SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 60 AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1. TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GEN USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED AT SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+00 INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF T Y= -0.59541255324964D+08 Z = 0.16038813842 X = -0.13716046134290D+09 0.98750303964530D+06 YD = -0.23631678291512D+07 ZD = -0.22963174640 XD APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS TIME W U AMP 18074.42179 0.51747D-06 -0.62288D-06 -0.34005D-06 0.18631D-08 -0.18 18133.26163 -0.11248D-05 0.14015D-05 0.10947D-05 0.78141D-08 0.41 18275.27955 -0.10068D-05 0.10459D-05 0.90388D-06 0.86129D-08 0.31 18335.62283 0.79732D-06 -0.13017D-05 -0.63231D-06 0.69312D-08 -0.38 18420.84034 -0.53268D-06 0.66022D-06 0.32175D-06 0.32386D-08 0.19 18528.08706 0.56795D-06 -0.95768D-06 -0.39201D-06 0.12407D-07 -0.28 18602.82803 0.80142D-06 -0.98071D-06 -0.49242D-06 -0.19817D-07 -0.29 18683.93745 0.10716D-05 -0.17030D-05 -0.86417D-06 -0.96606D-08 -0.50 18752.93622 0.85294D-06 -0.12874D-05 -0.38127D-06 0.94128D-08 -0.38 18836.62508 0.71426D-06 -0.92988D-06 -0.75158D-06 0.83032D-08 -0.27 18910.77574 .52764D-06 -0.87065D-06 -0.29212D-06 -0.26351D-08 -0.25 18975.89672 .81386D-06 -0.86698D-06 -0.67508D-06 0.82387D-08 -0.25 19007.01541 .10039D-05 -0.11385D-05 -0.99251D-06 0.16362D-07 -0.33 19077.20568 .52913D-06 -0.87346D-06 -0.26503D-06 -0.30174D-08 -0.26 19148.39770 .80909D-06 -0.84250D-06 -0.59621D-06 -0.35806D-08 -0.25 19196.56075 .10042D-05 -0.12858D-05 -0.10257D-05 0.49406D-08 -0.38 19263.46559 .10351D-05 -0.16762D-05 -0.41730D-06 -0.16629D-07 -0.49 19324.67045 .10708D-05 -0.12149D-05 -0.84502D-06 -0.13733D-07 -0.36 19378.33480 .10653D-05 -0.14142D-05 -0.10255D-05 -0.55396D-08 -0.42 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 19 AMOUNT OF DELTA V (ADIM) = 0.24704D-04 = 0.73584D+02 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 31.1187, 142.0179 MIN AND MAX MANOEUVRES 0.70966D-06 (ADIM) = 0.21138D+01 CM/S 0.19097D-05 (ADI Table 9.8
Output of program CONSIM. Sun-Barycenter problem, simplified model.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 l l l l l l l l l O O O O , SPACECRA EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 187 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADI SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 6 AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1 TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED A SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+00 INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF Y = -0.59541246687567D+08 Z = 0.1603872955 X = 0.13716046585275D+09 YD= -0.23631679171694D+07 ZD= -0.2295870161 XD= 0.98750303124843D+06 APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS TIME W U AMP 18091.03148 0.10828D-05 0.11644D-05 0.81463D-06 -0.21678D-07 0.3 18172.33467 0.10463D-05 -0.17151D-05 -0.74013D-06 0.37560D-08 -0.5 18282.92216 -0.10467D-05 -0.94119D-06 -0.25449D-07 0.96849D-06 -0.3 18356.84140 0.14244D-05 0.51489D-06 0.68448D-08 -0.87480D-06 0.4 18422.72615 -0.14043D-05 -0.52671D-06 0.61931D-07 0.11332D-05 -0.4 18487.27727 0.10087D-05 0.81198D-06 -0.22931D-07 -0.81783D-06 0.3 18538.25068 0.20146D-05 0.58477D-06 0.58277D-08 -0.10693D-05 0.6 18595.83755 -0.15347D-05 -0.79755D-06 -0.12153D-07 0.11022D-05 -0.4 18659.63429 0.11438D-05 0.88857D-06 0.17977D-07 -0.95532D-06 0.3 18708.69774 0.16978D-05 0.67749D-06 0.56927D-07 -0.10123D-05 0.5 NUMBER OF MANOEUVRES = 10 FINAL STATISTICS FOR THE RUN AMOUNT OF DELTA V (ADIM) = 0.16113D-04 = 0.47993D+02 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 49.0634, 110.5875 MIN AND MAX MANOEUVRES 0.12951D-05 (ADIM) = 0.38577D+01 CM/S 0.20978D-05 (AD Table 9.9
Output of program CONSIH. Sun-Barycenter problem, simplified model
Numerical Results of the 1
r
1
r- — i
1
1
1
( *'. Y >
-
_ #.33 _ 4.23
_ e. t i
_ • ••» _-•. l i
_-*.aa -j-».33
-t-».
-1-— ' 1
_ •.«s
M
i ?- .i HALO ORPIT 1
_ #.33
••
i
<*'.V>
" -
J
_ ».aa
' ^ \]
/ /
_».n _ • ••• _-•. i i
I\
_-•. aa
\
--•.33
-,.a. ,
i
\ J N
•
T"
1
_ e,33
_ ».ea
I
-i
}
1
/
/ /
.•.it
_ • .•• _ - • . 11
\ \
--•-32 --•.33
\
-»••• ,
-
\
\x —J/
»-» ,
1-«
ANALYTICAL QUASI PERIODIC ORlIT «*\Y> - «.«S - B.33
_ ».as
/
_• -•*
/
1
t
\
_-».ea _-*.33
-t-*« .
T-"
_ t-«
/ " ^
_-a.4s
,
1
x 1 —v
-t-»
vV J ^—/ • « .
t-».
CONTROLLED ORBIT
NUMERICAL OUPS1 PERIODIC ORlIT
"T
399
_ «.*s
T-"
?•" 1
r
Simulations
1—n^7 T^^n
- •.!« -
*.ll
- •-**»^_ _ •.•-* - ».»l -.-•.•3
..-e.ee
N
-
--•.19 .--• . 1 3 -•.12 ,
.-•.13 HALO O M I T
-..« ,
t'« .
..,«
• .•9 ,
ANALYTICAL QUASI PERIODIC ORSIT tft.Z,
_ • . IS
_ •-•R^fcffc^_ _ •-•4 - *.«1 _~«.«3
-.-*.«
Ni
-
_-».l«
7iTz.
. «.1S
-
_ e.ll
_ - • . 13
.-
- «.ll - •-•***«fc_
-•-•* _ • -•!
"^^^|
--•.»3
_-•••«
V
-
_-«.le --•.13
-...S , f . 2 , NUMERICAL QUASI PERIODIC OffHT
-t-«» .
• .« ,
?-•«
-f,.XB ,
-f.«*
»••• ,
••« .
..is
CONTROLLED OfiltT
Fig. 9.1 (x,y) (top) and (x, z) projections of the analytic halo orbit, the analytic quasi-periodic orbit, the numerically refined quasi-periodic orbit and of the controlled orbit.
400
The On/off
1 _ a.
4 5
_ 9
34
._ *
S3
- 9
l a
1
r
— •[
i
'
Control Strategy: Simulations
1
r
•
< v
i
-
'""cvUi
-
_ 9.H3 _ 9.1a
r> --» -19
19
_ 1«
44 ,
"T
»
i
t
99
? aa
t
,
HALO O R ! I T
_-9.33 -^9, 4*
-9.83 _ 9 . 12
_ 9
-
> es
_fc.« tV.n
-
_ e . 34
_ 9 IS
_-9
?-•• i ounsi P E R I O D I C 0 » » I T 1 1 1
_ 9.4S
-
9 S3
19
t-« ,
-T.«s -?-,B,J AHALVTICAL
.V . I I
34
_-9
-
_-e.aa
1
'
_ 9 45
> -
-•••cm___ _-9-19
-
_-9 3 3 _^9
1
-
9 . 4 S
-
1
_ 9-34
33
-»
!
_ 9.-S
_-« ae _-• _-9
f
2 ,
- 9 _-9
and Discussion
44
-t
_I_ 9 9
88
,
T
«r
r
-.-9.33 j-9.44 -9.4S
,i
,
-9-83
NUnERICMi QUASI PERIODXO OBBIT
I
_
_-#.BE
t
**
i
?-
z 3
*
t-«
CONTROLLED ORBIT
i
!
I
1
I
NOPO
—>.*9
..J
"CTRL
<0»* —».« —I.»3
.
) XKIM*
XWW-
-•.«SK6D*M
s
^§ -=j».iS
-
^ ^
e.43S498Dt)»
VHIN-
-«.75B43iH-ei
WlftX*
•.9e?«91D-«l
.=#-•«
-•r
-
-•? -T
-'•)•
•T
,.y
•T
••T
'-r
HASNIFICftTIOM OF ANOTHER PA!* OF WftlOBlES , 1 . A PUCE OF THIS FIGWE , 2 . 4 FOB KTUW
Fig. 9.2 In the top figure the (y, z) projection of the analytic halo orbit, the analytic quasiperiodic orbit, the numerically refined quasi-periodic orbit and of the controlled orbit is displayed. In the bottom figure a magnification of the numerical quasi-periodic orbit and of the controlled orbit is shown in the (j/, z) projection.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 1 1 1 1 1 1 1 1 1 0 0 0 0 , SPACECRAFT EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 18730 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN ADIM. SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD): 50. AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERRORS: 1.0 TYPE OF MANOEUVRES : (X,Y), NUMBER OF PREVIOUS CALLS TO THE RANDOM NUMBER GENE USED NOMINAL ORBIT = 2 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUTED AT PARAMETERS FOR THE QPO: TSTAR = -0.44800D+01 AZ = 0.72000D-01 BOUND FOR THE COEFFICIENTS TO BE RETAINED IN ANAQPO = 1.00E-06 SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: O.OOE+00 INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER OF TH -0.13715467129266D+09 Y = -0.59539453738101D+08 Z = 0.160534272844 XD= 0.98781063082802D+06 YD= -0.23638859703783D+07 ZD= 0.121301907120 W U AMP TIME APP.CONTROLS(X,Y,Z) INCL EXEC ERRORS 0.66117D-05 18051.25062 -0.98570D-05 -0.35974D-05 -0.12905D-07 -0.293 18086.11207 0.11271D-04 -0.11075D-04 -0.88701D-05 0.75151D-07 -0.329 18148.86464 0.68099D-05 -0.10918D-04 -0.69190D-05 -0.15270D-06 -0.325 18199.01975 -0.98302D-05 0.15615D-04 0.43479D-05 -0.70894D-07 0.465 18248.42507 0.10691D-04 -0.12757D-04 -0.74399D-05 -0.19165D-06 -0.379 18303.25557 -0.87770D-05 0.10736D-04 0.91761D-05 0.15112D-06 0.319 18350.32926 0.10585D-04 -0.16838D-04 -0.71077D-05 0.15658D-06 -0.501 18409.24612 0.88456D-05 -0.12803D-04 -0.42967D-05 0.21969D-06 -0.381 18461.12042 0.10633D-04 -0.10611D-04 -0.10797D-04 0.14711D-06 -0.316 18552.05090 -0.62180D-05 0.10339D-04 0.26431D-05 -0.10476D-06 0.307 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 10 AMOUNT OF DELTA V (ADIM) = 0 . 1 4 0 3 1 D - 0 3 = 0.41792D+03 CM/S MIN AND MAX TIME INTERVAL BETWEEN MANOEUVRES (IN JD) 3 4 . 8 6 1 4 , 9 0 . 9 3 0 5 MIN AND MAX MANOEUVRES 0.10493D-04 (ADIM) = 0.31254D+02 CM/S 0.18278D-04 (ADIM Table 9.10 Output of program CONSIM. Sun-Barycenter problem, simplified model. L\ equilibrium analytic nominal orbit and projection factors.
402
The On/off
1
Control Strategy: Simulations
i
I
i
i
and
i
i
Discussion
i
i
_f.«
_t.*7
_
_J.«
-
_».t3
_».«1
-
1
.=#.•1
XniH—*.44BTS'lt*M
-
/
-
\
i*.«3
-
^.•S
-
^J.«7
~
MAX* «.45ffZ31D*M
VMM-- a-71Bl34D-*l
VIWX' «.IS4t74fi-01
-r
-•T *T
"T
'•T
' • ) '
•T
"T
••T
IMOMIFICAT10H OF ANOTHER PAIR OF VARIABLES . 1 . A RIECC OF THIS F1GU*[ , E . « FOt AETURA
Fig. 9.3 (y, z) projection of the numerically refined quasi-periodic orbit and of the controlled orbit. In the control simulation, the analytic quasi-periodic orbit has been used and the simulation corresponds to Table 9.10.
9.3 9.3.1
The Feasibility of the Control Using Solar Radiation Pressure The Determination Feasibility
of the Maneuver
Interval.
Discussion
of
In Chapter 3, 3.3.2, a first approach to the control using solar radiation pressure in the RTBP model has been introduced. However, there, it was supposed that the radiation pressure was acting on the wings for a given time interval At and, from this, the value of s/m and the optimal orientation of the wings was determined. With a given spacecraft whose wings have a defined section, the s/m ratio is known, and the unknown variable is At. Furthermore if At is small the exponential instability of the unstable component becomes important. Using the same notation of 3.3.2 we have the condition uf
=
'InAi . . 5 u0expl—-At +— pr 1 1 m U4At
+ -miAtfj
f +f
? *cos2(/3-e)
cos/3 + (ir5At + -TT2(At)A
sin^
where Uf and u$ denote the final and initial values of the unstable component during the radiation pressure maneuver.
The Feasibility of the Control Using Solar Radiation
403
Pressure
From this equation, At should be determined and, simultaneously, the best value of the orientation angle /?. The solution is obtained by iteration. We take a value of At and, using essentially the same method of 3.3.2, we determine /? and an estimated value, (s/m)e, for s/m. If s/m coincides with (s/m)e we are done. If not, the quotient can be used to estimate a new value, (At)m, of At as follows: (Ai)„ =
(S/M)e(m/S)At.
By iteration we solve the equation. We must remark that if u0 is too large for all the other parameters fixed, the equation determining t has no solution. This means that the force towards the Sun is too large to be canceled by the radiation pressure one. It is possible to give lower bounds of the critical value of uo for which a double root appears. In Chapter 3 we have also mentioned the "always towards the Sun" rule. To have a feasible radiation pressure control, the values of the unstable component u should never be negative. In this case, the orbit is escaping outwards the Sun and the radiation pressure cannot cancel this deviation unless, at some good points, very high s/m is used. Hence, u/ should be not reduced to zero, because the tracking errors can produce negative values of u and, later on, an escape. For the same reason, the initial condition, when the spacecraft is injected into the orbit, should be slightly shifted towards the Sun along the x-axis. 9.3.2
Simulations Discussion
of the Radiation
Pressure
Control.
Results
and
Program CONSIM allows also for radiation pressure maneuvers. In this case, the program requires the maximal value of s/m (i.e., with the wings unfolded) compared to the standard one (i.e. with the wings folded). It is required a bound for the time length of the radiation pressure maneuver, if it is desired to use an optimal /? angle or it should be taken as zero, and finally, the x shift used in the initial conditions. The simulation program only uses the a priori time interval, At, computed in 9.3.1 as a hint. The integration is done, with the value of j3 fixed for the full maneuver, with s/m corresponding to the unfolded wings till the unstable component reaches the value Uf. The differences between the true At and the a priori one rarely exceed 10%. For the radiation pressure maneuvers, it has been observed that the real orbit is systematically delayed with respect to the nominal one. This is due to the fact that the escaping part of the motion (which is always present) tends to slow down the motion in other directions. However, the rate of delay is small, of the order of 1 hour per year, at most. Table 9.11 gives a sample of results for Sun-Barycenter problem L\ case is
404
The On/off
Control Strategy: Simulations
and
Discussion
given, where 5 5 stands for the quotient ( s / m ) m a x i m a l / ( s / m ) s p a c e c r a f t and amPl = amp2 = 1. At desired (time between 2 maneuvers) has been set to 60 days in all cases. Now, Av, vmm, u m a x mean sum of active intervals, minimum and maximum active intervals, respectively (all of them in days). In /? the value 1 means that the angle /? has been determined in an optimal way, and 0 means that it has been taken null. The results show that, even with s/m = 2.5 x 0.01 = 0.025, the radiation pressure control is feasible. The value of uf has been taken equal to W£m, values less than 0.3D-6 are not recommended due to the effect of tracking errors. A sample of results is given in Tables 9.12 and 9.13. They are presented also with a simultaneous drawing (done by program DIBUIXET) of the nominal orbit and the real orbit (projection y,z). In the representation of the controlled orbit the initial and final points of a maneuver have been joined by a straight line to visualize them. It is displayed in Figure 9.4. Finally we can say that the approach taken for the radiation pressure maneuvers is essentially the on/off running, say, once every | months for one week. This can also be achieved with a low thrust device (for instance ionic thrusters). A change of 5 cm/s in 5 days is completely feasible. This could be applied with advantage to the translunar problem, where the requirements are higher and long time missions can be foreseen.
i
r
i
~i
r
1
r
-
_j*.»B
-
-J.»3
j
-
_J.»1
1
-
-aj.tl
'.
$
1
_=J.M
XWH—• -4KK5D+M
-s».M
VftIH">».?l«fW-4t VHAX- t.l»?MBt>-tl IMOMFICATIOIt V
—
dj0^
XMX- • • * » £ « . » • •
_
•Jit.«7
-r
_
-•T
-T
-•y
•t
' • ) '
-T
*T
''T
MMTHCR PAIR W g * » l * l l £ S . 1 . A PIECE W TM1S P1CURE , 2 . t FOD RCTURtf
Fig. 9.4 {y, z) projection the numerically refined quasi-periodic orbit and of the controlled orbit using radiation pressure.
ss a
s a
a
a a
-K>
a
& s>
< a cS
a w
CO t o
•
10
00 C7i r H
T f
to
CO M<
O
r-i
O CM
on
r H
0
•^ ^r
r H
rH r H
*
IO t^
•
r H
r H CO on CO t o CO t o t o
0 0 CO on CO • f C O
O i 0 CO
CM CM ^f
CM CM !>
ft
a
*
7—1 r—i
r H
^
r H
10 r H
T-i
CM
1 - ^
CM Tf
rH -5}<
H
IO
to •
r~ *
•"J"
H
CO
r~-
en 1^ T—1
M< ^
Q
t o
O
Q
to
CM
Q
to
CM O
•>*
Q
to
00 0
•*
Q
to
•* 0
Q
co
Q
CO
CO 0
Q
co
p
to
CO 0
Q
•*•
%
*>
xi 'a
g*
* S
•a
A
CU
Pressure
to
cm
00 CO
CO CM CO O l T—i T-i
CM CM
to 05 r4
CM CM
00 00 00
00 l> i-<
CM CM
I O CM 1 0 CM CM 1 0 I-- CM 1 0
rH CM
rH CM
IO CM - *
r-1
IO CM rH
r-1
T-*
f ~ TJ" O CM
rH
CM
I O r~ i n 1 0 t o t o 0 0 I—
I > CO
rH
0 CO I O CM 05 h - r H r H
T-H
00 CM CM
T-i
r~H
to to
05 CO CO • f
CM
•
CM CM IV *
T f
T f CM i—t
•&0
00
r~
l>-
T—i
r H
O
r H
r H
•*
•f
r^ t o M" • * CO CO t o t o
00 O 00 t~-
to T f CO -*f r H
O l
O
f -
to
T-^
N -
r H
l O
r-i
CO CM T f
CO CM
CO 1 0 t o CM CM CM
CO CM rH •*t<
O ) 1 0 M- 1 0 r H 0 O 05 r^ CO r~- 0 CM CM CM C M co CO
CO CO CO
r H
O CO
00
T f r H
IO
The Feasibility of the Control Using Solar Radiation
to
b-
TJ>
to ^f
on on 1^ t -
CM *
T f
to
I - H
l O
O •*
0 hCM C5 r H t ^ CM CM C M
CO *tf CO
CO <M
tv CO rH
- * CM
i—l
M<
CM
T f
0
CO t o
on CO
l-~ •*f i—(
M< CM
1 0 f M
f -
T-^
*
CM CM
r~^
•
r H
rH CM rH CM CM rH
O CM t--
r^
IO
n<
O O CM CM r H
O
I O
CM
O
O
IO
CM
to
O
IO
CM
to
O
O
CM
to
cti 0
1—1
O
O
IO CM CM
to
O
IO
CM
CO
a
O
CM
to
Q
O
<EL
to
Q
O
)
CM
3
sa CM
# # #
CM
O r H
s
P
CO
-a CM O
++
XI
0)
M
cc3
>
.2 n .2 -5
C
^- * a,
*.S
m+
0
M£ s >>
_; 0 0 .0
< T 3
• £ "S 4* O —« C
CP
h^=
3 -3
• ^ J3 5 *»
o a>
were acecr CD
C 3 (/J J3
cS - M 93
X
& C/3
O
0
C
-t-a
P fa
0 w
a a
O
a;
D-
0) fl
•* a 0 H to X )
7-
0 1 q-j
^ -0 rt
fi
o"3
*
c c ft .2
m
lE aOJ
X) U 2C a> & nt 0 0 ••3 J3 <s * = 3 O
*a
.-£
h ra rked
405
THE MODEL OF THE SOLAR SYSTEM IS: 0 0 11 O O O O O O I O O O O O O , SPAC EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERROR TYPE OF MANOEUVRES : RADIATION PRESSURE, NUMBER OF PREVIOUS CALLS TO THE USED VALUE FOR THE QUOTIENT (CROSS SECTION WINGS)/(CROSS SECTION SPACECR MAXIMAL INTERVAL IN JD ALLOWED TO THIS CONTROL 20.00, RADIATION PRESSURE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUT SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: 2.00E— INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER X = -0.13591791727460D+09 Y = -0.59435592857363D+08 XD = 0.98740691088587D+06 YD = -0.23624151332852D+07 UNSTABLE COMPONENT RADIATION PRESSURE MANOEUVRE INITIAL FINAL STARTED AT LASTING FOR (DAYS) 4.678488165525323 2.075613E-06 2.003620E-07 18041.39029025868 5.843251204751596 2.115241E-06 18090.62700409627 2.004108E-07 6.349214189700433 2.094798E-06 2.007604E-07 18155.89875583118 5.085643572155277 2.205028E-06 1.996810E-07 18207.48131100370 5.929884514119294 2.002060E-06 1.999997E-07 18260.57530688136 .745898974083048 1.986235E-06 2.000321E-07 18331.01160351493 .275834538201252 2.153925E-06 2.003017E-07 18397.42138380715 .466573821945985 2.015513E-06 1.990140E-07 18450.01303945794 .6894462422010Z9 2.142908E-06 1.987976E-07 18514.36686164792 .957209223081009 2.023522E-06 1.988800E-07 18575.72683107969 .160160199833626 2.024017E-06 2.008441E-07 18622.35345472694 6.924565653112495 2.027361E-06 1.993740E-07 18684.67663366586 6.440517378083314 2.040396E-06 1.995065E-07 18747.71361331227 .288817873336484 2.028806E-06 1.993086E-07 18805.27599690431 .153342961958970 1.938000E-06 1.988359E-07 18872.46867338025 .020324051713033 2.174298E-06 1.999349E-07 18934.98285743509 .219349932423029 2.001494E-06 2.002006E-07 18979.49439871031 . 120838401453966 2.144260E-06 1.999994E-07 19036.01144051052 .271037065484961 2.064357E-06 2.002985E-07 19084.84225980426 .181097507369486 2.162014E-06 1.992722E-07 19151.23800069861 8.326838450753257 2.143713E-06 1.983202E-07 19210.47406980241 5.226769167029488 2.130764E-06 1.998945E-07 19270.08170573782
19321.67358085754 5.533224595569664 2.048041E-06 2.000966E-07 19367.28418219810 4.804782231353329 2.013107E-06 2.003856E-07 19421.17258848335 6.294592806259061 2.109849E-06 1.999339E-07 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES = 2 5 , ACTING CONTROL T MIN AND MAX TIME INTERVAL BETWEEN END OF A MANOEUVRES AND START OF NEXT ON MIN AND MAX OF MANOEUVRE TIME (IN JD)= 0.41602D+01, 0.83268D+01 Table 9.12 Output of program CONSIM. Sun-Barycenter problem, simplified model. L\ equi pressure simulation.
THE MODEL OF THE SOLAR SYSTEM IS: 1 1 18 l l l l l l l l l O O O O , SPAC EARTH+MOON—SUN SYSTEM. EQUILIBRIUM POINT L 1. INITIAL AND FINAL TIME FOR THE SIMULATION (IN MJD SINCE 1950.0) 18000.00 MAX (MIN) AMP OF UNST. COMP. BEFORE UNCONDITIONAL (POSSIBLE) CONTROL (IN SUITABLE MINIMUM TIME INTERVAL BETWEEN TWO CONSECUTIVE MANOEUVRES (IN JD AMPLIFYING FACTORS FOR TRACKING, MANOEUVRES AND RADIATION PRESSURE ERROR TYPE OF MANOEUVRES : RADIATION PRESSURE, NUMBER OF PREVIOUS CALLS TO THE USED VALUE FOR THE QUOTIENT (CROSS SECTION WINGS)/(CROSS SECTION SPACECR MAXIMAL INTERVAL IN JD ALLOWED TO THIS CONTROL 20.00, RADIATION PRESSURE USED NOMINAL ORBIT = 3 (1)=HAL0 ; (2)=QP0 ; (3)=PS, NOMINAL POINT COMPUT SHIFT IN THE ADIMENSIONAL x VARIABLE FOR THE INITIAL CONDITIONS: 3.00E— INITIAL POS. AND VEL. IN ECLIPTIC COORDINATES CENTERED AT THE BARYCENTER X = -0.13716042461726D+09 Y = -0.59541228656201D+08 XD = 0.98750273443797D+06 YD = -0.23631672067518D+07 RADIATION PRESSURE MANOEUVRE UNSTABLE COMPONENT STARTED AT INITIAL LASTING FOR (DAYS) FINAL 18046.73990166762 9.344978755967986 3.181417E-06 2.970087E-07 11.06937566816669 18106.34503324694 3.006147E-06 3.002796E-07 10.80905573389100 18175.45055856023 3.060596E-06 3.001386E-07 7.647450102451330 3.004884E-07 18236.69652677594 3.079406E-06 10.91535710546532 3.026776E-07 18305.60058262063 3.194381E-06 8.641289833321935 18370.65350009813 3.016822E-06 3.011523E-07 8.956379619911786 3.085259E-06 3.000209E-07 18427.34880369345 6.090055467874663 2.202608E-06 2.983608E-07 18497.87872061086 9.865032138072365 3.028778E-06 3.028893E-07 18558.60553130183 8.194840455342273 3.103343E-06 2.995241E-07 18610.65710650033 10.40211550215736 3.017759E-07 18672.20842144599 3.286868E-06 FINAL STATISTICS FOR THE RUN : NUMBER OF MANOEUVRES 11, ACTING CONTROL MIN AND MAX TIME INTERVAL BETWEEN END OF A MANOEUVRES AND START OF NEXT MIN AND MAX OF MANOEUVRE TIME (IN JD)= 0.60901D+01, 0.11069D+02 Table 9.13
Output of program CONSIM. Sun-Barycenter problem. L\ equilibrium point. /3
Chapter 10
Other Cases and Further Simulations
In this chapter we present, for completeness, a few results concerning cases that have been left till the present. We refer to the motion near L3, L4 and L5 points in the Sun-Barycenter and Earth-Moon systems. For the L3 point, in the Sun-Barycenter problem, the perturbations due to the planets (including the Earth among them) in a short time interval (several years) are so small that we can consider it as a two-body problem: Sun and spacecraft. The triangular points for the Sun-Barycenter system have been studied with some detail. The analytic equations have been integrated in a first approximation and, by simulation, the results are compared with the numerical ones. The general result for the £3,4,5 points, in the Sun-Barycenter system, is that the motion behaves in a very stable way. For the L3 case in the Earth-Moon system, the results are worse. This is due to the strong influence of the Sun. A spacecraft left at the equilibrium point, without control, goes away from this point, relatively quickly. However, for the L4 and i 5 cases, it seems, according to the simulations, that there is a chance to find stable orbits. Here stability means that there are bounded orbits at a distance from L4 or L5 less than some 300000 km.
10.1 10.1.1
The L3 Case for the Sun-Barycenter Problem Computation
of Initial
Conditions
As it has been discussed in 2.3.3, the halo orbits in the L3 case cannot be obtained using analytic expansions of the same type of the ones used for L\, L^. This is due to the fact that, before the planar Lyapunov orbit bifurcates to halo orbits, the expansions are no longer convergent. However, a simple approach is enough to get orbits in the region opposite to the Earth with respect to the Sun, such that, when seen from the Earth, look like halo orbits around the Sun. The program L3IN produces initial conditions for a spacecraft such that, seen 409
410
Other Cases and Further
Simulations
from the Earth, stays roughly at a fixed angular distance from the Sun. This distance is an input data. The osculating motion of the Earth at a given epoch is considered. This is a planar elliptic motion. Then, there are several possibilities. Either the Earth and the spacecraft are simultaneously at the perihelion of the respective orbits, or when one of them is at perihelion, the other is at the aphelion. In any case, the semimajor axis of the spacecraft is taken equal to the semimajor axis of the Earth. Two more possibilities are left: the inclination of the spacecraft orbit with respect to the ecliptic can be chosen positive or negative. For a given case the program computes the initial conditions at a given epoch. 10.1.2
Results
of
Simulations
We ran two examples. Both were selected to have positive inclination and angular distance to the Sun equal to « 6°. The initial epoch was MJD50 = 18000 and the time spent was 10 years. One of the examples was taken of the type perihelionperihelion and the other perihelion-aphelion. The results, in Figure 10.1, display, in both cases, a slightly changing halo orbit. The orbits, in the adimensional coordinates, are seen as circles slowly going to the left, both in the perihelion-perihelion case and in the perihelion-aphelion one. This can be due to the slight lack of coherence of the model used for the solar system. A refined study can improve the initial conditions to cancel this slow motion, but this is not necessary. As a conclusion, in L3 halo orbits there is no need of station keeping for the Sun-Barycenter system. 10.2 10.2.1
The L3 Case for the Earth-Moon Problem Results
of a
Simulation
For this case the situation, compared to the one described in 10.1.1 is quite different. Due to the strong influence of the Sun, a motion starting at the equilibrium point goes away and falls towards the Moon after a while. Figures 10.2 and 10.3, show that starting at the L3 point of the Earth-Moon system on MJD50 18000, a deviation (mainly in the adimensional y coordinate) of 35 000 km is produced after one month. This is increased to some 75 000 km after two months. In each month an increasing loop is done. In the third month the spacecraft falls towards the Moon (roughly performing a circle centered at the Earth, that is, near the zero velocity curve of the RTBP). Then, the spacecraft becomes a Moon orbiter. At the end of the fourth month a close encounter with the Moon is detected.
The L3 Case for the Earth-Moon
411
Problem
SimiLATIOn OF NOTION IH ?HC SOIJW JVSTCT INITIAL COrOIITron FIHJL COfttlTIONS i K « . , K » ^ ; | ) Y t t ) - 0.ie?3399fi3Z339D+08 YFU> • t.l87»IW|ia37»+09 vie) . f . « M s s n s 3 T C » o t M V F I | > - ••*Ji5225S75fSSStS5 Y(3> - -0.9833BOC18M31D*07 VF 3> • - • • T f S f K J f l S g f S U ? V(4) - - 0 . 11701130447400*07 VF(4> * -0.11SS54eSBS07«0*f7 V S - 0 817S»IT9»SBO*07 VF<S> • 0.21BS870S1714*0*07 V ( i ! - •0.421SUfiIc»360»OC YFIO) - -0.488 7SU8 838108*06 FINAL T I K - • • 810S304 1450188*05
NEW TftNK 7 , IF MO TIWX-O. ELSE MITE TfMX
SIMULATION OF norion in n c SOLAR SVSTEA IHITlAt CONDITION FINAL CONDITIONS (KB.,Ka'ri»u> Y d ) - 0.14S183978eil50*OB VF(1. - •.1464E1S541S1SD+0B Vlii • 0.30900877838840+00 VF(3) * 0.887S80171443SD+OS V(3) > O.C8487f403*3780+OS VF<3> - 0.87S008073895IO+O? V<4) • -0.734E4S314491CB+0* VF<4) - -0.7O883C6B19US8+0C V<S» > 0.84a473S203802a*07 VFCSJ • l.2413»SMtt?5D+«? YfE> • -«.S3«8S?*08C4STB*0« VFCC) • -O.S3S4?48838378D*«C FINAL TINE - 0.8100849040*400*0*
HEW TFWX ? . IF HO THAX-O. ELSE URITE TfMX
0.877^8*00
L.1IIHHI o.8T^4D»«o
t
o.gayp+QB
|
o.97yD+oo
{
o.ioy.o*ii
|
}
0.08808*00
(
0.97yo*00 , 0.103,18*01
}
0.10y8*01
_ 0.108,80*01
Fig. 10.1 Projections of halo type orbits, around L3, in the Sun-Barycenter problem. In the top three figures, the Earth and the spacecraft are simultaneously at the perihelion of their respective orbits. In the bottom ones, the Earth is at the perihelion and the spacecraft at the aphelion.
412
Other Cases and Further
Simulations
SIMULATION OF NOTION IN THE SOLAR SYSTCT INITIAL CONDITION PINAL CONDITIONS
NEU TIMX ? .
IF HO THAX-a, ELSE URITE TT1AX
•.nyp+oi
t
t . u y c M i i g,i»^5pt>t , o.iayp+ti , «.IM?C+«I
SIMULATION Of NOTION IN THE SOLAR SVSTEN INITIAL COHOITIOH FINAL CONDITIONS
¥13) - t.»36673EG«9*5D+t5 VF<3» - • •««« 33" » 7*5*5 *•*
Y14> • • . B * 4 6 C 3 S G i a 4 3 * D * « G W ( 4 J V(BI - - * . Z 4 G 1 0 » S 4 4 2 9 4 8 D + t 7 VF(S) • ¥<«) - •>GS7?344?42SS4D*«4 VF(S) FINAL TIME •.ll*G4>tt8a««S40*#S
•-35B388«3S31*1D*«7 -•.4aM*t*M74T7g*M -•.3S!8*6S4S6M1D*»4
NEU TTMX ? . I F NO TNAX-9. ELSE URITE THAX
«.P9yp+M , t - . i t y a m , t.ntj6P+»i
_
• .it«3D*ti
t.fya+ti
t
«.iayp*i
{
|
e.i»yp*»t
t
••ittta+oi
L.45S3S-G3
».t»]|io»ti - . a t y i n i , - . n y p - o i
Fig. 10.2 Coordinate projections of the simulations of motion starting at the equilibrium point L3 of the Earth-Moon system. In the top figures the time interval is of 20 days, and in the bottom ones of 2 months.
The Triangular Cases for the Sun-Barycenter
SIMULATION OF POTION IN THE SOLAR SVSTEN INITIAL COHOITION FINAL CONPITION9 < K « . . K ; ' J f * > „ „
v(i> * •.3«T49i6f?i«4iD««a VFU> • _
..
T VF(l> J YF<3) V t 4 » • -0.a«3«SSS3SSSTB»+«7 Y F ( 4 ) Y I S I - 0.S317OSS31S1930+OG V F ( G I YISI - «.fi8420»C7tlBlD+*4 YFISI FINAL TIflE • 0.1Sa4MltSlS31IH4S
Problem
413
~!
„
TTJl
».3»»?2i«KH?52*!S
- • . I43t373S9t94S0*09 ».S34i4B4t05S73D*OS - -•.241313Sa9376204t7 • •.Sa00S«433tB37D4« • -0.BS71S933731T704O4
NEU TIMX 7 , I F NO TnAX-O, ELSE URITE TfMX
-.13^0*01
(
-.734^Pt»S
(
-.1B1SB+—
t
B.43^SB»SS ,
,19-411
|
B.L0L6P»S1
* . 379,46*00
Fig. 10.3 Coordinate projections of the simulations of motion starting at the equilibrium point L 3 of the Earth-Moon system, during 240 days. After the third month the spacecraft becomes a Moon orbiter.
We note that in the case of the L3 point, for the Earth-Moon system, there is no need of halo orbits due to observational reasons, as it happens in the Sun case. In a similar way to what will be presented in 10.3 for the L 4 and L 5 points of the Sun-Barycenter system, but carried out to a higher order, it seems feasible to obtain a (unstable) quasi-periodic solution. The main perturbations come from the Sun and from the noncircular motion of the Moon around the Earth. We do not pursuit this approach, which is left open for further study.
10.3
The Triangular Cases for the Sun-Barycenter Problem
10.3.1
The Adopted
Model for the Motion
Near LA and L5
We have studied the residual accelerations in the neighborhood of the triangular points. As a result of several runs of program SSI, and being interested in a precision of 6 • 10~ 6 in the normalized acceleration, the following model has been obtained. a) Venus and Jupiter can be considered in circular planar motion. b) No other planets must be considered. c) The barycenter of the Earth-Moon can be considered instead of the Earth
414
Other Cases and Further Simulations and the Moon. d) The eccentricity of the Earth must be taken into account. The effect of the periodic terms in the motion of the Earth appears in longitude, radius vector and latitude. The list of terms that we must consider is given in Table 10.1.
In the Table, as is usual, nv, ns, nM, nj and ns refer to the mean motion of Venus, Earth, Mars, Jupiter and Saturn, respectively. Concerning the errors in the adopted model for _L4 and L5, we have computed the difference between the acceleration of the real solar model and the adopted one. The results have an error of 6.8 • 10~ 6 and 6.5 • 10~ 6 , in the normalized acceleration, for L4 and L$ respectively.
Mean motion nv — ns 2nv — nE 2nv — 2ns 2ny — 3ns 3nv —3nE 3nv — 4ns Mean motion nv nv — ns 2nv — nE 2nv — 2ns 2nv — 3ns 3nv — 3ns 3nv — 4ns 3nv —5n^ 2ns — 2nM 2ns - nM Mean motion 2nv — 3ns
Radius Mean motion 4nv —4nE 5ny — 4ns 5ny — 5ns Qnv — 6ns 2nE — 2nM
vector Mean motion 3ns — 4nM 2nv — nj nE - nj 3ns — 2nj 2nE - 2nj
Longitude Mean motion Mean motion 4nv — 4ns 3nE — 3nM 4nv — 5ns 2nE — 3nM 5nv — 5ns 3ns — 4nM 5ny — 7nE 4nE — hnM 6ny — 6nE 4ns — 6nM 7ny — 7ns 5ns — 7nM 8nv —&nE 2nj5 - nj nE - nj nE - nM 2nE - 2nj - nj ns - 2nj 3ns —2nj Latitude Mean motion Mean motion 5ny — 6n# 3nv — 4njg
Mean motion nE - 2nj 3nE —3nj 2nE - 3nj nE ns 2nE - 2nj
Mean motion 3ns —3nj 2nE - 3nj ns - 3nj 4ns - 4nj 3ns - 4nj 2nE - 4nj nE - ns 2nE - 2ns 2nE - ns
Mean motion 12ny — 8nj3
Table 10.1 Frequencies in the radius vector, longitude and latitude appearing in the simplified model around the triangular equilibrium points.
The Triangular Cases for the Sun-Barycenter
10.3.2
Development
of the Simplified
415
Problem
Equations
of
Motion
The equations of motion around the two triangular points, for the Sun-Barycenter problem, have been obtained in 5.3.3. Using the functions C(l), C ( 2 ) , . . . , C(27), we can write the equations of motion as x-2y-x
=
C(l)x + C(2)y + C{3)z + C{4)x + C(5)y + C(7) + K{1 -
HB
+ K J2
+ V§)(x ~
VA
ZZA)
'SA
+ ..., + C{15)y + C(16)i + C(17)
VSA
+ 02(x,y,z)
rs 3yA {xxA + yyA + zzA)
_ y-VA
'SA
A<E{B,V,J}
=
+ yVA +
C(ll)a; + C(12)t/ + C(13)z + C(U)i
z
rs 3XA (XXA
' SA
+ 02(x,y,z) =
s) - 1
XSA _ X-XA
Ae{B,V,J}
y-2x-y
3(xxs + yys)
x
'A
'SA
+ ...,
C(21)x + C(22)y + C{23)z + C(25)y + C(26)z + C{27) -K{\-
nB+n§)z ZSA 3 1 SA
A€{B,V,J}
+ 02(x,y,z)
_ z - zA ~3
3zA (xxA + yyA + zzA) +
;4 'SA
+
After some rearrangements and recombination of terms, in the above equations of motion, they become 3
3V3,,
n
.
n.
1
/
3 ,\
= - - ^ ^ l + -e2J
-^xT—(l-2fiB)y-2y
+ -
e(4n - nl - 3) - 3/j,§e I 1 + - e '
± \flen{\ - n) cos (M - - ) 9
53
3 - - u ss e 2 cos 2M - -—use cos 3M 4 16 b 1 F\
+
& A€{V,J]
' SA
cosM
416
y=F
Other Cases and Further
3^
(1 - 2nB)x - ?y + 2x
= , V3
Simulations
^ - l ^ h + ^ j g e(4n - n 2 - 3) - 3 ^ e ( 1 + - e
cosM
— en(l — n)cos (M — — J 9^3 „ „ , 53V3 , 2 =F ——[ige* cos 2M ^ yuge3 cos 3M ± —— E r — £ r =p _ 5 _ ^ r ^ V 3£s — -E#
.4G{y,j}
i; + z
=
'S.4
I (E« + E,) T ^
(E,
+ E,)
2
- ( n + 3)ecosMz - 2en sin Mz, where we have canceled the terms of the type 0(/u§E), 0(/zye, fj,je) and 0 ( e £ ) , as well as linear terms in a;, y, z on the right-hand side, which have small coefficients. Here e, n and M denote the eccentricity, mean motion and mean anomaly of the Earth-Moon barycenter, E means E r , £#, E,s and its derivatives. The upper (resp. lower) sign corresponds to L4 (resp. L5). Note that the above simplified equations of motion form a nonhomogeneous linear system of 6 differential equations of first order. The nonhomogeneous part of the linear equations of motion around L4 and L5, are periodic functions of time which have been developed in cosine Fourier expansions. Then, the equations of motion are (remember that the origin, in the present variables, is located at the libration point)
n+l
3 3\/3\ x - -x ± - T - ( l - 2fiB)y ~ 2jf ••
3>/3„
y =F — ( 1
v
9
- 2HB)X
„
--y
-0.1,1 - 2 J a*.l cos(aiM
+ ^,3),
i=2 m+1
-&i,i - ^
+ 2x
Ki cos(bit2t + bit3),
(10.1)
t=2
J+i
z+z
=
- c i , i - y ^ ajti cos(cji2t + Cjfi). i=2
Now, we explain how we have computed the coefficients a^i, a ^ , a;^, biti, bit2, bi,3, Cj,i, c i]2 and 01,3. First, we study the development, in cosine Fourier expansions, of the functions
417
The Triangular Cases for the Sun-Barycenter Problem
/ HA
%SA XA\ - ^r o - + ^r r 5A AJ
, / VSA . VA \ t and fiA \ - rr r - + ^r j , for \ SA A-
„ ,, r T / n A£{K,J}
According to our model of solar system, we can assume, in order to compute the expansions of the above functions, that the motion of Earth, Venus and Jupiter is circular and planar. Then we have , cos# sin# 0 \ / av cos($7y + wy + My) fsv = — I — sin# cos# 0 I ay sin(Hy + wy + My) as 0 0 1 / V 0 that is, C0S(# — fly — LOv — My
\
- sin(# — fly — toy — My
o
J
I
COs(ayt +
ay)
I = — I — sin(ay£ + ay) aB
V
o
where 9 is the longitude of the Earth-Moon barycenter, fly, coy and My are argument of the ascending node, argument of the perihelion and the mean anomaly of Venus; as and ay the semimajor axis of the Earth-Moon barycenter and of Venus, respectively. Since fy = fsv + fs and fs = (— | , T 2 ) >
fy-\
rv
yy
= I f t - fy
nave
^- cos(ayi + ay) — cos j - ^ sin(ayi + av) q= sin §
| = |
1
we
= ^T,{^y
Pr, (COS (ayt +ay ±D).
n>0
By derivation of fv
we obtain n-1
n>l
=
x
'
J^SiCOS ^ a y t + Qy ± - j j . i>0
Similar expressions can be obtained for Jupiter instead of Venus. The routine LEXPLOR computes the coefficients Sj for Venus and Jupiter. A sample of results is given in Table 10.2.
418
Other Cases and Further Simulations
s(2 s(3 s(4 s(5 s(6 s(7; s(8 s(9 s(10 s(ll s(12 s(13 s(14 s(15 s(16 s(17 s(18 s(19 s(20
Venus =0.7377689491340696D-05 =0.4195682483286185D-05 =0.1003371157944280D-05 =0.2244752031252652D-06 =0.4847166319658651D-07 =0.10238868923694 78D-07 =0.2130603136992104D-08 =0.4385585613667933D-09 =0.8952973596931421D-10 =0.1815906550483472D-10 =0.3663977376037354D-11 =0.7361168794680663D-12 =0.1473590001842287D-12 =0.2940909949146466D-13 =0.5853233392468205D-14 =0.1162432254155214D-14 =0.2298041848638178D-15 =0.4546663083126261D-16 =0.8498007296131527D-17 =0.1676413034476548D-17
s(2 s(3 s(4 s(5 s(6 8(7! s(8 s(9 s(10 s(ll s(12 s(13 s(14 s(15 s(16 s(17' s(18 s(19 s(20 s(21 s(22 s(23 s(24 s(25 s(26 s(27 s(28 s(29 s(30
Jupiter =0.1222234283950319D-04 =0.2170463780584770D-04 =0.1806676405456756D-04 =0.1456371258825714D-04 = 0.1150201839987549D-04 =0.8965896451668670D-05 =0.6914136921992453D-05 =0.5296286397454948D-05 =0.4027114837762758D-05 =0.3051735389344124D-05 =0.2297750761958548D-05 =0.1728519627275615D-05 =0.1291105471392541D-05 =0.9661185965714785D-06 =0.7160692874071754D-06 =0.5336821799517928D-06 =0.3919784779731748D-06 =0.2912267883387684D-06 =0.2112189940943199D-06 =0.1565371229477451D-06 =0.1113075333459836D-06 =0.8232435198163356D-07 =0.5659259948480184D-07 =0.4178688080523051D-07 =0.2699293148104656D-07 =0.1990356881180330D-07 =0.1131851174958686D-07 =0.8336241653031183D-08 =0.3411968807173104D-08 =0.2510535742061504D-08
Table 10.2 Output of program L45 (routine LEXPLOR). Fourier cosine coefficients, 3 s(i) of the functions fv and f - 3 Now, it is not difficult to compute the coefficients a's, b's and c's. These computations are done by the routine LPREPAR. For shortness we give in Table 10.3 the results for the z equation in the L\ case. Coefficient 2.4686114735776081E-07 1.2299118996729597E-06 1.6382655021745854E-07 9.9370832543645329E-07 3.1402824274623946E-07 2.5852168794679081E-06 1.4302938322835206E-06 1.9190022036514440E-05
Frequency 2.876475192455527 2.876475192455527 3.501982849697882 3.501982949697882 4.752998164182590 4.752998164182590 7.746215594629126 7.746215594629126
Phase 2.126749972413535 0.555953645618638 0.121819261344875 4.834208241729565 2.290423391267524 0.719627064472627 4.266947481183109 2.696151154388212
Table 10.3 Output of program L45 (routine LPREPAR). Fourier coefficients, frequencies and phases of the z equation of (10.1).
The Triangular Cases for the Sun-Barycenter
419
Problem
The routine LET checks the coefficients a's, b's and c's for L4 and L 5 . Given the initial conditions, x(t0), y(to), z(t0), x(t0), y(t0) and z(t0), LET computes the analytic acceleration through the routine LPROVEQ, and the real acceleration through the routine DERIV. After, it gives the differences, which are less than 6 • 10~ 6 in normalized coordinates. 10.3.3
Analytic
Solution.
On the Existence
of Almost
Tori
The analytic solution of system (10.1) is x(t)
= C\ cos(sii) + 5i sin(sii) + C 2 cos(s2£) + S2 sin(s 2 i)
+
12ai,i=F 4>/3(l - 2/i B )6i,i 9(l-(l-l/i n+l
a»,i
+ ^2 jr-Acos{aifit
B
)
2
)
+ a i)3 )
t 1 i=2 ' m+l ,
+ V] -pp- [-C cos(bU2t + bi,3) + D sm(biat + 6i>3)] i=2
»W
=
Di 2
'
Y, 1 2 1 9\
(2s i 5 i T^(l-2/x B )C i )cos(Sit) 4
t ? (»? + !) LV
/
2 Si Ci ± ^ ( 1 - 2iiB)Si j sin(sif)
+
4V5(1 -2/x B )ai,i 9(l-(l-l/xB)2)
4&I,I=F n+l
+ 5 ^ TT~ {Ecos(ait2t + a i]3 ) - Fsin(a i ) 2 i + a i]3 )l m+l ,
- 5 2 7r-Gcos(6i, 2 t + i)i,3), i=2
*'z H-l
z(£)
= C s c o s t + 5 3 s i n i - Ci - ^ - — ^ - j - C O S ( C J ) 2 * + Cj,3), i=2
where
^ = f a?l2 + 4) C
=
faj.,+3a?.,+
27\ 16;
27 (1 - 2/xs) 2 - 4a? 2 16
3V5(l-2/xB) ± g ( l - 2 M B ) 2 ± 6 2 , 2 T i ^ 2 + 3 6 2 , 2 +
£> = -26 i , 2 (64 2 + 3622 + ^ + y ( l - 2 M B ) 2 6 i , 2 + 86f,2,
|
420
Other Cases and Further Simulations
9 1 / 27 3 ^ ( 1 - 2fiB) ± - ( v1 - 2 ) 2 ± a\ j < + 3o? + MB 2 T 2 2 "64 16, 27 27 (1 - 2»By + 2 ( a*it2 + 3 < 2 + Qj,2 8a?
E ~F
,2
G
3
^ + 36?,2 + g)-^, 2 -g(l-2 M B ) 2
3 \ _ , 3^3
Di,i
= (<2 + - M ±
Di,2
=
E\2
=
±
3\/3
(1 - 2m)C
(1 - 2A»B)-B - 2 a i i 2 F ,
+ 2bii2D +[bt2
+
-\G
-1±[1-27MB(1-MB)]1/2
SI «2
The coefficients Cj, 5j z = 1,2,3 are free and they depend on the initial conditions. The routine LCOMPUTE, computes the analytic solution, (x(t), y(t), z(t), x(t), y(t), z{t)). The routine LS0LUTI0N writes explicitly the analytic solution. Thus, if we only write the coefficients which are greater than l.E-5 the analytic solution near L\ is given by the list of terms given in Table 10.4. Similarly we can obtain the analytic solution near L$. We see that the solution is the superposition of periodic terms with frequencies si, s2 and 1, which correspond to the free modes in the linear approach to the motion near the L4 and L5 points for the RTBP, and quasi-periodic terms. Those terms come from the perturbations due to the effect of the planets. The 3 free modes correspond to motion on a three-dimensional torus. We call almost tori the perturbations of these tori by the quasi-periodic terms. According to the KAM theory, in the spatial RTBP there are three-dimensional tori near 1/4,5. When the perturbations are included, the tori can be destroyed and only tori of lower dimension can subsist. We point out this fact here but we do not pursue the analysis in this work. 10.3.4
Simulations Starting at the Instantaneous or with Suitable Initial Conditions
Equilibrium
Point
The program giving the analytic solution described in 10.3.3 is able to compute initial conditions when values of C*, Si, i = 1,2,3 are assigned, and to compute the values of Ci and Si, when the initial conditions are given. Two sets of examples have been considered: Starting at the exact, L 4 (or L5), geometrical instantaneous equilibrium point, and starting at the initial conditions obtained when d = Si = 0, i = 1,2,3. We summarize the results.
The Triangular Cases for the Sun-Barycenter Problem
X(T)
=
ctantl +ctant2 +ctant3 +ctant4 -0.257890929838D- -4 -0.162713912265D- -3 +0.144588380152D--3 +0.156648647727D--3 -0.119074507409D- -3 -0.112376224887D- -3 -0.269408817410D- -3 -0.218523107982D- -3 +0.308131587355D--3 -0.729614680134D- -3 -0.578571510200D- -3 +0.340925570472D--3 -0.100232806832D- -3 +0.115808032605D--3 -0.255563976769D- -3 +0.309264127310D--3 -0.120358400279D- -3 +0.875228039603D--3 -0.804304334622D- -3 +0.138609640881D--3 -0.133486336651D- -3 +0.164243285280D--3 +0.115828892172D--3 -0.113052106058D- -3 +0.193835300769D--3 -0.279510771990D- -3 -0.307581085922D- -3 +0.531540034311D--3 -0.749341137132D- -3 -0.140500608863D- -3 +0.198071413660D--3 -0.339850224141D- -3 -0.105371611536D- -3 +0.120150457239D--3 -0.225305588439D- -3 +0.317625644251D--3 +0.102529054387D--3 +0.368130871609D--3 -0.518975979490D- -3 -0.338299554340D- -3 +0.476920997707D--3
*cos( 0.453020634230D-2 * sin(0.453020634230D-2 *cos( 0.999989738562D+0 * sin(0.999989738562D+0
* * * *
T) T) T) T)
*cos( 0.625507657242D+0 *cos( 0.125101531448D+1 *cos( 0.125101531448D+1 *cos( 0.251063093756D+0 *cos( 0.876570750998D+0 *cos( 0.936601677928D+0 *cos( 0.936601677928D+0 *cos( 0.633505427996D-1 *cos( 0.915657061883D+0 *cos( 0.915657061883D+0 *cos( 0.842951588453D-1 *cos( 0.966020989132D+0 *cos( 0.936601677928D+0 *cos( 0.915657061883D+0 *cos( 0.915657061883D+0 *cos( 0.625498935007D+0 *cos( 0.915660062559D+0 *cos( 0.915660062559D+0 *cos( 0.625507657242D+0 * sin(0.625507657242D+0 * sin(0.125I01531448D+1 *cos( 0.251063093756D+0 * sin(0.876570750998D+0 *cos( 0.936601677928D+0 * sin(0.936601677928D+0 *cos( 0.633505427996D-1 *cos( 0.915657061883D+0 * sin(0.915657061883D+0 0.915657061883D+0 *cos( 0.915657061883D+0 * sin( 0.842951588453D-1 *cos( 0.966020989132D+0 * sin( 0.936691677928D+0 * sin( 0.915657061883D+0 *cos( 0.915657061883D+0 * sin( 0.625498935007D+0 *cos( 0.915660062559D+0 *cos( 0.915660062559D+0 * sin( 0.915660062559D+0 *cos( 0.915660062559D+0 * sin(
*T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T *T
+ 0.110352965919D+1 + 0.220897935510D+1 + 0.377977568190D+1 + 0.516127357393D+1 + 0.312684679851D+1 + 0.579068566582D+1 + 0.107829668544D+1 + 0.297021567185D+1 + 0.388647501603D+1 + 0.545727134282D+1 + 0.909532712902D+0 + 0.337877020199D+1 + 0.578963846827D+1 + 0.231591151615D+1 + 0.388670784295D+1 - 0.308800462559D+1 + 0.386847780033D+1 + 0.386847780033D+1 + 0.110352965919D+1 + 0.110352965919D+1 + 0.220897935510D+1 + 0.516127357393D+1 + 0.312684679951D+1 + 0.579068566582D+1 + 0.579068566582D+1 + 0.297021567185D+1 + 0.388647501603D+1 + 0.388647501603D+1 + 0.545727134282D+1 + 0.545727134282D+1 0.909532712902D+0 + 0.337877020199D+1 + 0.578963846827D+1 + 0.388670784295D+1 + 0.388670784295D+1 + 0.308800462559D+1 - 0.229768147353D+1 + 0.229768147353D+1 + 0.229768147353D+1 + 0.229768147353D+1 +
421
Other Cases and Further Simulations
422
Y(T) = (-0.577341492422D+0 + (-0.402681335255D-2 + (-0.399704126040D+0 + (-0.615382186606D+0 -0.148893397763D-4 -0.102735432593D-3 +0.111910863077D-3 +0.161375619450D-3 +0.130895129022D-3 -0.177582022755D-3 +0.306884781894D-3 +0.432632307238D-3 +0.243354193045D-3 +0.343069751987D-3 -0.196212618391D-3 +0.107493307640D-3 +0.151539210938D-3 -0.130080242135D-3 -0.183381251209D-3 -0.368130871609D-3 -0.518975979490D-3 +0.338299554340D-3 +0.476920997707D-3 -0.121775162951D-3 +0.151968428598D-3 -0.242806672602D-3 +0.178533359541D-3 -0.649956399972D-3 +0.171801301945D-3 +0.198072786632D-3 +0.104372838750D-3 +0.275499115217D-3 -0.450144539150D-3 +0.413667281739D-3
" sin *cos * sin * sin *cos *cos * sin *cos * sin *cos *cos * sin *cos * sin *cos * sin *cos
"cos 'cos •"cos •"cos
ctantl + 0.402681335255D-2 * ctant2) * * cos(0.453020634230D-2 * T ctantl - 0.577341492422D+0 * ctant2) * * sin(0.453020634230D-2 * T ctant3 + 0.615382186606D+0 * ctant4) * * cos(0.999989738562D+0 * T ctant3 - 0.399704126040D+0 * ctant4) * * sin(0.999989738562D+0 * T
0.125101531448D+1 0.936601677928D+0 0.936601677928D+0 0.936601677928D+0 0.633505427996D-1 0.915657061883D+0 0.915657061883D+0 0.915657061823D+0 0.915657061883D+0 0.842951588453D-1 0.915657061883D+0 0.915657061883D+0 0.915657061883D+0 0.915657061883D+0 0.915660062559D+0 0.915660062559D+0 0.915660062559D+0 0.915660062559D+0 0.625507657242D+0 0.125101531448D+1 0.936601677928D+0 0.633505427996D-1 0.915657061883D+0 0.915657061883D+0 0.842951588453D-1 0.936601677928D+0 0.915657061883D+0 0.915660062559D+0 0.915660062SS9D+0
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0.377977568190D+1 0.579068566582D+1 0.579068566582D+1 0.107829668544D+1 0.297021567185D+1 0.388647501603D+1 0.388647501603D+1 0.545727134282D+1 0.545727134282D+1 0.909532712902D+0 0.231591151615D+1 0.231591151615D+1 0.388670784295D+1 0.388670784295D+1 0.386847780033D+1 0.386847780033D+1 0.386847780033D+1 0.386847780033D+1 0.110352965919D+1 0.220897935510D+1 0 579068566582D+1 0.297021567185D+1 0.388647501603D+1 0.545727134282D+1 0.909532712902D+0 0.578963846827D+1 0.388670784295D+1 0.229768147353D+1 0.229768147353D+1
Z(T) = ctant5 * cos(T) + ctant6 * sin(T)
Table 10.4 Output of program L45 (routine LSOLUTION). Analytic solution around L4. Only terms with a |coefficient| > 1 0 - 5 were written in the Report (a total of 304 lines). Only periodic terms with a |coefncient| > 1 0 - 5 are reproduced here.
The Triangular Cases for the Sun-Barycenter
423
Problem
For the LA case, when the starting point has been taken at the equilibrium point, the analytic and numerical solutions agree quite well during the full time interval used in the simulation (4 years). In the adimensional system, the spacecraft is moving in the clockwise sense, with small loops, at a rate near 400000 km/year. The results are similar for L5, changing clockwise by counterclockwise. If the initial point is chosen such that the constants C,, Si be zero, the results are much better. For L4, the analytic and numerical results agree, quantitatively, for some half year, but they agree qualitatively for the full time interval (4 years). The separation from the equilibrium point, during the 4 years, has been less than 25000 km. No systematic departure from the equilibrium point has been found. The orbit consists of irregular loops around L4. For L 5 the agreement between numerical and analytic results is better and the separation from the equilibrium point has been less than 15000 km (also for 4 years). In Figures 10.4 to 10.8 we present a sample of results. As a final conclusion, a spacecraft placed near the triangular equilibrium points L4 and L5 of the Sun-Barycenter system, does not require station keeping if suitable initial conditions are used. The angular variation of the position, with respect to the Sun, has an amplitude of the order of 10".
MMN- l . t M M W M WWt- «.79SSUB-«2 Vtmt>-«.S2f44BD-K U
I.U
• .«•
•••<
».«•
•.»
t.tl
».«1
l.«l
Vnuc- t.tSMC2D-»2
Fig. 10.4 (x,y) projection of the numerical and analytic orbits. All the components of the initial condition where taken equal to zero. The time interval of the simulation is 4 years.
424
Other Cases and Further
1
i—i—i—r
i
i
odvi
Simulations
— I "
1
1
i
1
(>t,Y)
-
_e.ee
-
.e.ee _e.ee
-
_e.M~~^
-
.e.ee~~^
-
_«.«•
-
.e.ee
-
.«.««
-
_e.ee
-
_e.ee
-
_e.ee
.e.M
} -
_j.ee
_
_-8.81 _-».»l
1?•",
*•" ,
?•« ,
t-« i
V'1
_e.ee
\
_-e.ei --e.ei e.ee,
.
? J
MOT-RICA- ORJIT 1 .e.ee
1
1
1
1
-
?. e e .
i
f. . i ,
?•"
MMlVTICAl OMIT
1
1
1
tv'.Z)
l
i
1
i
1
i
i •
T
(V.Z)
.e.M
-
_e.ee
-
_e.ee
-
_e.ee
-
_i.ee
-
_e.ee
-
- an
.e.ee
e.ee
-a.ee
_
.e.ee
_
_e.ee
-
.e.ee
-
-e.ee
-
_e.ee
-
_e.ee e.ee ,
! • • » .
i _e.ee
i
1
..,. ,
i
i
r
i
.
N
,
i
e.ee
i
rx'.Z)
.e.ee e.ee, i
!• ee,
?•M , i
i
1
i
•"• r
T-ee,
e.ee p
i
(X',Z)
-
_e.ee
-
.e.ee
-
_e.ee
-
_e.ee
-
. e.ee
-
.e.ee
-
.e.ee
-
.e.ee
_
.e.ee
-
.e.ee
-
e.M
-
.e.ee
-
_e.ee
• no
- e.ee
f.N.
™
e.w ,
?.ee ,
NUH-RIC«l OR9IT
e.ei ,
?•»'
_e.*e T'Hi
t*±JU
• ee,
?
81
l
e.ei
ANALYTICAL 0R1IT
Fig. 10.5 Coordinate projections of the numerical and analytic orbits. All the components of the initial condition are taken equal to zero. The time interval of the simulation is 4 years.
The Triangular Cases for the Sun-Bary center
l—i-
i—i
i
1
r-j^
i
Problem
-
1
1
425
1
1
1
1
IX'.V)
.....
-
.....
\
..... /
^ 5 v
..... ( ...M
\\ \
...M
\
\ \ \
/
.....
N.
\
"
^ /
| -
^
...M
/
-
...M
t.M
•
H*.
t««.
!•«•
!•»,
t
f.M,
.M,
1
f.M,
f.M,
f.M
MMlVTICAl OMIT
MKMCtt OWIT
~T'
-
_,.., , — r —
i
I
1
1
-
.....
<xU> -
-t.M
-
...M
-
.....
-
...M
-
.».M
-
...M
-
_,..,,,
7
-».M
IK'.Z)
...M
__
_I.H
-
...M
.
-».M
-
...M
-
-t.M
-
.....
-
_,
...M
-».M
l*i
P i 1
1
1
1
i
i
1
-t.M -t.M -».t»
t-M
t-"i
l*i
'
Mil
-
-t.M
f.M,
t
.M,
f.M,
f.M,
f.M
— 1 ' 1 ...M
1
1
,
1
1
1
(VU>
-
-
.....
-
-
...»
-
-
-».««
-
...y__ -t.M
-
.....
_
-t.M
-
.....
-
-«.M
.
.....
-
-t.M
....,
!'".
....
NUMERICAL 0R1IT
f.M ,
f.M
..... ! * i
f.M ,
f.M ,
f.M ,
f.M
ANAUTICAl ORBIT
Fig. 10.6 Coordinate projections of the numerical and analytic orbits. The initial constants are Cl = Si : = C2 = S2 = 0. The time interval of the simulation is 300 days.
426
Other Cases and Further
Simulations
miBERICAL ORIIT
i—r .e.ee
ANALYTICAL ORIIT
"l—i—i—r
~
<x7->
1 —i _e.ee
e.ee
_e.ee
e.ee
_e.ee
e.ee
_e.ee
e.ee
a aa
1— r — r
r
1
1
<X,Z>
-
_ e.ee e.ee
_e.ee
e.ee
_e.ee
_e.ee e.ee, 1
1
e.ee,
!•»,
i— r
I
i
f-",
i
t-»
i- i v " . «
_e.ee e.ee,
r i _e.ee
-
r ee , ?
, e
1
1
1
i
T
?M
e.ee
T" 1 tv'.zi
_e.ee
-
.e.M
-
.e.ee
_
_e.ee
-
.e.ee
-
.e.ee
-
.e.ee
-
_e.ee _».M
.e.M
e.ee,
e.ee,
NUMERICAL ORIIT
e.ee,
e.ee
.e.ee
-
.e.ee
-
.e.ee
-
.e.ee
.e.ee • .».
_ e.ee.
f.ee,
f.ee,
e.ee
ANALYTICAL M B I T
Fig. 10.7 Coordinate projections of the numerical and analytic orbits. The initial constants are Ci = 5 i = Ci = 52 = 0. The time interval of the simulation is 4 years.
The Triangular Cases for the Sun-Bary center
i
Problem
r
427
i
r
MUX- «.3TC141»-«4 V«II«*-«.S724t3&-M VtWt- l.2S775tD-M
M
i
i.H
«.M
t.M
t.M
i
r
t.M
1
t.M
1
I.II
t.M
r
\ ' XMM—4J.I34715&-M KMK. I . 1 7 1 » » - t 3 mm—•.II7W7BH3
I.M
t.M
t.M
0.11
I.M
I.M
I.M
I.M
I.M
Vrnot- t.lire»7D-«3
Fig. 10.8 (x, j/) projections of the numerical and analytic orbits. In both cases, the initial constants are Ci = Si = C 2 = S2 = 0. The time interval of the top figure is of 300 days and of the bottom one of 4 years.
428
10.4
10.4.1
Other Cases and Further
Simulations
Simulations for the Triangular Cases in the Earth—Moon Problem Results
of the
Simulations
As a sample of what happens in the neighborhood of the L4 and L5 points of the Earth-Moon system, we have done simulations starting at the instantaneous equilibrium point. The initial epoch was chosen MJD50 = 18 000, both for L4 and for L$. Adimensional coordinates, centered at the equilibrium point, are used. Starting at L5, we left this point and a kind of clockwise spiral is started, when we consider the (x, y) projection. The revolutions have a period close to one month. The spiral is more regular for the simulation started at L4, but the general pattern is the same. The z-component is small. At the epoch 18500, some 17 turns roughly around the equilibrium point are done in both cases. Till this epoch, the maximal departures from the equilibrium point are, roughly, —350000 km and +170000 km in the x-axis and ±150000 km in the y-axis. For the more regular motion, in the case L4, the size of the different "revolutions" increases smoothly with time. In both cases, the z variable is less than 40 000 km, in absolute value, for all the time interval. For the I/5 case, soon after the epoch 18 500, large departures are produced. First, some large loops enclosing the Earth and the Moon are performed. These loops are roughly symmetric with respect to the axis passing through the Earth and the Moon and they are near the (x, ?/)-plane. The shape is roughly circular with a diameter of 1.5 • 106 km. Then, the motion approaches a periodic orbit with four outer loops, but after a little bit more than a revolution of this periodic orbit, a close encounter with the Earth is produced. This encounter introduces a large z-component in the velocity. The subsequent oscillations have z-component which reaches the values ±240000 km. The (x, y) projection of these oscillations looks like a periodic orbit roughly opposite to the Earth with respect to the Moon. Then the simulation is stopped at the epoch 19000. For the L 4 case the behavior is quite different. Soon after 500 days of simulation the x distance to the equilibrium point reaches a maximum value, being equal to 1 adimensional unit. Then, the size of the loops decreases. Near epoch 18700 a new type of motion appears. It looks like quasi-periodic because the (x, y) projection performs almost a periodic orbit, while (x, z) and (y, z) projections display a clear Lissajous behavior. As a conclusion, we can say that an instability is produced, but it seems that it is not so strong that prevents from the existence of regular orbits (quasi-periodic orbits lying on tori). Of course, the sources of the instability are the effect of the Sun and the noncircular motion of the Moon around the Earth.
Simulations
for the Triangular Cases in the Earth-Moon
Problem
429
SMULATIOM OP NOTION I I * THE SOLA* SYSTEM I N I T I A L CONDITION FINAL CONDITIONS C K M . . K V 4 a | | ) V(l> • 9 . 1 4 5 9 4 9 1 5 3 7 3 3 7 0 * 9 9 YF(1> • - 0 . 1 4 8 3 6 S 8 5 l 8 7 2 4 D * 9 9 V I S ) • - • • 3 2 1 7 3 9 4 9 9 9 8 6 5 0 * 9 8 Y F t 2 » • -9.e3eSS84S329?10*98
VO> Y<4) V(St V<6>
> ' • •
9.7I838237aBSl60*96 8.S729799834998D+96 9.24631445358680*6? -«.243«99S92$484D*94
FINAL TII1C -
YF<3> VFI4) VFtS) vrtS)
•.183591124««78D*«C
* 9. 16664134549990*95 - 9.36913831821960*96 • -8.24464944981190+8? • -9.54988737643340*94
NCU TflAX 7 , I F NO TNAX*«, ELSE blrflTE TttAK
.684^0*89
t
-.42^80*99
|
-.15^48*90
|
6.19^90*691
9.36^40*0
|
i——r^
429^0*90 ,
-.167,40*99
|
9.196/H>*09 , 9.360^0*99
• 381)00*99
|
-.14^70*99 , 9.816,411-91 , 9.192^8*99
|
9.364^0*99
SIMULATION OFflOTIQNIN THE SOLAR SYSTEN INITIAL CONDITION FINAL CONDITIONS
NEU TBAX ? , IF NO TNAX-9, ELSE WRITE TT1AX .3S32D+9* • 963,80*90
|
9.65^50-91 -.62660*99 | -.27TjS0*9O i 1 1 1 r~
9.49881
L,6«340-ej
_1844D-9l -.06389*96
18^10*99
|
9.219,90-91 , 9.226,80*98
0.43541
Fig. 10.9 Numerical simulations of motion around the triangular equilibrium point L 5 in the Earth-Moon system. In both simulations the initial conditions are taken at the equilibrium point. In the top figure the time interval is of 350 days an in the bottom one of 500 days. In the (xty) projections, the period of the revolution around the equilibrium point is of roughly one month.
430
Other Cases and Further
Simulations
Fig. 10.10 Numerical simulations of motion around the triangular equilibrium point L5 in the Earth-Moon system. The initial conditions are taken at the equilibrium point. The time interval of the simulation is of 1000 days. Comparing this Figure with Figure 10.9, we can see that larger loops, enclosing the Earth and the Moon, have appeared.
10.5
References [1] R. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin, 1978. [2] American Ephemeris and Nautical Almanac. U.S. Government Printing Office. Washington D.C., 1984. [3] V.I. Arnold. Les Methodes Mathematiques de la Mecdnique Classique. Mir, 1967. [4] E.W. Brown. "Motion of the Moon". Memoirs of the Royal Astronomical Society, 57, 129-145, 1905. [5] Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. Her Majesty's Stationary Office, London, 1961. [6] R.W. Farquhar. "The control and use of libration point satellites". Technical Report TR R346, NASA, 1970. [7] D.L. Richardson. "A note on the Lagrangian formulation for motion about the collinear points". Celestial Mechanics, 22 (3), 231-235, 1980.
References
431
[8] B.D. Tapley and J.M. Lewallen. "Solar influence on satellite motion near the stable Earth-Moon libration points". AIAA Journal, 2 (4), 728-732, 1964. [9] B.D. Tapley and B.E. Schultz. "Numerical studies of solar influenced particle motion near triangular Earth-Moon libration points". In G.E.O. Giacaglia, editor, Periodic Orbits, Stability and Resonances, pages 128-142, 1970.
Chapter 11
Summary and Outlook
11.1
Summary of the Achieved Results
11.1.1
Concerning
the Halo
Orbits
In this work the halo orbits have been studied analytically and numerically. We have obtained the following results: a) The equations of motion, in the vicinity of a collinear point, are expanded in a form which is suitable to obtain the solutions recursively. b) An algorithm has been given to obtain the series which give the periodic solutions, called halo orbits, up to any order. The solution is convergent provided the ratio of distances, from points of the orbit to the equilibrium point (Lj or L-z) and to the secondary, is less than 1. c) The solutions are written as trigonometric polynomials in an angular variable, with coefficients which are, in turn, polynomials in two variables a and /?. Those variables are related to the x- and ^-amplitudes. They should satisfy a condition, which follows from the Lindstedt-Poincare method, that is also computed. The coefficients of the polynomials in a, ft are functions which only depend on the mass parameter n and the index (1 or 2) of the equilibrium point. d) A program has been produced which computes, for a given value of /x, all the coefficients which appear in the solution, the relation between a and /? and also the frequency of the angular variable. e) The full family of halo orbits in the L\ and L2 cases for the Sun-Barycenter and the Earth-Moon problems has been computed numerically. As a complementary check, the computations have also been carried out for Hill's problem. Some of the orbits have been continued to the elliptic RTBP. f) The halo family for L\ is born from a bifurcation of a Lyapunov planar orbit. Then the size increases. For moderate sizes, the agreement with the analytic results is excellent. The family has orbits which come very close to the secondary. For practical purposes, these orbits are unsuitable, 433
434
Summary
g)
h)
i)
j)
k)
1)
m)
and Outlook
because collisions with the Earth or Moon surface, respectively, can occur. At some point in the family, the orbits are almost contained in a vertical plane through the secondary. Later on they increase very much the distance to the secondary and they die in a planar periodic orbit encircling both primaries. A symmetric family exists. The halo family for Li is also born from a bifurcation of a planar Lyapunov orbit, but the final expanding size phase of the family is replaced by a decrease in size such that the orbit shrinks to the secondary. A symmetric family also exists. For Hill's case, the families of halo orbits associated to L\ and Li are symmetric. They end in a common orbit, which belongs to a family of vertical collision orbits. A numerical study of the variational equations associated to a halo orbit has been done. Floquet theory has been used to identify the behavior of the solutions of these variational equations. Then, the Floquet modes have been computed by means of their Fourier series. For halo orbits of moderate size, there is an unstable direction. Hence there exists a two-dimensional invariant unstable manifold. This manifold has been computed, starting with a linear local approximation, to see whether or not the second order variational equations are required. The answer is negative. We also point out the possibility of using the stable manifold for transfer. The parameters to perform the station keeping, and that will be described in 11.1.3, are also numerically computed for the halo orbits. From this result we have shown that the (x, y) control is always the optimal one, followed, in efficiency, by the (x) control and the (y) control. The maneuvers using only the z variable are too expensive and controllability is lost at several points. It has also been shown that, provided operational constraints are nonactive, it is never recommended to wait for a future time to execute the maneuvers. The computations of the solution of the variational equations, Floquet modes and parameters related to the control have also been carried out, analytically, for the halo orbits. In this way, the computations are done once for all the halo orbits of moderate size. A good agreement is found for most of the computed magnitudes. For some of the Floquet modes, the agreement is worse because of resonance problems. However, it has been shown that this fact does not affect the parameters used in the control. To perform the symbolic manipulation of power series and trigonometric series, which appear in the solution of the equations and in the variational equations, a package of routines has been developed. They are especially suited for the problem at hand and they prove to be quite efficient.
Summary
11.1.2
Concerning
of the Achieved
the Quasi-periodic
435
Results
Nominal
Orbit
The RTBP is only an approximation to the real problem. In this last one, the searched solutions are quasi-periodic instead of periodic. The main results obtained for those quasi-periodic solutions are: a) The real problem is written in a form that can be seen as a perturbation of the previous equations of motion (the equations of the RTBP). To do this, we have introduced an osculating plane of motion of the two primaries and time-dependent changes of variables, that make the reduction easy. The method can be applied to any primary-secondary couple in the solar system. b) Having in mind that we wish analytic solutions for the quasi-periodic motion and that these solutions will be obtained in a recurrent way as in the halo case, we have given a way to assign weights to the different terms which appear in the equations of motion. c) The residual accelerations obtained when a perturbing body is introduced, or some of its elements are changed, has allowed to detect the influence of each of the terms in the equations, and to select a simplified model to perform the analytic computations. d) A program for the simulation of the solar system has been implemented. Several checks are possible. Graphical output is also possible. e) The equations of motion, in a system of reference adapted to the equilibrium point, called normalized system, are given for all the cases Li, i = 1 , . . . , 5, in the Earth-Moon and Sun-Barycenter problems. These equations are generalizations of the restricted problem equations, such that they reduce to the former ones when the perturbations are skipped. These equations have been tested against direct numerical computation of the acceleration using Newton's law. f) The right form of the equations, for the analytic computation of solutions, requires that the perturbing terms be written as power series in the (normalized) coordinates of the spacecraft. The coefficients of these series are functions of time which depend on the coordinates of the perturbing bodies. Those previous expansions are done and the mentioned functions of time are given explicitly. g) For the functions of time just described, two possibilities have been used: Expansion in terms of elements of the orbits and the related anomalies, and Fourier analysis. For most of the perturbations, the functions have been analyzed using an FFT algorithm. Then, the frequencies are approximately located. They are identified as linear combinations of the motions of several anomalies and the Fourier coefficients with the right frequencies have been obtained. A filtering to skip too small coefficients or terms with too large frequency
436
Summary
and Outlook
(giving small amplitude rapidly oscillating terms in the solution) has been used to reduce the number of terms to something feasible. h) The equations of motion, as they are available at this point, have been transformed to a suitable form by introducing the expansions of functions of the spacecraft coordinates x,y,z in terms of Legendre polynomials. A program (EQUAP) produces the final equations to be solved, where the right-hand side terms are products of powers of x, y and z (eventually x',y' or z' can appear) by trigonometric functions af(bt + c), where b is a frequency, c the related phase and a the amplitude. The function / stands for sine or cosine. i) A Lindstedt-Poincare device has been used to obtain the quasi-periodic solution in a recurrent way. Explicit formulas are given for the components of the solution, the relationship between the x- and ^-amplitudes and the frequency. A program QPO, has been implemented to do this task by manipulation of formal series. It has been successfully run in the Sun-Barycenter problem L\ and Li cases. The nominal orbit, produced in this way, is not far (less than 100 km) from a real quasi-periodic orbit. In fact, a full family of quasi-periodic orbits, depending on two parameters is obtained. Those parameters are determined from the initial conditions (just two conditions determine the orbit if we wish a qpo one). The procedure is easily extended to higher precision if large computer time and memory are available. j) For this work we have taken the decision, to obtain the best possible nominal orbit. This is an opposite approach to the one followed in the ISEE-C mission, where the nominal orbit was only a hint to the path to be followed. With this in mind, we have improved numerically the qpo orbit obtained analytically. Due to the large instabilities for long time intervals, a parallel shooting algorithm is used. Several shooting approaches are introduced and a couple of them are implemented to perform this refinement. The final nominal orbit consists of several arcs with matching errors less than 1.5 km in position, 0.3 mm/s in velocity and 5 s in time. Each of the arcs is a numerical solution of the real solar system. 11.1.3
Concerning
Station
Keeping
For station keeping near halo orbits in the Sun-Barycenter problem, L\ and Li cases, in the real solar system, a method has been proposed based on very simple geometrical ideas. The main achievements are: a) The projection factors and the unitary controls are introduced. Given a nominal path and a point estimated by tracking, the unstable component is computed using the projection factors. If it is too large (see e)) then a maneuver is executed to change the x- and ^-components of the velocity in
Summary
b)
c)
d)
e)
of the Achieved
Results
437
a specified amount. This amount is computed in order that the maneuver be done using the less possible amount of fuel. First, a numerical exploration of the projection factors and unitary controls for the halo orbits has been done. It is learned that the optimal maneuvers should be executed on the (x,y)-p\ane, and that, except for operational constrains, it is never recommended to delay a maneuver. Using (x,y), (x) or (y) maneuvers, the controllability is guaranteed at any point in the orbit. The gains are very similar in the (x,y) and (x) cases (i.e., the (x) case is roughly 16% worse than the (x,y) one). The (y) control is worse, its gain being, on the average, less than 1/2 of the optimal one. The variations along the orbit of the ratio of gains (y)/(x, y) ranges from 1/4 to 3/4. Using the analytic solution of the variational equations, the normalized projection factors are obtained in an analytic way. In fact, they are expressed as quotients of functions given by Fourier series, whose coefficients are power series, times the square root of one of such functions. From them, the unitary controls follow. With this analytic expression in hand, and together with the analytic qpo, it is possible to undertake station keeping in a purely analytic way. The results of simulations show that, on the average, less than 1 cm/s per day is enough. Of course, the maneuvers should not be done every day but at intervals of 2.5-3 weeks at least. The precise dates are detected by the simulation program (see f)) and depend on the random and systematic errors introduced in the model, the random tracking errors and the errors in the execution of the maneuvers. This figure is not quite good compared with the forthcoming results, but it compares favorably with the ISEE-C mission, where more than double was used (in the simulations and in the real world). A refined set of projection factors along the numerical nominal orbit, have also been obtained numerically. This step is done when the parallel shooting results are available, and several starting bases to integrate the variational equations are computed. The computation of these numerical normalized projection factors is done simultaneously with the nominal orbit. The following strategy has been adopted for the simulations of the station keeping: (1) For a given time, a point is obtained by tracking. In the simulation this point has been taken as the point obtained by integration of the equations of motion plus random tracking errors. (2) For that time, the nominal point is computed. Optionally, this point can be taken as the point in the nominal path at minimum (local) distance from the current point. This modified nominal point corresponds to a time different from the current time, but in the simulations with numerical nominal orbit and projection factors, using on/off control, the time difference is less than 15 minutes in time intervals of 4 years.
Summary
and Outlook
This is increased to a few hours in the station keeping using radiation pressure. (In this last case there is a systematic bias between both times.) (3) The residue vector, observed-nominal, is computed. Its unstable component is obtained by doing the inner product with the projection factors. (4) If the unstable component is less than some value (lower bound), the maneuvers have no sense. The unstable component can be due, exclusively, to tracking errors. Some upper bound of the unstable component has been given, such that an unconditional maneuver is done if the current value is greater than the bound. Theoretically, it is shown that the upper bound should be, roughly e = exp(l) times greater than the lower bound. Some freedom is available. Doubling the upper bound can increase the fuel consumption by 20% and to separate the maneuvers some additional two weeks. Using the above strategy, lots of runs of simulation have been done. Under the standard assumptions on the size of the errors, as specified by the ESA, some 20 cm/s per year are enough. Under very pessimistic hypothesis, it is kept below 50 cm/s per year. The solar radiation pressure station keeping has also been studied. It has been shown that, letting aside technical difficulties for the implementation, it is feasible. Values of 0.05 m 2 /kg, the quotient of the section of the spacecraft with suitable moving wings, as it is seen from the Sun, by the mass of the spacecraft, are enough. Hence for a spacecraft of 1000 kg a surface of 50 m 2 would be sufficient. There are some words of caution concerning station keeping: The unstable component should be always directed towards the Sun. Should the unstable component be directed against it, the controllability is lost. Then the spacecraft must be injected in a slightly unstable orbit and the maneuvers must not cancel the full unstable component. Maneuvers lasting for 1 week every two months are typical results. We remark here that for the radiation pressure we have used successfully the same approach as that for the on/off maneuvers. This can be extended to low thrust acting for moderate time intervals. For instance 5 cm/s in maneuvers lasting for 5 days is more than available for ionic thrusters. As complementary results, simulations are done for the L3, L4, L5, SunBarycenter problem, showing that a right election of the initial conditions allows to skip the station keeping. The L 3 , L 4 , L5 cases for the Earth-Moon problem, show mild instability and it should be easy to keep the spacecraft under control.
Possible Extensions
11.2
439
of the Work
Possible Extensions of t h e W o r k
During the realization of this work several problems have presented in a natural way that can be useful to investigate. 11.2.1
The Use of Better
Models for the Solar
System
The model available to us, has been an analytic model based on part of Newcomb's and Brown's developments. The tests against the published ephemeris show an acceptable agreement for the first study. However, the results would be much closer to the real life ones, if the model of the solar system is improved. We suggest to use the JPL ephemeris to modify the computation of the real nominal orbit and projection factors. 11.2.2
The Translunar
Problem
Using the Real Solar
System
A point where the difficulties are increased and that has scientific interest is the problem of a translunar station. It should be placed near a halo orbit around the L2 point of the Earth-Moon system. The orbit can be seen permanently from the hidden part of the Moon and also from the Earth, if the size of the orbit is large enough. Therefore, it can be used to establish a permanent link between the Earth and a lunar basis placed in the hidden part. This is an ideal site to perform radio-electrical observations of the Universe, due to the lack of noise coming from the Earth. The following difficulties are detected concerning this problem: a) The halo orbits of moderate size are highly unstable. The largest eigenvalue of the monodromy matrix is of the order of 103 and the period less than two weeks. This means that a very good nominal orbit is required and that, to prevent from too frequent maneuvers, the total amount of fuel is relatively large. b) To get the nominal orbit analytically a large amount of terms of Brown's theory is required (it is not enough to take the terms given by P. R. Escobal). However, the worse thing is that in the computation of the quasi-periodic solutions there appear strong resonances giving rise to small divisors. c) The numerical refinement of the quasi-periodic orbit and the design of the control strategy require a good enough starting initial approximation to the qpo to get convergence. Despite what has been mentioned, it seems that a nice solution is feasible. For the Sun-Barycenter system, even under pessimistic hypothesis, the rate of fuel consumption for station keeping is less than 50 cm/s per year. Even taking into account that the time scales are roughly 1:13, that is, things are 13 times faster in
440
Summary
and Outlook
the Earth-Moon system than in the Sun-Barycenter, the cost of station keeping would be of 6 m/s per year, which is clearly feasible. 11.2.3
Stable Manifolds
and the Transfer
Problem
For the halo orbits of moderate size there are two-dimensional unstable and stable manifolds. It seems appealing to study whether the stable manifolds could be used for the transfer problem. In the RTBP, it has been shown that increasing the zamplitude, there are orbits coming close to the Earth and belonging to the stable manifold. If a spacecraft is injected in such an orbit, no more maneuvers will be necessary, except to correct small errors in the execution of previous maneuvers.
11.3
Theoretical Problems
Besides the possible extensions mentioned in 11.2, several other problems of a more theoretical character present themselves. We list some of them. 11.3.1
The Small Divisors
Problem for Quasi-periodic
Orbits
The exact resonant terms in the analytic computation of the qpo have been studied using the Lindstedt-Poincare method. However, as it is well-known, the dangerous terms are the near resonant ones. Those terms are associated to small divisors problems, typical in Celestial Mechanics. It seems interesting to work out a procedure that allows to solve analytically the equations of motion in an approximate way and that, for a given time interval, not too large, has provable bounds for the errors. 11.3.2
The Large Size Orbits in the Halo Family: Analytic and Perturbation to a Quasi-periodic Orbit
Study
It has been shown that halo orbits appear such that they are stable. At the beginning of the halo family (starting at the Lyapunov orbit) the instability decreases when the size of the orbit increases. Hence, it seems interesting to explore the use of more stable orbits, especially in the case of the Li point of the Earth-Moon system as we proposed in 11.2.2. However, the bad thing is that the available analytic theory for the halo orbit breaks down, before stable orbits are reached, because of convergence problems. Anyway, it has been found that, using suitable scalings, the halo orbits of large size have projections quite similar to the convergent ones. This opens the possibility of existence of reference systems more adapted to the problem, in which the large orbits could be obtained analytically. Then, it would be possible to extend the orbits to the quasi-periodic case and
Theoretical
Problems
441
see how the stability properties are affected. 11.3.3
The Floquet Modes for a Quasi-periodic for an Analytic Approach
Orbit.
Searching
The Floquet modes (and, then, the projection factors and unitary controls) have been obtained analytically only for the RTBP. This has been proved to be enough for our requirements of precision in the controls. That is, the difference between the values computed analytically for the RTBP and numerically for the qpo is of the order of the expected errors in the execution of the maneuvers. However, it is an interesting problem to give methods to obtain the solution of the variational equations in the quasi-periodic case. A suitable generalization of the Floquet modes should be introduced. A first problem to this end is the improvement of the expansions related to the last two Floquet modes for the RTBP. It seems that the near resonance can be overcome with a good redefinition of the last Floquet modes.
Acknowledgments
For the team that has worked in this study it is a pleasure to express their gratitude to the technical staff of ESOC. Special mention should be done of the late Dr. E. A. Roth and of Dr. J. Rodriguez Canabal. We acknowledge the good disposition to use all the available facilities of the Computing Center of the Universitat Autononoma de Barcelona, as well as the computer facilities of the Institut de Cibernetica of the Universitat Politecnica de Catalunya.
443
ISBN 981-02-4285-9
www. worldscientific. com 4402 he
Recommend Documents
Sign In