ATMOSPHERIC POLLUTION 1982
Other volumes in this series
1 Atmospheric Pollution 1978 edited by
M.M. Benarie
2 Air ...
175 downloads
709 Views
15MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
ATMOSPHERIC POLLUTION 1982
Other volumes in this series
1 Atmospheric Pollution 1978 edited by
M.M. Benarie
2 Air Pollution Reference Measurement Methods and Systems edited by T. Schneider, H.W. de Koning and L.J. Brasser 3 Biogeochemical Cycling of Mineral-Forming Elements edited by P.A. Trudinger and D.J. Swaine 4 Potential Industrial Carcinogens and Mutagens by L. Fishbein
5 Industrial Waste Management by S.E. Jsrgensen 6 Trade and Environment: A Theoretical Enquiry by H. Siebert, J. Eichberger, R. Gronych and R . Pethig 7 Field Worker Exposure during Pesticide Application edited by W.F. Tordoir and E.A.H. van Heemstra-Lequin
8 Atmospheric Pollution 1980 edited by M.M. Benarie 9 Energetics and Technology of Biological Elimination of Wastes edited by G. Milazzo 10 Bioengineering, Thermal Physiology and Comfort edited by K. Cena and J.A. Clark
11 Atmospheric Chemistry. Fundamental Aspects by E. M6sz6ros 12 Water Supply and Health edited by H. van Lelyveld and B.C.J. Zoeteman 13 Man under Vibration. Suffering and Protection edited by G. Bianchi, K.V. Frolov and A. Oledzki 14 Principles of Environmental Science and Technology by S.E. Jsrgensen and I . Johnsen 15 Disposal of Radioactive Wastes by Z . Dlouhq 16 Mankind and Energy edited by A. Blanc-Lapierre 17 Quality of Groundwater edited by W. van Duijvenbooden, P. Glasbergen and H. van Lelyveld
18 Education and Safe Handling in Pesticide Application edited by E.A.H. van HeemstraLequin and W.F. Tordoir 19 Physicochemical Methods for Water and Wastewater Treatment edited by L. Pawlowski
Studies in Environmental Science 20
ATM0sPHER IC POLLUTION 1982 Proceedings of the 15th International Colloquium, UNESCO Building, Paris, France, May 4-7,1982 Organised by the lnstitut National de Recherche Chimique Appliquie, Vert-le-Petit, France, in association with the Commission on Atmospheric Environment of the International Union of Pure and Applied Chemistry (IUPAC), the World Health Organization (WHO), the Gesellschaft fur Aerosolforschung (GAeF) and the Fraunhofer Gesellschaft (FhG) edited by
Michel M. Benarie
These papers have been published as a special issue of The Science of the Total Environment, Volume 23, 1982
ELSEVIER SCIENTIFIC PUBLISHING COMPANY Amsterdam - Oxford - New York 1982
E L S E V I E R S C I E N T I F I C P U B L I S H I N G COMPANY Molenwerf 1, P.O. B o x 21 1, 1000 A E Amsterdam, The Netherlands Distributors for the United States and Canada:
E L S E V I E R SCIENCE P U B L I S H I N G C O M P A N Y INC. 52, Vanderbilt Avenue N e w York. N.Y. 10017
ISBN 0-444-42083-5 (Vol. 2 0 ) ISBN 0-444-41696-X (Series)
0 Elsevier Scientific Publishing Company, 1982 A l l rights reserved. No p a r t of this publication m a y be reproduced, stored in a retrieval system or transmitted in any f o r m or by any means, electronic, mechanical, photocopying, recording or otherwise, w i t h o u t t h e prior w r i t t e n permission o f t h e publisher, Elsevier Scientific Publishing Company, P.O. B o x 330, 1000 A H Amsterdam, The Netherlands Printed in The Netherlands
V
PREFACE Why a c o l l o q u i u m ?
I n t h e s e t i m e s o f an i n f o r m a t i o n e x p l o s i o n , o f a
mushrooming number o f s c i e n t i f i c j o u r n a l s , and when we a r e a t t h e t h r e s h o l d o f e l e c t r o n i c p u b l i s h i n g , why g a t h e r p e o p l e t o g e t h e r , a t c o n s i d e r a b l e expense and
loss o f t i m e f o r them, s i m p l y so t h a t t h e y n a y l i s t e n t o o r a l p r e s e n t a t i o n s ? I can p u t f o r w a r d two reasons.
The f i r s t reason i s d e r i v e d f r o m my v i e w t h a t t h e purpose o f a l l s c i e n t i f i c communication i s i n t e r a c t i o n .
To i n t e r a c t means t o spread o n e ' s own ideas,
r e s u l t s , e t c . , as w i d e l y as p o s s i b l e
t o g a t h e r i n as many comments, c r i t i -
cisms, novel p o i n t s o f view and, perhaps, applause as p o s s i b l e .
I f a measure
o f t h e " s t r e n g t h o f i n t e r a c t i o n " can be o b t a i n e d f r o m t h e number o f r e f e r e n c e s t o work done and p u b l i s h e d , t h e n I can propose some c o n c l u s i o n s I have o b t a i n e d from examining a sample o f papers w i t h i n t h e f i e l d o f t h e atmospheric e n v i r o n ment.
I n any paper, on average, t h e papers most f r e q u e n t l y quoted a r e those of
t h e author himself, t h e so-called self-references.
Second i n frequency a r e
r e f e r e n c e s t o papers o r i g i n a t i n g f r o m t h e same l a b o r a t o r y , work group o r i n s t i t u t e as t h e a u t h o r .
Then f o l l o w , w i t h about t h e same frequency, r e f e r e n c e s
t o a u t h o r s who c o - p a r t i c i p a t e d w i t h i n t h e p r e v i o u s 10 y e a r s a t a c o l l o q u i u m o r o t h e r k i n d o f m e e t i n g and r e f e r e n c e s t o papers t h a t appeared i n t h e same j o u r n a l as t h e a u t h o r ' s paper i s p u b l i s h e d . Please do n o t s m i l e a t t h e frequency o f s e l f - r e f e r e n c e s .
They a r e n o t
Nobody i s n e a r e r t o t h e r e c e n t h i s t o r y o f a v e r y
evidence o f a u t h o r s ' v a n i t y .
s p e c i f i c t o p i c , t o a g i v e n t r a i n o f t h o u g h t s , t o t h e p a r t i c u l a r method o f i n v e s t i g a t i o n o f a s c i e n t i s t , than the author himself.
With t h i s i d e a i n mind,
i t i s c l e a r t h a t t h e above-mentioned o r d e r o f f r e q u e n c i e s o f r e f e r e n c e s , i . e .
s e l f , group, c o - p a r t i c i p a n t ,
same j o u r n a l , s i m p l y express t h e i n c r e a s i n g l y
l a r g e r s e t s o f s c i e n t i s t s who a r e i n v o l v e d w i t h , understand, and a r e i n t e r e s t e d i n , t h e work t h a t t h e a u t h o r i s c u r r e n t l y doing.
This order o f reference
f r e q u e n c i e s proves how e f f e c t i v e l y a c o l l o q u i u m enhances s c i e n t i f i c i n t e r a c t i o n . I n o u r s p e c i f i c s i t u a t i o n , when t h e Colloquium papers a r e a t t h e same t i m e a s p e c i a l volume o f The Science o f t h e T o t a l Environment, a well-known and w i d e l y a v a i l a b l e j o u r n a l i n t h e . f i e l d , t h e d i f f u s i v e i n t e r p e n e t r a t i o n o f ideas i s even more enhanced. The second reason why people come t o a c o l l o q u i u m i s so t h a t t h e y can f o l l o w o r t a k e p a r t i n t h e d i s c u s s i o n s , t h e remarks, and t h e q u e s t i o n s which f o l l o w each o r a l p r e s e n t a t i o n .
U n f o r t u n a t e l y , t h e p r e s e n t volume, f o r t h e
convenience o f t h e p a r t i c i p a n t s , had t o be ready a t t h e opening o f t h e Colloquium, and t h u s c o u l d n o t i n c l u d e t h e d i s c u s s i o n s h e l d d u r i n g t h e
Colloquium i t s e l f . Such discussions are nevertheless a very e s s e n t i a l component of any meeting. Every author l e f t the podium enriched with some suggestion o r , a t l e a s t , with t h e i m p l i c i t judgement of a p o l i t e b u t sparse applause not followed by any p e r t i n e n t question - perhaps because h i s work o r h i s manner of presentation f a i l e d t o arouse s u f f i c i e n t i n t e r e s t . No j o u r n a l , no r e f e r e e , no e d i t o r i a l committee i s able t o a c t as such a multiheaded, e f f e c t i v e , and quick j u r y . Vox populi, vox Dei. Why t h i s colloquium? My s t a r t i n g point i s once more t h e information explosion. Every year new s u b - s p e c i a l i t i e s and sub-sub-specialities a r e born. There a r e s p e c i f i c gatherings, not only f o r atmospheric modellers, b u t a l s o separately f o r urban, f o r meso-scale, f o r long-range, e t c . modellers. Every atmospheric p o l l u t a n t , whether i t be sulphur, nitrogen, p e s t i c i d e s , o r n i t r o samines, draws together i t s s p e c i a l i s t s somewhere. Aerosol science i s branching out i n t o a dozen t o p i c s , each one with i t s annual, or even more frequent, meeting . Ours i s a h o l i s t i c approach. The divergences r e s u l t i n g from growing s p e c i a l i z a t i o n require increased e f f o r t s i n synthesis. Our purpose i s t o draw together individual s c i e n t i s t s who a r e in danger of becoming c l o i s t e r e d within t h e i r narrowly limited f i e l d . We wish t o t r y a n d maintain l i n k s , develop a common language, s t r e s s points o f common i n t e r e s t , and f u r t h e r i n t e r a c t i o n among t h e ever-widening branches of atmospheric environmental science. New shoots nourish a t r e e , b u t they cannot support themselves in t h i n a i r without a sustaining stem. A t a time when science i s looking with more and more accuracy a t l e s s and l e s s , we must a l s o s u s t a i n t h e s p i r i t of t h e whole. To f u l l y understand t h e p a r t s of our subject we must occasionally t r y and look a t the whole in a s p i r i t of comprehensiveness. Such an approach i s the basis of the scope of The Science of the Total Environment. This h o l i s t i c tendency notwithstanding, we a r e always receptive t o new extensions. Since i t s beginnings, a i r pollution science has been urban-
industrial/temperate-zone o r i e n t a t e d .
The problems were the most acute and
t h e most perceptible in t h i s geographical context. Now, gradually, we a r e becoming increasingly aware t h a t a r i d and t r o p i c a l regions a l s o have t h e i r problems. We a r e almost t o t a l l y ignorant about wet-subtropical a i r chemistry. The t r o p i c a l agroindustry i s an enormous, d i f f u s e source of a i r p o l l u t a n t s . Last, b u t not l e a s t , t h e problems of d e s e r t a i r have barely been touched. Therefore, a s f i r s t point on our programme t h i s y e a r , we included a session dealing with the pollution problems of hot and d e s e r t regions, and we hope t o follow t h i s topic u p i n a f u t u r e Colloquium i n more depth. covered in t h e programme were:
The o t h e r topics
w - Atmospheric flow and dispersion; modeling.
-
Health e f f e c t s , i n d u s t r i a l hygiene and t h e control of a i r pollution in
industry. - Aerosols: t h e i r c h a r a c t e r i z a t i o n , techniques of measurement. - Aerosol physics.
-
Air chemistry; wet and dry deposition of p o l l u t a n t s . Field r e s u l t s ; monitoring and surveys. This volume contains t h e accepted papers selected from the 80 t h a t were submitted t o t h i s 15th International Colloquium held in t h e Palais des C0ngrS.s ( P o r t M a i l l o t ) i n P a r i s . The international character of the meeting i s evident from the o r i g i n o f the papers received. They were contributed by s c i e n t i s t s from 22 countries.
Michel
BENARIE
This Page Intentionally Left Blank
CONTENTS
Preface .............................................................
V
POLLUTION PROBLEMS OF HOT AN0 DESERT REGIONS Air pollution i n t r o p i c a l areas E. Sanhueza, M. African0 and J . Romro
.......................
3
Trends i n ozone concentrations i n Jerusalem E . H . Steinberger .............................................
11
Background continental ozone l e v e l s i n the rural U.S. Southwest desert T.E. Hoffer, R.J. Farber and E.C. E l l i s ......................
17
Atmospheric contamination of archeological monuments i n t h e Agra Region ( I n d i a ) J.S. Sharrm and D . N . Sharma ..................................
31
Air monitoring program i n Saudi Arabia T. Husain and S.M. Khan ......................................
41
A study of physocochemical c h a r a c t e r i s t i c s of r e s p i r a b l e dust i n an Indian coal mine N.S. Rawat ..................................................
47
Contamination of s o i l s and plants by m r c u r y . a s influenced by t h e proximity o f i n d u s t r i e s i n Alexandria, Egypt I.H. Elsokkary ..............................................
55
Study of atmospheric p o l l u t i o n i n an urban zone deprived o f measurement systems, f o r purposes of l e g i s l a t i o n application t o t h e c i t y o f Tunis M.C. Robe and J . Carbonnelle ............................... 61 MODELING Atmspheric dynamics of NO, emission controls A . Eschenroeder .............................................
71
S i t e and season-speci f i c variations of the atmospheric p o l l u t a n t t r a n s p o r t and deposition on the local and regional s c a l e G. Neumann-Hauf and G. M a l b r i t t e r ...........................
91
Daily forecasting of a i r pollution p o t e n t i a l A. Joukoff and L.M. Malet ...................................
97
The forecasting method of a i r pollution peaks developed and used i n t h e Nord-Pas-de-Calais area P. Allender a n d J . M. Dejardin .............................
103
A
Turbulent d i f f u s i v i t i e s and deposition c o e f f i c i e n t s : application t o calm wind conditions P.J.H. B u i l t j e s ...............................................
107
Measurement o f turbulence p r o f i l e s i n t h e boundary l a y e r and observations o f atmospheric diffusion by smoke plumes emitted near t h e ground and i n a l t i t u d e D. Schneiter .................................................
119
A comparison o f numrical models f o r c a l c u l a t i n g dispersion from accidental releases of p o l l u t a n t s D.W. Pepper, R.E. Cooper and A.J. Baker ......................
127
Detection and impact prediction of hazardous substances released
t o the atmosphere E . E . P i c k e t t , R.G. Whiting and H . L . Kocchiu
..................
141
Modeling p o l l u t a n t dispersion w i t h i n a tornadic thunderstorm D.W. Pepper ..................................................
151
The influence of the emission height on the meso-scale a n d longrange t r a n s p o r t o f reactive p o l l u t a n t s M. Benarie ...................................................
163
HEALTH EFFECTS
-
POLLUTION CONTROL
Mortality and a i r pollution -- lessons from s t a t i s t i c s F.W. L i p f e r t ..................................................
175
Opposite e f f e c t s o f inhaled cadmium microparticles on mouse suscept i b i l i t y t o an airborne b a c t e r i a l and airborne viral infection G . Bouley, C. Chaumard, A.-M. Quero, F. Girard and C. Boudene.. 185 Genetic f a c t o r s and acute carbon monoxide i n t o x i c a t i o n M. S t u p f e l , A. Perramn, V.-H. Demaria-Pesce, P . Merat, V. Gourlet and H . Thierry .....................................
189
Water analogue m d e l achieves optimal design o f furnace f l u e gas c o l l e c t i o n system J . Rigard and M. Milhe ........................................
197
Fluoride deposition through p r e c i p i t a t i o n and leaf l i t t e r i n a boreal f o r e s t i n the v i c i n i t y o f a phosphorous plant S.S. Sidhu ....................................................
205
Study of t h e working of a new multicell scrubber applied i n the f i g h t against pollution L. Perdreau, S . Djerid, C. Belin, A. Laurent and J.-C.Charpentier
215 AEROSOLS Application o f thermal analysis t o the characterization of organic aerosol p a r t i c l e s E . C . E l l i s and T. Novakov .....................................
227
On the problem o f measuring and analysis of chemically changed miner a l f i b e r s i n t h e environment and i n biological materials K.R. Spumy ................................................... 239
XI
Formation o f monodisperse l e a d a e r o s o l s and i d e n t i f i c a t i o n o f p a r t i c l e number c o n c e n t r a t i o n by i c e n u c l e a t i o n Y . Ueno, D.E. Rosner, Rosa G. de Pena and J.P. H e i c k l e n ........ 251 O p t i c a l o b s e r v a t i o n d u r i n g chemical r e a c t i o n s H . S t r a u b e l ....................................................
259
Comparison among s i x d i f f e r e n t i n s t r u m e n t s t o determine suspended p a r t i c u l a t e m a t t e r l e v e l s i n ambient a i r J.G. Kretzschmar and J . B. Pauwels
.............................
265
Some uses o f a d i l u t e r f o r a e r o s o l s J.-C. Guichard .................................................
273
F o r m t i o n and e v o l u t i o n o f s u l f a t e and n i t r a t e a e r o s o l s i n plumes C. Seigneur, P. Saxena and A. B e l l e Hudischewkyj ............... 283 Photography as a t e c h n i q u e f o r s t u d y i n g v i s u a l range T.E. H o f f e r , D.E. Schorran and R.J. F a r b e r
293
E x p e r i m e n t a l s t u d y o n t h e v i s i b i l i t y i n a b s o r b i n g media H. Horvath, J . G o r r a i z and C. Johnson
305
Changes i n l o c a l p l a n e t a r y albedo by a e r o s o l p a r t i c l e s H. Grass1 and M. Newiger
313
.....................
..........................
.......................................
Laser t r a n s m i s s o m e t e r - - a d e s c r i p t i o n P.H. Lee, T.E. H o f f e r , D.E. Schorran, E . C . E l l i s and J.W. Moyer
.
B i p o l a r charge e q u i l i b r i u m f o r s p h e r i c a l a e r o s o l s ( minimum f l u x hypothesis ) C.S. L i u , S . Davisson and J.W. Gentry ..........................
321
337
SURVEYS and tXlNITORING
The t h i r d dimension i n t h e Los Angeles B a s i n R.J. Farber, A.A. Huang, L.D. Bregman, R.L. Mahoney,D.J. L.D. Hansen, D.L. B l u m n t h a l , W.S. K e i f e r and D.W. A l l a r d
Eatough,
............ 345
C h a r a c t e r i z a t i o n o f a l o c a l a e r o s o l on a r u r a l s i t e o f t h e Po V a l l e y S. F u z z i , M. M a r i o t t i and G. O r s i
...............................
361
Comparison o f r e g i o n a l and temporal t r a c e substance d i s t r i b u t i o n i n b u l k p r e c i p i t a t i o n and atmospheric d u s t W . Thomas ......................................................
369
The c h e m i s t r y o f p r e c i p i t a t i o n i n r e l a t i o n t o p r e c i p i t a t i o n t y p e J.A. Warburton
..................................................
379
D a i l y measurements o f atmospheric s u l f a t e s i n P a r i s Y . Le M o u l l e c , F. Coviaux and B. F e s t y ..........................
387
S i z e , shape and e l e m e n t a l a s s o c i a t i o n s i n an urban a e r o s o l R. H a m i l t o n and G. Adie .........................................
393
Subject index Author index
........................................................ ........................................................
403
404
This Page Intentionally Left Blank
1
POLLUTION PROBLEMS OF HOT AND DESERT REGIONS
Some r e a d e r s w i l l f i n d t h i s s e c t i o n r a t h e r heterogeneous.
It i s .
T o p i c s such as network d e s i g n and v i s i b i l i t y , m o n i t o r i n g and c a r e o f monuments, problems i n c o a l m i n i n g and p l a n t c o n t a m i n a t i o n by mercury seem t o be enmes hed. The common t r a i t l i n k i n g a l l these t o p i c s t o g e t h e r i s c l i m a t e o r , more a c c u r a t e l y , t h e ambient temperature g o v e r n i n q t h e phenomena.
Some elements
o f c l i m a t e , such as wind o r t u r b u l e n c e , have always been seen as s t r o n g l y influencing a i r pollution.
Temperature was c o n s i d e r e d more o r l e s s o f
secondary importance and t h e d i s t i n c t i o n between temperate, a r c t i c a i r c h e m i s t r y was seldom e v e r made. a i r c h e m i s t r y " seems t o be n o n - e x i s t e n t .
tropical or
The s p e c i a l i t y o f " t r o n i c a l T h i s c h a p t e r i s perhaps a modest
beginning t o r e c t i f y t h i s s i t u a t i o n .
A f u r t h e r p o i n t t o be s t r e s s e d i s t h a t owing t o h i s t o r i c a l reasons, t h e d i s c u s s i o n o f which i s beyond o u r scope here, t h e socio-economic frame of r e s e a r c h i n many t r o p i c a l c o u n t r i e s i s q u i t e d i f f e r e n t f r o m t h a t p r e v a i l i n g i n t h e temperate and c o l d zones.
Social p r i o r i t i e s , a v a i l a b i l i t y o f
adequate manpower, t h e r e l a t i v e w e i g h t o f i n v e s t m e n t i n l a b o r a t o r y f a c i l i t i e s , t h e a v a i l a b l e budgets
...
and much more, a r e d i f f e r e n t .
T h e r e f o r e , t h e answers p r o v i d e d by some o f t h e papers w i t h i n t h i s s e c t i o n w i l l n o t be those which i n t e r e s t a l l r e a d e r s .
Some papers seek avenues
o f i n q u i r y r a t h e r than a p a r t i c u l a r destination.
But i n t h i s context, i t
i s o f t e n more i m p o r t a n t t o f o r m u l a t e t h e r i g h t k i n d o f q u e s t i o n than t o p r o v i d e t h e u l t i m a t e answer.
The p o i n t i s l e s s one o f s o p h i s t i c a t i o n ,
of t h e g e o g r a p h i c a l e x t e n s i o n o f t h e f i e l d o f e n q u i r y .
What has a l r e a d y
been accomplished i n N o r t h America and Europe, must s t i l l be done f o r about 2.10
than
9 people l i v i n g w i t h i n d i f f e r e n t c l i m a t i c b e l t s .
This Page Intentionally Left Blank
3
A I R POLLUTION IN TROPICAL AREAS EUGENIO SANHUEZA, MABELL AFRICAN0 and JOHNNY ROMERO I.V.I.C.
Apartado 1827, C a r a c a s , Venezuela
ABSTRACT Air p o l l u t i o n problems i n t h r e e d i f f e r e n t t r o p i c a l a r e a s a r e p r e s e n t e d .
The
l e v e l s o f v a r i o u s atmospheric contaminants ( i . e . S O i ) i n d i c a t e t h a t t h e o p e r a t i o n o f a l a r g e petroleum r e f i n e r y a f f e c t s a s u b s t a n t i a l p o r t i o n o f t h e i s l a n d o f Curacao.
A s i g n i f i c a n t f r a c t i o n o f t h e suspended p a r t i c l e s i n Curacao a r e due t o
n o n - t r a d i t i o n a l open s o u r c e e m i s s i o n s a i d e d by t h e predominantly high w i n d s p e e d s . P a r t i c u l a t e e m i s s i o n s from t h e i n d u s t r i a l complex i n Guayana, Venezuela, n o t i c e a b l y a f f e c t t h e s o r r o u n d i n g savannah.
The c o n s t a n t d i r e c t i o n o f t h e Trade Winds i s an
i m p o r t a n t f a c t o r i n t h e high long-term a v e r a g e p a r t i c u l a t e l e v e l s down-wind o f t h e complex.
A s e r i o u s atmospheric c o n t a m i n a t i o n problem ( i . e . TSP) e x i s t s i n The
Valley o f Caracas.
The high e m i s s i o n , p r i n c i p a l l y due t o t h e c i r c u l a t i o n o f v e h i c l e s ,
exceed t h e a v e r a g e d i s p e r s i o n c a p a c i t y o f t h e atmosphere.
INTRODUCTION T r o p i c s i s a term t h a t has no w e l l - d e f i n e d meaning.
I t i s g e n e r a l l y agreed
t h a t t r o p i c a l a r e a s a r e l o c a t e d between t h e 23.5 degree p a r a l l e l s .
However, some
r e g i o n s w i t h t r o p i c a l c h a r a c t e r i s t i c s a r e found a t l a t i t u d e s g r e a t e r than 23.5", and some n o n - t r o p i c a l a r e a s a r e l o c a t e d c l o s e r t o t h e Equator. Nieuwolt ( r e f . 1 ) s u g g e s t s t h a t c e r t a i n c l i m a t i c c h a r a c t e r i s t i c s can be used t o e s t a b l i s h t h e boundaries o f t r o p i c a l a r e a s .
Some o f h i s c r i t e r i a a r e :
i) t h e absence o f a c o l d w i n t e r season
i i ) a l a r g e r diurnal f l u c t u a t i o n i n temperature than t h e y e a r l y variation i n the d a i l y mean t e m p e r a t u r e ( i n t h e m i d - l a t i t u d e s t h e i n v e r s e i s t r u e ) i i i ) s u f f i c i e n t r a i n f a l l t o support a g r i c u l t u r e without i r r i g a t i o n I t i s u s u a l l y c o n s i d e r e d improbable t h a t t h e a i r i n t r o p i c a l a r e a s can become p o l l u t e d t o harmful l e v e l s .
Petersen ( r e f . 2 ) estimated t h a t t h e a i r pollution
p o t e n t i a l ( i n a b i l i t y o f t h e atmosphere t o d i s p e r s e p o l l u t a n t s ) o f most t r o p i c a l r e g i o n s i s low.
The 1972 F l o r i d a S t a t e Air Implementation Plan s t a t e s "Because o f
t h e general p a t t e r n o f t e r r a i n and t h e t r a d e wind c i r c u l a t i o n , m e t e o r o l o g i c a l condit i o n s t h a t a g g r a v a t e a i r p o l l u t i o n do not o f t e n occur a t any p l a c e i n F l o r i d a " .
4 More r e c e n t l y Ng'ang'a ( r e f . 3 ) Concluded t h a t i n t r o p i c a l r e g i o n s " a i r p o l l u t i o n may not become such a s e r i o u s problem u n l e s s o r u n t i l t h e r a t e o f i n d u s t r i a l i z a t i o n
i s dramatically increased". There a r e however a number o f examples o f p o l l u t i o n problems i n t h e t r o p i c s . G e r r i s h ( r e f . 4 ) found t h a t atmospheric c o n d i t i o n s i n " t r o p i c a l " F l o r i d a could l e a d t o s e v e r e a i r p o l l u t i o n e p i s o d e s . NOx ( r e f . 5 ) and Pb ( r e f . 6 ) l e v e l s measured i n Caracas exceed t h e a i r q u a l i t y s t a n d a r d s e s t a b l i s h e d f o r v a r i o u s c o u n t r i e s . This paper d i s c u s s v a r i o u s c i r c u m s t a n c e s under which r e l a t i v e l y l a r g e t r o p i c a l a r e a s may e x p e r i e n c e a i r p o l l u t i o n problems.
THE ISLAND OF CURACAO Curacao i s a Caribbean i s l a n d l o c a t e d a t 12"North l a t i t u d e , 56 Km from t h e South American c o n t i n e n t . 3.2 and 1 2 . 1 Km.
The t o t a l a r e a i s 466.2 Km2.
The t e r r a i n i s r e l a t i v e l y f l a t with
The average annual m e t e o r o l o g i c a l c o n d i t i o n s (1947 t o 1978)
o n l y a few low h i l l s . are:
I t i s 6 1 . 2 Km l o n g , w i t h a width t h a t v a r i e s between
t e m p e r a t u r e 27.5"C, maximum t e m p e r a t u r e 30,8"C, minimum t e m p e r a t u r e 19.8"C,
r a i n 564.2 mm, w i n d d i r e c t i o n 90°, wind speed 7.2 m/s, and wind s t a b i l i t y 96.5%. I t i s i m p o r t a n t t o mention t h a t t h e d i f f e r e n c e between t h e monthly average temperat u r e o f t h e c o l d e s t and t h e warmest month i s o n l y 2.5"C. A t h r e e month d i a g n o s t i c s t u d y was undertaken t o make a p r e l i m i n a r y assessment
of the i s l a n d ' s a i r quality.
Principal sources include a l a r g e o i l r e f i n e r y i n
S h o t t e g a t Bay and a power p l a n t ( w i t h a sea water d e s a l i n i z a t i o n p l a n t ) .
Fig. 1 is
a p a r t i a l map o f Curacao t h a t shows the p o s i t i o n o f t h e s e s o u r c e s and of t h e f i v e monitoring s i t e s .
P i s c a d e r a i s a t o u r i s t complex w i t h beaches, Wishi i s a low-
income r e s i d e n t i a l a r e a , Buena V i s t a i s a r e s i d e n t i a l a r e a , Blauw i s p r e s e n t l y empty l a n d but i t has p o t e n t i a l f o r t o u r i s t i c o r r e s i d e n t i a l development, Soltuna i s an experimental A g r i c u l t u r a l S t a t i o n . wind r o s e f o r 1973.
Figure 1 a l s o i n c l u d e s a r e p r e s e n t a t i v e
Based on t h e wind i n f o r m a t i o n , v a l u e s measured i n Soltuna a r e
c o n s i d e r e d r e p r e s e n t a t i v e o f background l e v e l s . Almost a l l o f t h e i m p o r t a n t a i r q u a l i t y p a r a m e t e r s were monitored d u r i n g t h e diagnostic study.
The l e v e l o f t o t a l suspended p a r t i c l e s r e p r e s e n t s t h e g r e a t e s t
problem and w i l l be d i s c u s s e d i n d e t a i l , i n c l u d i n g t h e chemical c o m p o s i t i o n .
This
a s p e c t i s o f i n t e r e s t t o environmental s c i e n t i s t s because o f t h e p o t e n t i a l l y hazardous n a t u r e o f c e r t a i n components and because t h e ch,emical composition can be used t o i d e n t i f y s p e c i f i c s o u r c e s . The combustion o f r e s i d u a l f u e l c o n s t i t u t e s art i m p o r t a n t s o u r c e o f primary sulfate (ref.7,8).
Since both t h e r e f i n e r y and power p l a n t burn r e s i d u a l f u e l w i t h
2% o r more S, SO; w i l l be used t o e v a l u a t e i n d u s t r i a l e m i s s i o n s .
Atmospheric l e a d
l e v e l s w i l l be used t o e s t i m a t e t h e i n f l u e n c e o f v e h i c u l a r t r a f f i c and C1- f o r t h e sea s a l t c o n t r i b u t i o n .
5
F i g . 1.
P a r t i a l Map o f Curacao
T a b l e 1 summarizes t h e r e s u l t s o f t h e TSP measurements, t h e s i z e c h a r a c t e r i s t i c s and t h e SO;,
C l - and Pb c o n t e n t .
The SO; v a l u e s have been c o r r e c t e d f o r a r t i f a c t
f o r m a t i o n o f s u l f a t e i n t h e f i b e r g l a s s f i l t e r u s i n g t h e f o r m u l a p r o p o s e d by Coutant (ref.9). T a b l e 1 shows t h a t t h e c o n c e n t r a t i o n s o f TSP, SO; and l e a d a t t h e o t h e r f o u r s t a t i o n s are s i g n i f i c a n t l y higher than a t t h e reference s t a t i o n , Soltuna. l e v e l s o f TSP and SO;
a t Wishi a r e v e r y high.
The
The l e v e l s o f C1- a r e v e r y s i m i l a r
a t a l l f i v e s t a t i o n s , s h o w i n g t h e common sea s a l t s p r a y o r i g i n . The c a l c u l a t e d e n r i c h m e n t f a c t o r s (E.F.)
f o r s u l f a t e and Pb a r e :
P i s c a d e r a (201) > Blauw ( 1 2 6 ) > Buena V i s t a ( 1 0 3 ) > W i s h i ( 8 7 ) and
EFsoi : EFpb : W i s h i ( 4 . 2 ) > Buena V i s t a ( 2 . 0 5 ) > B l a u w ( 1 . 5 ) > P i s c a d e r a (1.4)
The E F ' s were c a l c u l a t e d u s i n g EF ( i ) = ( X / T S P ) i / ( X / T S P ) s o l t u n a Where X i s t h e c o n c e n t r a t i o n s o f SO; o r Pb and i i n d i c a t e s t h e m o n i t o r i n g s t a tion. Based o n t h e EF v a l u e s and t h e d a t a i n T a b l e 1, t h e f o l l o w i n g i n f e r e n c e s c a n be made:
6
Piscadera:
T h i s s t a t i o n has the lowest l e v e l s o f TSP, one of the highest absolute
values o f s u l f a t e s and the l a r g e s t E . F . f o r s u l f a t e s . small vehicular t r a f f i c influence.
The EF f o r lead i n d i c a t e s a
Considering t h e high incidence of s u l f a t e s
associated with small p a r t i c l e s (MMO < 1.Ovm)
i t can be concluded t h a t t h i s part of
the island i s s i g n i f i c a n t l y a f f e c t e d by t h e r e f i n e r y and power p l a n t emissions.
TABLE 1 Total Suspended P a r t i c l e s , SO%, C 1 - and Pb in t h e Curacao Air Site
na
Piscadera Wishi Buena Vista B1 auw Sol tuna
6 5 5 8 2
TSP
MMD
<2.5pm
vm
% ~ 7 5 54.5 58.7 47.3 61.5
~ 1 m 3
a)
60.1 163.7 68.8 68.6 28.6
<1.0
1.8 1.7 2.7 1.4
>7.0pm %
30.0
20.3 26.0 15 .O
so;
ci-
Pb
vg/m3 19.0 22.5 11.2 13.7 0.05
vg/m3 8.43 5.72 6.53 4.29 5.51
w/m3 0.054 0.44 0.089 0.065 0.018
number of samples
Wishi : This r e s i d e n t i a l and commercial area i s q u i t e influenced by vehicular t r a f f i c
as shown by t h e h i g h E F f o r lead.
The highest absolute values f o r s u l f a t e s were found here, demonstrating t h e influence o f the r e f i n e r y emissions. The extremely
h i g h TSP l e v e l s , coupled w i t h the l a r g e percentage o f l a r g e p a r t i c l e s i n d i c a t e t h a t
t h e r e must be a n additional source of p a r t i c l e s .
Lincoln and Rubin ( r e f . 1 0 ) suggest
t h a t most of the p a r t i c u l a t e matter associated with vehicular t r a f f i c i s due t o reentrainment o f road dust r a t h e r t h a n t o p a r t i c l e s emitted d i r e c t l y from the mobile source.
A l a r g e f r a c t i o n of t h e suspended p a r t i c l e s measured a t Wishi must have
been produced by the c i r c u l a t i o n of vehicles aided by the h i g h w i n d speeds observed on the island ( r e f . 1 1 ) . Buena Vista: t i a l area.
As expected, some vehicular t r a f f i c influence i s seen in t h i s residenThe r e f i n e r y plume c r o s s e s t h i s area very i n f r e q u e n t l y and the SO= 4
concentration i s t h e lowest of the four s t a t i o n s . Blauw:
The h i g h s u l f a t e E F i n d i c a t e s the influence of the r e f i n e r y emissions on
the TSP l e v e l s i n Blauw.
I t i s important t o note t h a t t h i s s t a t i o n i s more t h a n
5 Km downwind o f t h e r e f i n e r y .
The various unpaved roads in t h e v i c i n i t y of t h i s
s t a t i o n a r e probably the source o f the l a r g e p a r t i c l e s observed t h e r e (Table 1 ) . There a r e strong i n d i c a t i o n s t h a t the health damage formerly a t t r i b u t e d t o SO; i s caused by acid p a r t i c u l a t e s u l f a t e ( r e f . 1 2 ) .
Community health s t u d i e s (CHESS)
have demonstrated a s u b s t a n t i a l r e l a t i o n s h i p between some types of morbidity and s u l f a t e l e v e l s in t h e 8-12 pg/m3 range ( r e f . 1 3 ) . I n several places i n California w i t h low atmospheric d i s p e r s i o n , t h e l e v e l s o f SO;
5.7 a n d 21.8 pg/m3 ( r e f . 1 4 ) . was 7 . 2 ug/m3 ( r e f . 1 5 ) .
(1972-1973) varied between
In 1976 the average SO,= level f o r 43 Ontario s i t e s
In Caracas, a contaminated t r o p i c a l c i t y , the y e a r l y
average i n 1977 was 5.6 ug/m3 ( r e f . 1 6 ) .
7
Taking t h i s i n t o c o n s i d e r a t i o n , one can conclude t h a t a SO= contamination
4
problem e x i s t s i n p r a c t i c a l l y a l l t h e a r e a downwind o f t h e r e f i n e r y t o a d i s t a n c e o f g r e a t e r t h a n 5 Km.
I t i s l o g i c a l t o suppose t h a t o t h e r contaminants a r e
d i s t r i b u t e d i n t h e same manner.
The p r e s e n c e o f high wind s p e e d s i s u s u a l l y c o n s i d e r e d a f a v o r a b l e meteoroloHowever, a s i g n i f i c a n t f r a c t i o n
g i c a l f a c t o r i n a i r p o l l u t i o n problems ( r e f . 3 ) .
o f t h e suspended p a r t i c l e s i n t h e atmosphere i n Curacao a r e due t o n o n - t r a d i t i o n a l open s o u r c e e m i s s i o n s ( i . e . t r a v e l on paved and unpaved r o a d s , wind e r o s i o n ) aided by the predominantly h i g h w i n d s p e e d s .
Excluding from t h e a n a l y s i s t h e days with
r a i n and t h o s e i n which t h e predominantly wind d i r e c t i o n d e v i a t e d g r e a t l y from t h e normal a r e a s o n a b l e c o r r e l a t i o n between t h e TSP l e v e l s and t h e wind speed was observated. THE GUAYANA INDUSTRIAL COMPLEX
Ciudad Guayana i s a planned i n d u s t r i a l c i t y t h a t was founded i n 1961 t o s e r v e a s t h e urban nucleous o f an i n d u s t r i a l complex i n t h e s o u t h e a s t e r n p a r t o f Venezuela I t i n c l u d e s one o f t h e b i g g e s t s i n g l e i r o n - s t e a l p l a n t s i n t h e w o r l d , a v e r y l a r g e aluminum complex, f e r r o a l l o y p r o d u c t i o n p l a n t s , among o t h e r i n d u s t r i e s . The main e n e r g y s o u r c e f o r t h e i n d u s t r i a l complex i s an h y d r o e l e c t r i c p l a n t . The second most i m p o r t a n t form o f e n e r g y used i s n a t u r a l g a s .
As a r e s u l t , t h e
a t m o s p h e r i c e m i s s i o n s a s s o c i a t e d with e n e r g y use a r e r e l a t i v e l y low. a t m o s p h e r i c e m i s s i o n s g e n e r a t e d by t h e i n d u s t r i a
However, t h e
processes a r e s i g n i f i c a n t .
A
r e c e n t e m i t i o n i n v e n t o r y has found t h a t 3.4 t o n s o f p a r t i c u l a t e m a t t e r per hour a r e e m i t t e d from t h e numerous i n d u s t r i a l s t a c k s
r e f .17).
I t i s i m p o r t a n t t o p o i n t o u t t h a t t h e i n d u s t r a1 complex i s l o c a t e d downwind o f t h e Ciudad Guayana urban development. The plumes d i s p e r s e o v e r c u r r e n t l y undeveloped a r e a s t h a t a r e i m p o r t a n t t o t h e f u t u r e growth o f t h e r e g i o n ( e x p l o i t a t i o n o f t h e Orinoco Heavy O i l B e l t ) .
Mathematical d i s p e r s i o n models have been used t o
e s t i m a t e t h e c o n t a m i n a t i o n l e v e l s i n undeveloped a r e a a t t r i b u t e d t o t h e atmospheric e m i s s i o n s from t h e i n d u s t r i a l complex ( r e f . 1 8 ) . The c a l c u l a t i o n s i n d i c a t e t h a t d u r i n g t h e day, p a r t i c u l a t e l e v e l s h i g h e r t h a n 100 ug/m3 should o n l y e x i s t v e r y c l o s e t o t h e i n d u s t r i a l complex.
Neverthless,
d u r i n g t h e hours w i t h low i r r a d i a t i o n t h e l e v e l s e x a c t l y downwind, exceed 100 pg/m3 o v e r a l a r g e d i s t a n c e r e a c h i n g a maximum o f 400 pg/m3 1 4 Km from t h e s o u r c e s , which
i s m a i n t a i n e d t o a d i s t a n c e o f 23 Km.
Levels h i g h e r t h a n 150 pg/m3 a r e o b t a i n e d
o v e r a downwind width o f a p p r o x i m a t e l y 10 Km a t d i s t a n c e s o f 1 2 t o 19 Km. Ciudad Guayana i s l o c a t e d on a wide savannah. The Trade Winds dominate t h e w i n d patterns.
Around 90% o f t h e time t h e w i n d d i r e c t i o n f l u c t u a t e s between E and NE.
C o n s i d e r i n g t h a t t h e plume d i s p e r s e s p r e f e r e n t i a l l y o v e r t h e same a r e a and t h a t t h e n i g h t time d i s p e r s i o n ( r a d i a t i v e i n v e r s i o n ) i s low, i t i s l i k e l y t h a t t h e
8
annual T . S . P .
a v e r a g e s exceed t h a a i r q u a l i t y
standards i n relatively extensive
area.
TABLE 2 Suspended p a r t i c l e s and b e n z o ( a ) pyrene c o n c e n t r a t i o n s (pg/m3) i n downtown Caracas a s a f u n c t i o n o f p a r t i c l e s i z e a t two d i f f e r e n t h e i g h t s . Aerodynamic d i a m e t e r s um
Suspended P a r t i c l e s 56ma 5mb
>7.2 7.2 -3.0 3 . 0 -1.5 1 . 5 -0.95 0.95-0.49 ~0.49 TOTAL a)
average of 3 days;
b)
56ma
B(a)PC 5mb
21.6 18.0 7.3 5.5 6.2 36.6
10.9 15 .O 8.6 5.7 5.2 31.6
0.18 0.094 0.11 0.083 0.10 6.99
0.096 0.094 0.102 0.079 0.102 5.88
95.2
77.0
7.56
6.35
average of 6 days. c )
x
lo3.
THE CARACAS VALLEY Caracas i s l o c a t e d a t 10.30"N and 66.7"E a t an a l t i t u d e o f 996 m above sea l e v e l i n a v a l l e y sorrounded by mountains w i t h peaks a s high a s 2600 m . The p o p u l a t i o n There a r e i s a p p r o x i m a t e l y 2.5 m i l l i o n w i t h a c a r d e n s i t y o f %I000 vehicles/Km
.
v e r y few i n d u s t r i e s .
The a v e r a g e t e m p e r a t u r e r a n g e s from 18" t o 23°C.
Almost
e v e r y day, a t e m p e r a t u r e i n v e r s i o n forms i n t h e v a l l e y a t n i g h t and b r e a k s u p between 10 and 11 i n t h e morning. Previous p a p e r s have shown t h a t t h e p r i n c i p a l a i r p o l l u t i o n problems i n Caracas a r e r e l a t e d t o the a t m o s p h e r i c c o n c e n t r a t i o n o f primary p o l l u t a n t s ( r e f . 5 , 6 , 1 9 ) . Since t h e i n v e r s i o n b r e a k s u p b e f o r e noon a l l the s t e p s condusive t o t h e p r o d u c t i o n o f p r i n c i p a l components i n t h e c l a s s i c a l photochemical smog do n o t o c c u r . The r e p o r t e d l e v e l s o f TSP a r e r e l a t i v e l y h i g h .
The annual geometric mean f o r Since t h e formation
t h e sampled y e a r i n downtown Caracas was 95.7 ug/m3 ( r e f . 2 0 ) .
o f l a r g e amounts o f secondary p a r t i c l e s i s n o t p r o b a b l e , most o f t h e suspended p a r t i c l e s found were e m i t t e d t o t h e atmosphere (mainly by v e h i c u l a r c i r c u l a t i o n ) . I t i s o f i n t e r e s t t o i n v e s t i g a t e the s i z e d i s t r i b u t i o n o f t h e p a r t i c l e s .
Using a high volume c a s c a d e impactor t h e p a r t i c l e s i z e o f suspended p a r t i c u l a t e has been d e t e r m i n e a t two d i f f e r e n t h e i g h t s (5 and 56 m ) . The B(a)P c o n t e n t a l s o has been e v a l u a t e d .
Table 2 summarizes t h e r e s u l t s .
Ta bl e 2 shows t h a t s i m i l a r r e s u l t s a r e o b t a i n e d a t both h e i g h t s .
This i n d i c a t e s
t h a t t h e suspended p a r t i c l e l e v e l s based on a 24 hour c o l l e c t i o n p e r i o d a r e independent o f t h e sampling h e i g h t .
Hence i n Caracas t h e r e i s r a p i d t u r b u l e n t mixing
d u r i n g the p e r i o d o f most abundant e m i s s i o n ( t r a f f i c ) . The lognormal f u n c t i o n i s w i d e l y used t o r e p r e s e n t t h e size d i s t r i b u t i o n o f the p a r t i c l e s t h a t compose t h e a t m o s p h e r i c a e r o s o l s ( r e f . 2 1 ) . Figure 2 shows the r e s u l t s o f t h i s s t u d y p l o t t e d on a l o g p r o b a b i l i t y s c a l e .
The MMD's o b t a i n e d
9 compare w e l l w i t h t h o s e f o r o t h e r c i t i e s ( r e f . 2 1 ) . l i n e a r i t y f o r p a r t i c l e s g r e a t e r t h a n 3 . 0 pm.
There i s a marked l o s s o f
T h i s i m p l i e s t h a t i n Caracas t h e r e
i s a s i g n i f i c a n t source o f l a r g e p a r t i c l e s o t h e r t h a n combustion sources.
Most
p r o b a b l y t h e l a r g e p a r t i c l e s a r e e m i t t e d f r o m n o n - t r a d i t i o n a l open s o u r c e s such as t h e c i r c u l a t i o n o f v e h i c l e s o n d u s t - f i l l e d s t r e e t s and c o n s t r u c t i o n a c t i v i t i e s . I t i s i m p o s s i b l e t o c a l c u l a t e t h e MMD o f t h e p a r t i c l e s c o n t a i n i n g B ( a ) P s i n c e
93% o f t h e m were n o t s e p a r a t e d ( p a r t i c l e s <0.45 pm). i s <0.15pm.
We e s t i m a t e t h a t t h e MMD
The p r e s e n c e o f B ( a ) P i n t h e s m a l l e s t p a r t i c l e s c a n be e x p l a i n e d i f
t h e c o n t a m i n a n t s r e m a i n i n t h e Caracas a t m o s p h e r e o n l y a s h o r t t i m e and t h e maj o r i t y o f t h e B(a)P c o l l e c t e d i s associated w i t h r e c e n t l y e m i t t e d p a r t i c l e s .
The
MMD measured i n a s u b - u r b a n a r e a i n f l u e n c e d b y e m i s s i o n s i n Caracas was 0.44um. I t i s now c l e a r t h a t t h e i n f l u e n c e o f suspended p a r t i c l e s o n h e a l t h depends o n
t h e i r penetration i n t o the respiratory t r a c t .
The m o s t damaging f r a c t i o n s a r e
t h e i n h a l a b l e p a r t i c l e s ( < 15 p m ) and t h o s e c a p a b l e o f r e a c h i n g t h e l u n g s ( < 2 . 5 p m ) . A c c o r d i n g t o f i g u r e 2, a p p r o x i m a t e l y YO% o f t h e p a r t i c l e s i n Caracas a r e i n h a l a b l e and 65% c a n p e n e t r a t e i n t o t h e g a s - i n t e r c h a n g e a r e a . S i n c e t h e TSP a n n u a l a v e r a g e i n Caracas i s s u b s t a n t i a l l y g r e a t e r t h a n 75 1.1g/m3 ( r e f . 2 0 ) and a h i g h percentage o f these p a r t i c l e s a r e s u f f i c i e n t l y small t h a t t h e y p e n e t r a t e d e e p l y i n t o t h e r e s p i r a t o r y t r a c t , t h i s " t r o p i c a l " c i t y has a s e r i o u s a t m o s p h e r i c p o l l u t i o n p r o b l e m due t o p a r t i c l e s . SUMMARY AND CONCLUSIONS Three s i t u a t i o n s w i t h v e r y d i f f e r e n t c h a r a c t e r i s t i c s have been p r e s e n t e d . each one, pollution.
In
i t has been shown t h a t a t r o p i c a l a r e a c a n be s e r i o u s l y a f f e c t e d b y a i r
The p r e d o m i n a n t m e t e o r o l o g i c a l c o n d i t i o n s i n t h e t r o p i c s , g e n e r a l l y
c o n s i d e r e d t o be f a v o r a b l e f o r m i n i m i z i n g t h e i n f l u e n c e o f a i r p o l l u t i o n , c a s e s o n c i r c u m s t a n c e s may a c t u a l l y worsen t h e p r o b l e m .
i n some
Good d i s p e r s i o n c o n d i -
t i o n s p r e v a i l i n Caracas m o s t o f t h e day, however, t h e e m i s s i o n s exceed t h e d a i l y average d i s p e r s i o n capacity,
r e s u l t i n g i n h i g h atmospheric contamination l e v e l s .
ACKNOWLEDGEMENTS We w i s h t o t h a n k K a t h y H. O c t a v i o f o r u s e f u l d i s c u s s i o n .
R o l a n d M a r t ? and
Enigma G i j s b e r k h a f o r t h e i r f i e l d w o r k i n Curacao and Z y n n i a T o l l i n c h e f o r t h e preparation o f t h e manuscript. REFERENCES
1 S. N i e u w o l t , T r o p i c a l C l i m a t o l o g y , An I n t r o d u c t i o n t o t h e C l i m a t e s o f t h e Low L a t i t u d e s , John W i l e y and Sons, New York, 1977, p . 1 . 2 S . P e t e r s e n , B u l l . Amer. M e t e o r . SOC. 47(1966)950-963. 3 J.K. N g ' a n g ' a , Water, A i r and S o i l P o l l . , 1 3 ( 1 9 8 0 ) 2 7 - 3 4 . 4 H.P. G e r r i s h , Miami I n t e r a c t i o n , 4 ( 1 9 7 2 ) 2 1 - 2 4 . 5 E. Sanhueza and J. Romero, J. A i r P o l l . C o n t r o l Ass., 28(1978)157-158. 6 L. E s c a l o n a and E. Sanhueza, Atrnos. E n v i r o n . , 1 5 ( 1 9 8 1 ) 6 1 - 6 4 . 7 J.B. Homolya and C.R. F o r t u n e , Atmos. E n v i r o n . , 12(1978)2511-2514.
10 8 9 10 11 12 13 14 15 16 17
18 19 20
21
J . 8 . Homolya and S . Lambert, J . A i r P o l l . Control Ass., 31(1981)139-143. R.W. C o u t a n t , Environ. S c i . Technol ., 11(1977)673-878. D.R . L i n c l o l n and E.S. Rubin, J . Air P o l l . Control Ass., 30(1980)777-781. J.S. Evans, S.E. Spedden and D.W. Cooper, J . Air P o l l . Control A s s . , 3 1 ( 1981) 395 -397. P o s i t i o n Paper on R e g u l a t i o n o f Atmospheric S u l f a t e s , U.S. Environmental P r o t e c t i o n Agency, EPA-450/275-007, S e p t . 1975. A . P . A l t s h u l l e r , Environ. S c i . Technol ., 7(1973)709-712. B.R. Appel, E . L . Kothny, E . M . H o f f e r , G . M . Hidy and J . J . Wesolowski, Environ. Sci Technol . 12( 1978)418-425. K . C . Heidorn, J . Air P o l l . Control Ass., 28(1978)803-806. E . Sanhueza, C h . I s h i z a k i , M . Africano and R . Pefia, Atmos. Environ. 13 ( 1979) 1205- 1208. E . Sanhueza, A . Anselmi, J . Romero, K . H . Octavio and J.C. S i n c h e r , I n v e n t a r i o de Emisiones Atmosf6ricas Para e l Area de Proyecto D.S.M.A., Final Report, INTEVEP, Venezuela, 1980, 85pp. E. Sanhueza and K . H . O c t a v i o , Estimaci6n de 1 0 s N i v e l e s de Contaminantes en e l Area Ubicada a1 Sur del R i o Orinoco y Oeste del Complejo I n d u s t r i a l de Matanza, Technical Report, INTEVEP, Venezuela, 1981, 27pp. C h . I s h i z a k i , E. Sanhueza and J . Romero, Chemosphere, 6(1978)517-536. E. Sanhueza, Ch. I s h i z a k i and M. A f r i c a n o , Acta C i e n t i f . Venezolana, 30(1979) 425-427. R . E . Lee, J r . and S. Goranson, Environ. S c i . Technol., 10(1976)1022-1027.
.
10.0r
5.0c
E 4.0-
-a 3.0W I-
w 2.02 Q 1.5w
J
0 1.0l0:
2 0.80.4-
0.3I
10
Fig. 2 .
1
l
l
l
l
l
l
20 30 40 50 60 70 80
I
1
90 95 CUMULATIVE PERCENT MASS S PARTICLE DIAMETER
1
98
Downtown Caracas p a r t i c l e - s i z e d i s t r i b u t i o n c u r v e s .
11
TRENDS IN OZONE CONCLNTRATIONS IN JERUSALEM
STEINBERGER Dept. of Atmospheric Sciences, The Hebrew University, Jerusalem E.H.
ABSTRACT Ozone concentrations have been measured in Jerusalem since 1977 by a chemiluminescent ozone meter. During the l a s t f i v e years ozone l e v e l s have
increased considerably. In order t o t e s t whether t h i s increase r e f l e c t e d the growth i n t h e number of motor vehicles o r was caused by atmospheric conditions, t h e summer data of the l a s t f i v e years were analyzed. Ozone l e v e l s were characterized by the d a i l y one-hour maxima; the atmospheric f a c t o r s considered were temperature, i n s o l a t i o n and s t a b i l i t y . A multiple regression equation was computed and a c o r r e l a t i o n c o e f f i c i e n t r = 0.77 obtained. The yearly mean reduced ozone l e v e l s showed a d e f i n i t e trend, which r e f l e c t e d the corresponding trend i n t h e number of motor vehicles. INTRODUCTION One of t h e aims of a i r p o l l u t i o n monitoring is t h e detection of trends i n p o l l u t a n t concentrations. The p r a c t i c a l applications of such information can r e a d i l y be seen; f o r example i f the ambient concentration of a given pollutant seems t o be increasing, than t h e emission standards f o r t h a t p o l l u t a n t may have t o be reduced. However, trend a n a l y s i s of atmospheric variables over a period of years i s f a r from easy. The actual value of such an element i s usually determined by several f a c t o r s , which i n turn may vary, e i t h e r randomly, o r periodically with time. ( r e f . 1 ) . In order t o evaluate possible trends i n ozone concentrations, several variables have t o be considered. The ozone concentration a t a given time and place w i l l b e determined by the production, d e s t r u c t i o n and t r a n s p o r t processes. The necessary conditions f o r ozone production a r e adequate amounts of NO2, hydrocarbons and s o l a r r a d i a t i o n , while the main d i s t r u c t i o n process i s the reaction of ozone w i t h NO. Transport processes a r e determined by the prevailing atmospheric condit i o n s , such a s s t a b i l i t y , wind v e l o c i t y and others. The reacting molecular species a r e emitted i n t o the atmosphere mainly by motor vehicles. Their concentration will depend o n the number of sources, and
12
a l s o o n atmospheric f a c t o r s , such a s temperature. Solar r a d i a t i o n and temperature e x h i b i t diurnal and seasonal v a r i a t i o n s , a p a r t from random changes. The o t h e r r e l e v a n t f a c t o r s vary with time in a complex manner. I t follows t h e r e f o r e t h a t any changes in ozone concentration w i t h time have t o be examined in conjunction with these v a r i a b l e s , i n order t o determine whether these changes r e f l e c t corresponding v a r i a t i o n s of t h e relevant parameters o r i n d i c a t e real trends i n ozone concentrations. EXPERIMENTAL METHODS The concentration of ozone i n Jerusalem has been measured continuously s i n c e 1977; by means of a chemiluminescent ozone meter. The instrument was c a l i b r a t e d regularly and exhibited good s t a b i l i t y . Ozone concentrations were expressed as one-hour averages i n u n i t s of p a r t s per b i l l ion per volume (ppb). The r e s u l t s of t h e measurements were summarized i n terms of d a i l y average concentration, mean monthly diurnal v a r i a t i o n and the maximal one-hour concentration measured each day. I t was noticed t h a t during t h e period of f i v e years ozone l e v e l s increased, e s p e c i a l l y t h e maximal values. I t was t h e r e f o r e decided t o t e s t s t a t i s t i c a l l y whether t h i s change with time indicated a real trend o r could be accounted for by v a r i a t i o n s i n the relevant meteorological f a c t o r s . In order t o eliminate diurnal and seasonal cycles, both i n ozone values and meteorological parameters, t h e following procedure was adopted: Ozone concentrations were expressed by t h e i r d a i l y maximum value. Since the maximum level occurred i n almost a l l cases between 14-16 hours L.S.T., the diurnal v a r i a t i o n was minimized. Furthermore, only data obtained d u r i n g t h e summer months May-August were used, thereby reducing t h e influence of t h e seasonal cycle. The r e l e v a n t meteorological parameters considered were temperature, s o l a r r a d i a t i o n f l u x , atmospheric s t a b i l i t y and wind v e l o c i t y , The temperature and
wind v e l o c i t y values were measured a t the same time a s t h e ozone maxima occurred. Atmospheric s t a b i l i t y was defined as 1000/H, where H was t h e m i x i n g depth, Solar r a d i a t i o n f l u x ( i n meters), measured each day a t about 13 hours L.S.T. was expressed i n terms of t h e d a i l y t o t a l , i n order t o exclude diurnal v a r i a t i o n s and random u n c h a r a c t e r i s t i c f l u c t u a t i o n s within t h e hour o f measurement. Variance a n a l y s i s showed t h a t w i t h i n each year t h e average monthly values ( f o r May-August) of a l l the v a r i a b l e s were not s i g n i f i c a n t l y d i f f e r e n t , therefore y e a r l y averages could be computed and compared. A preliminary multiple-regression a n a l y s i s showed t h a t the influence of wind v e l o c i t y was n e g l i g i b l e , and therefore omitted from f u r t h e r analyses.
13
N
6oc
50C
+ I
N
I
I 6
rn
rloc Figure 1 .
1977
1978
1979
1980
1981
(a) Y e a r l y average ozone maxima ; ( b ) y e a r l y average n o r m a l i z e d ozone maxima (y), and v e h i c l e numbers, i n thousands,(N).
14
RESULTS
The mean y e a r l y values of ozone, temperature, i n s o l a t i o n and s t a b i l i t y parameters, and t h e numbers of days a r e given i n Table 1 . Var.
1977
1978
1979
1980
03 T
49.1
43.9
54.9
57.0
27.6
30.0
30.0
28.2
30.9
29.4
I
625.2
528.4
694.0
630.4
635.0
622.6
2.94
S
N
1.34
103
Table 1 .
2.34
95
92
2.94 97
1981 6.32
2.34 98
Fi ve-yr Mean 53.6
2.38 485
Yearly average values of ozone maxima, O3 i n ppb, temperature
T i n degrees c e n t r i g r a d e , i n s o l a t i o n I i n cal.cm-2 m i n . parameter S .
-1 and s t a b i l i t y
I t can be seen from Table 1. t h a t during the period of t h i s study t h e mean maximal ozone l e v e l s have, i n general, increased. There was no corresponding v a r i a t i o n i n the values of the meteorological parameters; except f o r 1978, when both I and S were minimal, no systematic change can be noticed and t h e small f l u c t u a t i o n s a r e not s t a t i s t i c a l l y s i g n i f i c a n t . A m u l t i p l e regression equation of the type ( 1 ) O3 = a + b [T - TA) + c (I - IA) + d + ( S - SA) was computed f o r a l l the data and a t o t a l c o r r e l a t i o n c o e f f i c i e n t r = 0.77 obtained. For each data s e t t h e dimensionless parameter y. r e f e r r e d t o a s "normalized" ozone level and defined as t h e r a t i o of the measured ozone value t o the value computed by eq. ( l ) , was calculated. Then t h e mean value of y f o r each year was obtained. The r e s u l t s a r e presented below. Year
1977
1978
1979
1980
1981
Five-year mean
Y
0.892
0.925
0.995
1.036
1.160
1.008
The general growth trend can c l e a r l y be seen here and the trend l i n e f i t t e d t o t h e data i n d i c a t e s a y e a r l y growth r a t e of about 6.5% i n ozone maxima. I t may be noted t h a t t h e low ozone values i n 1978 can, a t l e a s t p a r t i a l l y , be explained by the unusually low i n s o l a t i o n and s t a b i l i t y parameter values which prevailed then.
15
F i g u r e 2.
( a ) Y e a r l y average ozone maxima ( 0 ) vs. number o f v e h i c l e s i n thousands
3 (N) ; ( b ) y e a r l y average normalized ozone maxima vs. N .
16
In trying t o explain the reasons f o r the increase in ozone levels, which could not be attributed t o meteorological factors, the annual changes in source strengths may be examined. Since ozone precursors are emitted by motor vehicles, t h e i r yearly variations were obtained. Vehicle numbers were expressed i n terms of the total quantity i n Israel on the l a s t day of each calendar year, for the purpose of t h i s study for the following reason: I t has been shown ( r e f . 2 ) , t h a t the maximal ozone concentration in Jerusalem during the summer months was usually due t o transport from the coastal area, where more t h a n 60% of the total number o f vehicles i n the country are concentrated. Therefore i t can be assumed t h a t the variations i n the total number of vehicles r e f l e c t the corresponding changes in the coastal area, and in Jerusalem i t s e l f . Figure 1 . i l l u s t r a t e s the trends in vehicle numbers and the changes in the yearly average maximum ozone levels ( l a ) , and the normalized ozone levels, (16). I t should be mentioned, that a t the time of w r i t i n g the total number of vehicles f o r 1981 has n o t y e t been published and the number used here has been estimated both by extrapolating from the results of the l a s t seven years and from partial results supplied by the I s r a e l i Central S t a t i s t i c s Bureau. Finally, ozone values were plotted as a function of vehicle numbers. The r e s u l t s are shown i n Fig. 2 . , (a) and ( b ) . I t can be seen, t h a t the f i t i s much better f o r the normalized ozone concentrations, [Fig. 2 ( b ) ] , t h a n f o r the measured ozone levels [Fig. 2 ( a ) ] , demonstrating the influence of the meteorological parameters. DISCUSSION AND CONCLUSIONS I t has been shown t h a t during the p a s t f i v e years ozone levels have increased i n Jerusalem. The influence of several meteorological parameters (temperature, solar radiation, atmospheric s t a b i l i t y and wind speed) was examined. I t was found t h a t the f i r s t three variables influenced significantly the measured ozone levels, b u t wind speed was not a n important parameter. Although b o t h the Gaussian and the box models predict an inverse dependence of pollutant concentration on wind speed, experimental evidence suggests that during the summer months pollutant concentrations are not influenced by the wind speed, ( r e f . 3). The yearly averages of the normalized ozone levels showed a steady increase, o f about 6.5% per year. T h i s apparent trend could be explained by n o t i n g t h a t emission sources, a.e. the number of motor vehicles, have also increased d u r i n g t h i s time period REFERENCES 1 ) R.E. Munn, Environ, Monit. Assesment, (1981), 1 , 49-58 2 ) E.H. Steinberger, Atmospheric Pollution, (1980r, Elsevier, Amsterdam, Ed. M. Benarie 165-172 3) M.M. Benarie, :bid, 49-53
17
BACKGROUND CONTINENTAL OZONE LEVELS I N THE RURAL U.S.
SOUTHWEST DESERT
THOMAS E. HOFFER Desert R e s e a r c h I n s t i t u t e , Reno, Nevada (U.S.A.)
ROBERT J. FARBER and ELIZABETH C. ELLIS R e s e a r c h and Development, S o u t h e r n C a l i f o r n i a Edison Company, Rosemead, C a l i f o r n i a
(U. S.A. )
ABSTRACT From 1969 t h r o u g h
a i r q u a l i t y m o n i t o r i n g program,
1978 a n e x t e n s i v e ambient
i n c l u d i n g t h e measurement
of a t m o s p h e r i c c o n c e n t r a t i o n s of
ozone,
h a s been conUsing a Monitor
d u c t e d i n a r e m o t e s e c t i o n of t h e d e s e r t i n t h e s o u t h w e s t e r n U.S.
t h e s e l e v e l s were measured a t o p a small
Labs c h e m i l u m i n e s c e n t ozone i n s t r u m e n t ,
mountain 500 f e e t above t h e v a l l e y f l o o r of t h e Colorado R i v e r .
During t h e w i n t e r
months, when t h e p r e v a i l i n g low l e v e l w i n d s are n o r t h e r l y i n t h i s r u r a l c o n t i n e n t a l background l e v e l s of ozone are a t t a i n a b l e . ozone
data
base,
13 of
selected for analysis.
these
representative
high
ozone minimum o c c u r r i n g from 0800-1000
From t h i s c o n t i n u o u s
pressure
Results i n d i c a t e a very d i s t i n c t
river valley,
periods
diurnal
have
been
t r e n d w i t h an
h o u r s Mountain S t a n d a r d T i m e (MST) and a n
ozone maximum from 1600-1900 h o u r s MST.
Ozone c o n c e n t r a t i o n s r a n g e from a low of
19 ppb t o a h i g h of 4 4 ppb w i t h t h e d i u r n a l p a t t e r n e x h i b i t i n g marked r e p e a t a b i l i t y w i t h r e s p e c t t o t i m e of minima and maxima,
s e a s o n a l c h a n g e s and c o n c e n t r a t i o n
levels.
INTRODUCTION From 1969 t o t h e p r e s e n t a n e x t e n s i v e a i r q u a l i t y m o n i t o r i n g program, i n c l u d i n g t h e measurement o f a t m o s p h e r i c c o n c e n t r a t i o n s of been
conducted
in
the vicinity
of
l o c a t e d 30 miles n o r t h of N e e d l e s , known as t h e Mohave V a l l e y .
the
ozone and n i t r o g e n o x i d e s ,
1580 MW Mohave
coal-fired
has
power. p l a n t
C a l i f o r n i a n e a r t h e Colorado R i v e r ,
a region
The p r i m a r y o b j e c t i v e s of t h i s program are t o monitor
18 t h e a m b i e n t a i r q u a l i t y i n t h i s r e m o t e r u r a l d e s e r t environment and t o d e t e r m i n e t h e r e l a t i v e i m p a c t from t h e Mohave G e n e r a t i n g S t a t i o n (Ref.
1).
The g e o g r a p h i c a l
l o c a t i o n i n c o m b i n a t i o n w i t h t h e s y n o p t i c m e t e o r o l o g i c a l p a t t e r n s p r o v i d e a unique o p p o r t u n i t y to c o n t i n u o u s l y m o n i t o r c o n t i n e n t a l background l e v e l s of g e o g r a p h i c a l l o c a t i o n and s a m p l i n g c o n f i g u r a t i o n are shown i n Fig. l i n g sites are positioned
i n a north-south
alignment along
the
ozone.
1.
The
The samp-
Colorado
River
because t h e topographical channeling of t h e r i v e r v a l l e y produces n o r t h o r south winds a b o u t 90% of t h e time. Background o r n a t u r a l c o n c e n t r a t i o n s of
I n l i g h t of
studies. separate
t h e f e d e r a l EPA s t a n d a r d of
t h e background
s.(Ref.
Singh,
levels
21,
of
reported
ozone average
from
the
120 ppb,
it
several
is important t o
anthropogenic
contributions.
ozone c o n c e n t r a t i o n s a t remote
sites
and 48"N t o r a n g e from 20 t o 50 ppb w i t h e x c u r s i o n s above
between l a t i t u d e s 19'N
They found t h a t t h e predominant s o u r c e of t r o p o s p h e r i c ozone a r i s e s from
80 ppb.
stratospheric (Ref.
ozone have been t h e f o c u s of
injections.
4 ) reached
Derwent
sg.
Derwent
et
al.
(Ref.
3 ) and
Chatfield
and
s i m i l a r conclusions a t varying l o c a t i o n s throughout
(Ref.
Harrison
t h e world.
3 ) a l s o n o t e d s h o r t p e r i o d s of e l e v a t e d ozone a t 100 ppb.
Fig.
1.
Mohave V a l l e y m o n i t o r i n g s t a t i o n s .
19 AN A I R QUALITY SAMPLING PROGRAM I N THE MOHAVE VALLEY
I n s t r u m e n t a t i o n and C a l i b r a t i o n i t i s c r i t i c a l l y impor-
Because r u r a l ozone l e v e l s a r e i n t h e lower ppb range, t a n t t o have a n i n s t r u m e n t w i t h t h e p r e r e q u i s i t e
This
accuracy.
An
o u r a i r m o n i t o r i n g network i s t h e q u a l i t y a s s u r a n c e program.
i m p o r t a n t p a r t of
Ozone measurements were made u s i n g a Monitor analyzer.
s e n s i t i v i t y and
analyzer
has
been
Labs Model 8410A chemiluminescent
calibrated
monthly
against
1003-AH u l t r a v i o l e t ozone a n a l y z e r which i n t u r n i s t r a c e d
a
Dasibi
Model
back t o a s t a n d a r d
u l t r a v i o l e t ozone photometer o p e r a t e d by t h e C a l i f o r n i a Air Resources Board.
An
independent g r o u p h a s provided q u a l i t y a s s u r a n c e a u d i t s f o r t h e ozone measurements between t h e summer of 1977 t o t h e p r e s e n t . R e s u l t s of
s i x q u a r t e r l y a u d i t s of
s q u a r e s r e g r e s s i o n of y = 0 . 9 6 7 ~
t h e measured ozone r e s p o n s e show a l e a s t
-0.01
w i t h r 2 = 0.96 where r i s t h e c o r r e l a -
A t a 95% c o n f i d e n c e i n t e r v a l t h e s l o p e i s between 0.862
tion coefficient.
A r e a s o n a b l e upper
1.072.
+
limit
estimate of
the
error
associated with
and these
measurements i s between 10 t o 15%.
A p o t e n t i a l l y i m p o r t a n t parameter t o t h e ozone c y c l e i s t h e c o n c e n t r a t i o n l e v e l of n i t r o g e n o x i d e s .
T h i s measurement i s even more d i f f i c u l t t h a n t h a t f o r ozone
In t h i s study the
because of t h e p u r p o r t e d l y v e r y low r u r a l ppb l e v e l s of NO2.
measured NO2 c o n c e n t r a t i o n s were made u s i n g a new Columbia S c i e n t i f i c I n d u s t r i e s Model
1600 chemiluminescent
instrument.
This
analyzer
can
detect
NO2
levels
between 3 t o 5 ppb w i t h a n a c c u r a c y of 15 t o 20%.
Sampling P r o t o c o l and S y n o p t i c M e t e o r o l o g i c a l Regimes During t h e w i n t e r months f o r f a i r w e a t h e r p e r i o d s t h e P a c i f i c S u b t r o p i c a l High e x t e n d s i n t o t h e d e s e r t southwest.
T h i s t y p i c a l p a t t e r n (shown i n Fig.
2 a t the
500 mb l e v e l o r a b o u t 5.6 km) can p e r s i s t f o r s e v e r a l days a s t h e l o n g wave r i d g e p o s i t i o n becomes f i r m l y e s t a b l i s h e d o v e r t h i s p a r t of t h e w e s t e r n U.S.
The r e s u l t
i s c l e a r s k i e s , w i t h n o r t h e r l y winds a l o f t which o f t e n extend down t o t h e surface.
During t h i s
period
t h e Great
Basin
surface high
(Fig.
3 ) becomes w e l l
e s t a b l i s h e d o v e r t h e c o l d e r , h i g h e r desert p l a t e a u , g i v i n g rise t o predominantly n o r t h e r l y winds i n t h e Mohave Valley.
These a r e o f t e n l o c a l l y i n t e n s i f i e d i n t h i s
a r e a because of t h e t o p o g r a p h i c a l c h a n n e l i n g e f f e c t of t h e Colorado R i v e r Valley. When s u r f a c e g r a d i e n t s a r e l i g h t , o c c a s i o n a l l y l o c a l topography dominates, g i v i n g r i s e t o up-slope,
o r s o u t h e r l y b r e e z e s f o r a c o u p l e of hours i n t h e l a t e a f t e r n o o n
a t t h e t i m e of maximum h e a t i n g . i s f a r t o t h e n o r t h of
expected.
During t h i s p e r i o d (Fig.
2) t h e t r o p o s p h e r i c j e t
t h i s r e g i o n w i t h minimal s t r a t o s p h e r i c
ozone i n t r u s i o n s
A s t h e l o n g wave r i d g e p o s i t i o n s h i f t s s l o w l y e a s t w a r d , s o u t h e r l y winds
b o t h a l o f t and a t t h e s u r f a c e b e g i n t o i n c r e a s e i n f r e q u e n c y and speed wi.th t h e p o t e n t i a l f o r a d v e c t i o n of a d i f f e r e n t airmass.
20
Fig. 2. N a t i o n a l Weather S e r v i c e 500 mb (5.6 km) analysis 0500 MST, Nov. 5, 1976, showing s t r o n g l o n g wave h i g h p r e s s u r e r i d g e o v e r S o u t h w e s t e r n U.S.
Fig. 3. N a t i o n a l Weather S e r v i c e C h a r t a t 1100 MST, Feb. 8, 1979, d e p i c t i n g G r e a t Basin High o v e r S o u t h w e s t e r n U.S.
Fig. 4. N a t i o n a l Weather S e r v i c e 500 mb (5.6 km) a n a l y s i s 1700 MST, Dec. 6, 1978, depicting "Nevada Low" c o l d o u t b r e a k , and tropospheric jet stream a f f e c t i n g S o u t h w e s t e r n U.S.
21 Another s y n o p t i c p a t t e r n of i n t e r e s t i s shown i n Fig. is
just
beginning
to
build
into
t h e area w i t h
the tropospheric jet
4.
Here t h e 500 mb r i d g e
"Nevada Low"
still
giving
During t h i s p e r i o d t h e 500 mb h e i g h t s are low
c y c l o n i c flow t o t h e Mohave Valley. and
the
i s d i r e c t l y a f f e c t i n g t h e Mohave V a l l e y w i t h maximum Winds are c o n s i s t e n t l y n o r t h e r l y both on t h e
s t r a t o s p h e r i c i n t r u s i o n s possible.
s u r f a c e and a l o f t and t h e s k i e s are clear. These two g e n e r a l t y p e s of October and g r a d u a l l y end between 13" t o L8'C
p a t t e r n (Figs.
by l a t e A p r i l .
2-4)
g e n e r a l l y o c c u r beginning i n
Daytime maximum t e m p e r a t u r e s average
w i t h n i g h t t i m e minimums above f r e e z i n g .
Relative humidities
are low, g e n e r a l l y l e s s t h a n 20%. I n t h e p r e s e n c e of t h e s e h i g h p r e s s u r e r i d g e s , a v e r y r e g u l a r d i u r n a l i n v e r s i o n p a t t e r n occurs.
From e a r l y e v e n i n g u n t i l abour 1000-1200 MST h o u r s t h e f o l l o w i n g
morning, a w e l l developed surface-based d e p t h of
radiational inversion i s established to a
150 t o 300 m and a s t r e n g t h of
inversion i s dissipated,
5°C t o 10°C.
U s u a l l y by 1200 MST t h e
l e a v i n g a n e u t r a l s t a b i l i t y atmosphere w i t h w i n t e r t i m e
mixing d e p t h s t o a b o u t 600-YO0 m AGL. Given t h e above s y n o p t i c c o n s i d e r a t i o n s , D R I Mountain ( F i g .
1) w a s s e l e c t e d as
t h e s t u d y s i t e f o r ozone measurements and K a t h e r i n e Landing,
immediately t o t h e
n o r t h , was s e l e c t e d f o r measurements of
nitrogen oxides.
The e l e v a t i o n of
DRI
Mountain i s 400 m MSL o r 170 m above t h e g e n e r a t i n g s t a t i o n l o c a t e d 8 km t o t h e s o u t h and LOO m above t h e f l o o r of i s 2 5 0 m MSL.
The l o c a t i o n of
t h e Colorado R i v e r VaJfey.
K a t h e r i n e Landing
t h e s e s i t e s i s i d e a l f o r remote gaseous measure-
ments s i n c e t h e y are removed from even small l o c a l i z e d sources.
Any impact from
t h e p l a n t on t h e s e s i t e s i s e a s i l y d e t e c t e d by SO2 m o n i t o r s as t h e steam p l a n t is
t h e o n l y d e t e c t a b l e SO2
source
in
the area
(Ref.
1).
The NOx
K a t h e r i n e Landing a l s o s e r v e s a s a f u r t h e r check on p o t e n t i a l plant.
A s p r e v i o u s l y s t a t e d , p l a n t impact i s expected t o be minimal.
i m p o r t a n t c o n s i d e r a t i o n because of
monitor a t
i m p a c t s from t h e This i s an
t h e w e l l known O 3 d e p l e t i o n phenomenon asso-
c i a t e d w i t h t h e NO i n power p l a n t plumes. The l o c a t i o n of t h e s e s i t e s w i t h r e s p e c t t o l o n g range t r a n s p o r t of p o l l u t a n t s from l a r g e u r b a n c e n t e r s i s a l s o a n i m p o r t a n t c o n s i d e r a t i o n .
Normally, d u r i n g t h e
s e a s o n s from October t h r o u g h March t h e Mohave Valley i s removed from t h e p o s s i b l e i n f l u e n c e of l o n g range t r a n s p o r t f o r two r e a s o n s .
First,
t h e t r a j e c t o r y of t h e
airmass which a r r i v e s a t Mohave i s from t h e n o r t h e r l y q u a d r a n t and no l a r g e urban c e n t e r s a r e w i t h i n hundreds of m i l e s i n t h i s d i r e c t i o n . meteorological
and c h e m i c a l r e a s o n s ,
Second, f o r a v a r i e t y of
ozone f o r m a t i o n i s l i m i t e d
i n l a r g e urban
a r e a s d u r i n g t h e w i n t e r months and t h u s l o n g range t r a n s p o r t of t h i s p o l l u t a n t i s u s u a l l y a moot p o i n t . For
the
above
stated
reasons,
the
selection
of
DRI
Mountain
and
Katherine
Landing a s r e p r e s e n t a t i v e of remote d e s e r t l o c a t i o n s a t a l a t i t u d e of about 32'N
22 is valid.
During t h i s period,
observed
ozone and NO2
c o n c e n t r a t i o n s s h o u l d be
t y p i c a l of n a t u r a l o r background c o n t i n e n t a l l e v e l s .
RESULTS
Ozone d a t a from D R I Mountain were s e l e c t e d f o r s y n o p t i c p a t t e r n s as p r e v i o u s l y described i n Figs.
2-4
f o r the fall-winter-spring
O c t o b e r 1976 t o March 1979.
5-11 and T a b l e 1.
months d u r i n g t h e p e r i o d from
Data from t h e s e t h r e e y e a r s a r e p r e s e n t e d i n F i g s .
Examination o f t h i s d a t a b a s e i n d i c a t e s d e f i n i t e p a t t e r n s and
c o n s i s t e n t ozone c o n c e n t r a t i o n s f o r a v a r i e t y of s e a s o n a l and s y n o p t i c s i t u a t i o n s . Fig.
5
is
a
compilation
of
hourly
averaged
ozone
d i s c r e t e h i g h p r e s s u r e r i d g e p a t t e r n s f o r 1976-1977.
a r e b e s t d e s c r i b e d by F i g s .
2 and 3.
concentrations
for
five
These h i g h p r e s s u r e p e r i o d s
During t h e s e p e r i o d s ,
winds were n o r t h e r l y
t h e e n t i r e t i m e f o r t h e p e r i o d November 2-9 and n o r t h e r l y a b o u t 22 h o u r s a day f o r e a c h of
t h e o t h e r periods.
S o u t h e r l y w i n d s create a p o s s i b i l i t y of
plume impact on D R I Mountain and K a t h e r i n e Landing.
However,
power p l a n t
a t no t i m e d u r i n g
a n y of t h e s e r i d g e p e r i o d s was t h e plume d e t e c t e d a t D R I Mountain.
-
36-
OCT. 4-7 NOV. 2-9
---- FEE. 14-20 32 30 -
.__.._____... NOV. 16-19 -.-.- JAN. 13-18
34
-z
n n I0
a 4 It Y 0
z
0
0 Y
az
0
18
I
1
I
I
I
t
05
10
15
20
24
I
00
I
I
TIME OF DAY (MST)
Fig. 5. Hourly-averaged ozone c o n c e n t r a t i o n s f o r e a c h h i g h p r e s s u r e r i d g e p e r i o d from O c t . 1976 - March 1977.
Figs.
5 and 8 were c o n s t r u c t e d
curve representing t h e period period,
i n t h e f o l l o w i n g manner.
As a n example,
from November 2 t h r o u g h November 9,
the
a n e i g h t day
i s a c o n d e n s a t i o n of e i g h t d a t a p o i n t s a v e r a g e d t o make one h o u r l y a v e r -
aged d a t a p o i n t on t h i s c u r v e .
This condensing of t h e d a t a i s reasonable because
23 of t h e r e p e a t a b i l i t y and small v a r i a b i l i t y i n ozone l e v e l s a s a f u n c t i o n of of
day.
Fig.
6 i l l u s t r a t e s t h i s b e h a v i o r w i t h t h e November 2-9
i n t o h o u r l y a v e r a g e d p o i n t s f o r e a c h day.
time
c u r v e expanded
The ozone l e v e l s are n e a r l y i d e n t i c a l
f o r t h e same h o u r i n d e p e n d e n t o f t h e day.
5 i n d i c a t e s e a s i l y i d e n t i f i a b l e ozone p a t t e r n s indepen-
An e x a m i n a t i o n of Fig.
dent
of
the
particular
ridge
period
or
seasonal
t i m e of
year.
All
of
these
s e l e c t e d p e r i o d s a r e f o r c o n d i t i o n s where t h e t r o p o s p h e r i c j e t stream i s 1500 !a t o t h e n o r t h o f t h e area f o r a minimum of 60 hours. t h a n 60 h o u r s d u r a t i o n , no d i u r n a l p a t t e r n , ible.
6, i s discern-
5 i n d i c a t e s a v e r a g e h o u r l y minimum c o n c e n t r a t i o n s from 18 t o 24 ppb
Fig.
occurring
For t r a n s i t o r y r i d g e s of less
t y p i c a l l y shown i n Fig.
about
the
same t i m e e a c h day from 0900
to
1100 h o u r s MST.
Average
h o u r l y maximum c o n c e n t r a t i o n s r a n g e from 29 t o 35 ppb o c c u r r i n g between 1600 t o 1900 h o u r s MST. As
mentioned
previously,
period
from
S u r f a c e winds were n o r t h e r l y d u r i n g t h i s e n t i r e p e r i o d .
Fig.
6 shows
the
high
pressure
ridge
The
November 2-9,
1976.
diurnal trend
i s v e r y d i s t i n c t w i t h t h e same maximum and minimum c o n c e n t r a t i o n s
o c c u r r i n g a b o u t t h e same t i m e e a c h day.
Concentrations
r a n g e from 23 ppb t o a
maximum h o u r l y a v e r a g e o f 38 ppb.
40 -J
35 302520 -
I , , , , , , , ,
02/01
03/00 04/00 05/00
06/00 07/00 08/00
09/00 09/23
DATE/TIME (MST)
Fig. 6. Curve from Fig. 5 p l o t t e d f o r e a c h h o u r l y a v e r a g e f o r t h e h i g h p r e s s u r e r i d g e p e r i o d from Nov. 2 t o Nov. 10, 1976.
During t h e w i n t e r s e a s o n of (Fig.
1977 t o 1978 o n l y one w e l l - d e f i n e d
2) developed i n t h e S o u t h w e s t e r n U.S.
1978 (Fig.
7).
A s the short-lived
become n o r t h e r l y and
season, i s again seen f o r January 7,
period
T h i s o c c u r r e d from J a n u a r y 6 t o 11,
r i d g e b u i l d s i n t o t h e area,
t h e well-defined
ridge
diurnal pattern,
8 and 9.
t h e s u r f a c e winds
observed i n t h e p r e v i o u s
The maximum O3 o c c u r s d u r i n g t h e
l a t e a f t e r n o o n w h i l e minimum c o n c e n t r a t i o n s are i n t h e morning h o u r s .
By Janu-
a r y 1 0 t o 11, t h e upper r i d g e i s moving t o t h e e a s t , b e i n g r e p l a c e d by a t r o u g h
24
and i n c r e a s i n g s o u t h e r l y winds a t t h e s u r f a c e .
The d i u r n a l p a t t e r n of
with
O3
i t s d e f i n i t e maximum and minimum i s a l s o c h a n g i n g , b e i n g r e p l a c e d by more uniform h o u r l y ozone a v e r a g e s .
06/17
I
I
I I
07/00
08/00
I
I
11/00
11/08
I
1
I
09/00
10/00
DATE/TIME (MST)
Fig. 7. 1977.
Hourly averaged ozone c o n c e n t r a t i o n s f o r t h e p e r i o d Jan.
From t h e w i n t e r season of
1978 t o 1979,
r i d g e s of 60 hour minimum d u r a t i o n ( F i g s . between October and mid-February.
Fig.
seven w e l l - e s t a b l i s h e d
2-4)
6 t o Jan.
11,
high pressure
moved i n o v e r t h e Southwestern U.S.
8 i s an a v e r a g e of
e a c h of
these ridge
p e r i o d s , w i t h t h e e x c e p t i o n of t h e f i r s t h i g h p r e s s u r e r i d g e p e r i o d from October 1 t o 5.
The d a t a
could
have
normally occurred f o r a
been
plotted with
s o u t h e r l y winds e x c l u d e d , which
c o u p l e h o u r s e a c h day,
b u t were p l o t t e d
for
the
full
24-hour day because i n s i g n i f i c a n t d i f f e r e n c e s were d e t e c t e d . Comparison t o Fig.
5 i n d i c a t e s no s i g n i f i c a n t changes have o c c u r r e d i n ozone
p a t t e r n s i n t h e Mohave V a l l e y d u r i n g t h e 1976 t h r o u g h 1979 w i n t e r seasons. mum and minimum c o n c e n t r a t i o n s are comparable a s a r e t h e i r Fig.
9 i s a n expanded
p l o t of
a t y p i c a l period
t i m e of
Maxi-
occurrence.
from December 20 t o 27,
Examination of t h i s g r a p h i n d i c a t e s i t i s v e r y similar t o Fig.
1978.
6 with respect t o
maximum and minimum O 3 c o n c e n t r a t i o n s and t h e i r times of o c c u r r e n c e e a c h day. There were two anomalous p e r i o d s d u r i n g t h e 1978 t o 1979 w i n t e r season. f i r s t p e r i o d o c c u r r e d between October 1 t o 6, obvious f e a t u r e s are t h e "high" ozone l e v e l s . 81.4 ppb ( T a b l e 1 ) o c c u r r e d on October 1.
1978.
P o r t r a y e d i n Fig.
The
10, t h e
The maximum h o u r l y c o n c e n t r a t i o n of
However,
t h e time of o c c u r r e n c e f o r t h e
maximum and minimum and t h e r e l a t i v e d i f f e r e n c e between them i s similar t o o t h e r h i g h p r e s s u r e r i d g e s d e s c r i b e d by Fig.
9.
Another i n t e r e s t i n g phenomenon occurred
on October 3 when t h e ozone dropped s u b s t a n t i a l l y .
and
supplemental meteorological d a t a ,
a wind
shift
A s i n t e r p o l a t e d from Table 1 from s o u t h e r l y t o n o r t h e r l y
25 o c c u r r e d a b o u t i800 hours MST October 2, maximum of
15.3
km/hr
0700 h o u r s MST October
at
remained i n t o October 5 ,
i n c r e a s i n g i n i n t e n s i t y and r e a c h i n g a
3.
Although n o r t h e r l y winds
t h e y d e c r e a s e d c o n s i d e r a b l y i n speed w i t h t i m e .
Ozone
v a l u e s r e t u r n e d t o a “ h i g h ” l e v e l on October 4.
NOV. 3-8 - NOV. 28-30
--- DEC. 2-1 1 --- DEC. 20-26 ... .....
-
n
__---_ ‘.
DEC. 31-JAN. 2 FEE. 4-12
23
12 TIME OF DAY (MST)
Fig. 8. Hourly averaged ozone c o n c e n t r a t i o n s f o r e a c h h i g h p r e s s u r e r i d g e period from Nov. 1978 t o March 1979.
42 38
2 P
n
34
0 c a
30
i
IK
w z
26
V
z 0 u W z
a 0
22 I
1
1
l8 14
10 20/00
I
I
21/00 22/00
II
I
23/00
24/00
I
I
25/00 26/00
1
27/00
DATEITIME (MST)
Fig. 9. Hourly averaged ozone d a t a f o r a t y p i c a l h i g h p r e s s u r e r i d g e p e r i o d from Dec. 20 t o Dec. 27, 1978.
N
m
TABLE 1 Summary of Daily Maximum and Minimum Hourly Averaged Ozone Concentrations, Daily Maximum and Minimum Wind
Speed, Direction and Temperature at DRI Mtn.
for Selected
High Pressure Ridge Periods from
October 1976 to March 1979. MAX 03 (ppb)
DATE
TIME (MST)
MIN 03 (ppb)
MAX TIME (MST)
WIND (km/hr)
(")
TIME (MST)
MIN WIND (Whr)
34 9 343 45 40 30 36 44 46
16 16 05 02 13 14 13 01
1.8 1.5 4.7 0.7 0.4 2.2 3.0 0.9
16 05
DIR
17 17 17 20 17 18 19
la
26.2 22.8 24.2 21.8 22.2 23.5 22.3 23.0
10 09
9
37.1 35.1 32.7 37.9 37.5 33.7 37.7 34.7
07 10
10.6 12.0 11.9 8.1 5.6 6.8 10.5 10.2
1 2 3 4
81.4 74.1 50.8 72.6
15 17 16 16
40.2 43.9 39.2 33.7
08 05 03 09
9.4 5.9 15.3 6.0
213 186 31 21
oa
2 3 4 5 6 8 9 10 11
41.0 39.2 39.6 39.9 36.6 39.1 36.9 37.7 42.5
14 16 16 20 17 17 17 15 17
31.4 30.3 23.3 16.8 30.1 32.8 27.8 21.2 30.7
07 02 08 06 23 07 06 09
11.1 11.9 11.7 18.9 14.1 14.7 15.1 17.9 12.9
Dec. 31 Jan. 1 1979 2
40.0 37.5 37.0
ia
16
33.9 28.0 31.0
07 04 23
12.5 34.2 14.6
Nov. 1976
2 3 4 5 6
7
a Oct. 1978
Dec.
15
09
08
oa
oa
oa
MAX DIR
("1 68 107 34 16
TIME (MST)
TEMP
MIN TEMP
'c
"C
28.5
359 7 220
22 01 21 21 21 18 09 19
30.1 29.2 30.1 29.3 28.9 28.0 26.7
19.0 21.8 21.6 16.7 15.3 15.9 14.9 16.0
0.6 1.2 4.5
01
0. a
45 27 5 12 94
03 10 23 09
40.3 39.3 37.3 40.0
27.1 27.0 26.6 24.4
337 322 29 331 324 324 33 32 32
00 13 05 17 09 13 23 02 22
2.0 4.2 2.1 2.0 1.0 4.9 5.8 6.7 6.0
40 25 336 233 329 330 360 354 344
20 07 15 22 09 04 19 17
15.3 13.4 15.9 14.7 8.0 5.2 8.9 13.6 15.5
9.2 7.4 7.2 5.4 3.2 .5 1.9 5.3 8.4
332 330 355
15 14 13
4.9 6.5 9.2
20 30 356
23 05 02
11.1 5.0 6.9
4.5 2.9 1.3
220
la
27
z 0
t-
i Iz
W
Y0
0
W
z
! 20 01/00
03/00
02/00
,
I
i
04/00
05/00
06/00
DATE/TIME (MST)
Hourly averaged ozone c o n c e n t r a t i o n s f o r a h i g h p r e s s u r e r i d g e period Fig. 10. from Oct. 1 t o Oct. 6, 1978.
41-1
23 20
1
31/00
I
01/00
I
02/00
I
03/00
DATEITME (MST)
Fig. 11. Hourly a v e r a g e d ozone d a t a f o r a h i g h p r e s s u r e r i d g e period n o r t h e r l y winds from Dec. 31, 1978 t o Jan. 3 , 1979.
f o r strong
28 The o t h e r a t y p i c a l p e r i o d f o r t h e 1978-1979 s e a s o n i s shown i n Fig. p e r i o d December 3 1 t o J a n u a r y 3. increased
to
90 km/hr
and
night,
By t h e a f t e r n o o n o f J a n u a r y 1, wind s p e e d s had
continued
d e c r e a s i n g below 24 km/hr.
11 f o r t h e
strong
during
the
next
two
days,
seldom
The g r a p h i n d i c a t e s t h a t ozone l e v e l s d i d n o t d r o p a t
remaining q u i t e uniform throughout
the period.
Nevertheless,
O3 maximum
s t i l l o c c u r r e d d u r i n g t h e a f t e r n o o n h o u r s on e a c h of t h e t h r e e days. During t h e s e t h r e e w i n t e r s e a s o n s NO2 However,
only during
Mohave network
the
t h e CSI Model
of
measurements
o f NO2
1978-1979
been
d a t a have been c o l l e c t e d c o n c u r r e n t l y .
season,
because
1600 NOx
possible.
In
of
analyzers,
general,
the has
installation increased
remained
o r below t h e s e n s i t i v i t y l i m i t o f a b o u t 5 ppb f o r d a y s a t a time. higher
at
concentrations
periods,
Katherine
w i t h a maximum v a l u e o f
v a l u e s were a s s o c i a t e d w i t h
the
Landing
power
were
observed
50 ppb.
about
plant
plume.
However,
at
Occasionally
during
N e a r l y a l l of
the
sensitivity
still
levels
NO2
in
these
the
ridge
time
these
the data i n this
s e c t i o n have been c a r e f u l l y e d i t e d t o e x c l u d e any p o s s i b l e e f f e c t on O3 l e v e l s due
to
o n l y r a r e l y was
A s stated previously,
t h e plume.
t h e plume
travelling
n o r t h d u r i n g t h i s t i m e of y e a r .
CONCLUSIONS Ozone d a t a p r e s e n t e d three
winter
characterized
seasons
above
from
have
been
1976 i n t o
collected
1979
by p e r s i s t e n t h i g h p r e s s u r e
n o t e d from t h i s d a t a s e t .
A well-defined
for
in
t h e Mohave V a l l e y
typical
ridges.
meteorological
Several
during regimes
i m p l i c a t i o n s may be
d i u r n a l p a t t e r n i s observed w i t h average
h o u r l y maximum v a l u e s r a n g i n g between 29 and 4 4 ppb and minimum l e v e l s between 18 and 24 ppb.
T h i s r e m a r k a b l y p e r s i s t e n t p a t t e r n a p p e a r s t o be a n o u t g r o w t h of t h e Ozone maxima are observed
s t a b l e m e t e o r o l o g i c a l p a t t e r n s as a l r e a d y e x p l a i n e d .
i n t h e l a t e r a f t e r n o o n h o u r s when t h e m i x i n g d e p t h due t o s o l a r i n s o l a t i o n and mechanical
turbulence
is greatest.
These
ozone
concentrations
averaging about
40 ppb r e p r e s e n t n a t u r a l t r o p o s p h e r i c l e v e l s w i t h i n t h e boundary l a y e r . t h e a f t e r n o o n h o u r s ozone ground
by
this
i s continually being
mechanical
turbulence.
Ozone
replenished
and
carried
c o n c e n t r a t i o n s are
at
During to
the
a minimum
d u r i n g t h e e a r l y morning h o u r s b e c a u s e t h i s i s t h e t i m e of maximum s t a b i l i t y i n t h e boundary l a y e r .
Overnight,
as a r e s u l t of t h e s u r f a c e - b a s e d
r a d i a t i o n inver-
s i o n , ozone r e p l e n i s h m e n t from t h e t r o p o s p h e r e h a s c e a s e d a l l o w i n g s u r f a c e removal ozone mechanisms
t o deplete
t h e ozone
levels.
These
i n t e r p l a y between O3 and m e t e o r o l o g y are r e p e a t e d
basic
daily
processes
and
the
f o r a s long a s a high
pressure ridge persists. From t h e above r e s u l t s
several other conclusions
can
be
drawn.
The NOx-03
p h o t o c h e m i s t r y o b s e r v e d i n u r b a n areas a p p e a r s t o p l a y no o b v i o u s r o l e i n t h e s e
29 remote r u r a l a r e a s .
L e v e l s of
remain low,
NO2
f o r s e v e r a l days a t a time.
limit,
l e v e l s and,
i n addition,
O3
amount of s o l a r i n s o l a t i o n . r o l e of NO
l e s s t h a n t h e 5 ppb d e t e c t a b l e
There i s no measurable d i u r n a l t r e n d of NO
C o n c e n t r a t i o n s remain However,
the
same
regardless
2 the
of
l a b o r a t o r y work i s ongoing t o e v a l u a t e t h e
a t sub-ppb l e v e l s .
There i s f u r t h e r e v i d e n c e of t h i s d i u r n a l c y c l e coupled t o t h e meteorology a s s u g g e s t e d i n Fig.
11.
I n t h e p r e s e n c e o f h i g h winds,
t i v e l y h i g h a t n i g h t s i n c e no i n v e r s i o n i s formed.
ozone l e v e l s remain r e l a -
The atmosphere remains w e l l
mixed and t h e r e i s c o n t i n u a l r e p l e n i s h m e n t of O3 from t h e t r o p o s p h e r e throughout t h e 24 hour p e r i o d . The d a t a s e t p r e s e n t e d i n t h i s paper ( F i g s .
5 and 8 ) a l s o i n d i c a t e t h a t t h e r e
i s no d e t e c t a b l e s e a s o n a l e f f e c t on ozone c o n c e n t r a t i o n s , e i t h e r i n t h e maximum o r
minimum l e v e l s o r i n t h e d a i l y t i m e of o c c u r r e n c e of t h i s d i u r n a l c y c l e . more,
even when t h e t r o p o s p h e r i c j e t
Further-
stream i s a t a maximum o v e r t h e Southwest
r e g i o n , ozone l e v e l s do n o t i n c r e a s e .
Such w a s t h e c a s e f o r December 2-11,
1978
T h e r e f o r e , a l t h o u g h i t i s w e l l known t h a t t h e r e a r e s e a s o n a l v a r i a t i o n s
(Fig. 8).
in latitudinal
s t r a t o s p h e r i c ozone c o n c e n t r a t i o n s and
that
stratospheric intru-
s i o n s of ozone have been observed i n t h e f o l d i n g of t h e t r o p o p a u s e ( s e e Fig. t h e s e e f f e c t s do n o t seem t o p e n e t r a t e down below t h e t o p of
4),
t h e mixed l a y e r i n
t h e Mohave Valley. Another v e r y i n t e r e s t i n g f e a t u r e t o t h i s d a t a s e t i s shown i n Fig.
10.
This
p e r i o d of h i g h ozone l e v e l s r e s u l t e d from l o n g range t r a n s p o r t of ozone a n d / o r i t s p r e c u r s o r s i n t o t h e Mohave V a l l e y from t h e Los Angeles Basin.
During t h i s p e r i o d ,
t h e Los Angeles a r e a e x p e r i e n c e d ozone c o n c e n t r a t i o n s i n e x c e s s of 0.40 ppm i n t h e e a s t e r n p a r t of t h e B a s i n and t h e 24-hour from Los
Angeles
to
dropped s u b s t a n t i a l l y .
t h e Mohave Valley.
However,
on October
3
the
O3
levels
T h i s o c c u r r e d because t h e NE o r " o f f s h o r e " S a n t a Ana winds
i n c r e a s e d d u r i n g t h i s 24-hour Basin.
a v e r a g e wind t r a j e c t o r i e s were southwest
p e r i o d t o l i m i t l o n g range t r a n s p o r t from t h e L.A.
These o f f s h o r e o r n o r t h e r l y winds are t h e normal p a t t e r n d u r i n g t h e w i n t e r
months a s e x p l a i n e d p r e v i o u s l y (Fig.
3).
I n summary, ozone d a t a c o l l e c t e d a t a remote desert s i t e i n t h e Mohave Valley from 1976 t o 1979 i n d i c a t e s background ozone l e v e l s remain w e l l below t h e new EPA s t a n d a r d of 120 ppb.
D i u r n a l ozone l e v e l s are observed and a p p e a r t o be coupled
t o t h e s y n o p t i c m e t e o r o l o g i c a l p a t t e r n s w i t h d a i l y maximum O3 c o n c e n t r a t i o n s o f 40 ppb.
There a p p e a r s t o be no o b v i o u s r o l e
of
NO
in
the
p r o d u c t i o n of
0
3
and n o d e t e c t a b l e e f f e c t of s t r a t o s p h e r i c i n t r u s i o n on s u r f a c e ozone l e v e l s .
REFERENCES
1 R.J. F a r b e r , T.E. H o f f e r , P.M. F r a n s i o l i , J . G . Hudson and P.B. MacCready, J r . , Paper No. 78-70.9 p r e s e n t e d a t 71st Annual A i r P o l l u t i o n C o n t r o l A s s o c i a t i o n Meeting, Houston, J u n e 25-30, 1978.
30 2
3 4
Singh, - . F.L. Ludwig - and W.B. Johnson, Atm. Env., 12(1978)2185-2196. R.G. Derwent, A.E.J. Eggleton, M.L. Williams and C.A. B e l l , Atm. Env., 1273-1277. R. C h a t f i e l d and H. Harrison, J. Geophy. R e s . , 81(1976)421-423.
H.B.
12(1Y78)
31
ATMOSFHEHIC CONTAMINATlON OF ARCHAEOLOGICAL MONUMENTS IN THE AGRA REGION (INDIA) and D.N. SHARMA Post-graduate Studies and Research Deptt. of Chemistry St. John's College, Agra ( I N D I A )
J.S. SHARMA
ABSTRACT An analysis of water-soluble samples collected from marble and sandstone of monuments for different ions have been done, The combustion, manufacturing and other polluting operations existing within Agra area have been investigated. The measurements of flue gases amounting to 3.63 x l o 9 S.C.F. indicate atmospheric contamination and deterioration of archaeological monuments of Agra. It has been found that the principal sources of air contamination are the 325 iron foundries and 3 railway shunting yards located within 0.3 to 3.0 Km. of the main monuments. The topographical and micrometeorological conditions of the city have tended to favour and aggravate the concentration of effluents in the surrounding air of the monuments. The annual average existing level of SO2 ranges from 16 to 20 micrograms/rn 3 The seasonal distribution of SO2 and suspended particulate matter in the air at Taj Mahal, Red Fort and Sikandra have been discussed and illustrated. It has been observed that there is substantial sulphur dioxide contamination existing at Agra. The 2 maximum concentration of SO4and NO; amounting 0.46 and 0.38 respectively by weight percentage found existing at Red Fort cause efflorescences of sandstone.
.
INTRODUCTION Agra (Lat. 27O 10' N. and Long 78O 3' E.), the historical city of India, contains the glories of Indian architecture. Among the famous monuments which are on a scale of striking rnagnificance are Taj Mahal (1653 A.D.), Red Fort (1565 A.D.), Itmad-ud-Daula (1628 A.D.) Sikandra (1613 A.D.) and Fatehpur Sikri (1569 A.D.) (ref. 11, (Fig. 1 A ) . In this presentation an attempt has been made to study qualitatively and quantitatively the contamination of the atmosphere of Agra zone
32
Fig. 1 A ATION, MONUMENTS
FREQUENCY OF WIND DIRECTION AT AG RA MEAN ANNUAL
/
/n
CONDITION
n n
5 ~
2
n‘ 7
r r
rn
LOCATION OF MATHURA
REFERENCES
17803’~
ARCHAEOLOGICAL MONUMENT IRON FOUNDRIES ( L A R G E ) l e a c h dot represrnts 3 u n i t s l IRON FOUNDRIES (SMALL 1 (each dot represent 3 units1
-
@
NO. OF DAYS
A
RAILWAY SHUNTING YARD POWER
HOUSE
0 20 4 0 5 0
MEAN
n
m FIGURE IN CIRCLE DENOTES NUMBER OF
CALMS
VALUES
0 FATEHPUR
P
P
Fig. 1 B
MONTHLY ISOPLETHS
OF 2 4 - H O U R
0 E
SlKRl 20
4 0 KM l
‘25)
IN
AVERAGE
O F SO2
WINTER
LEVEL
- MEAN (1975-001
33
and i t s e f f e c t s on s l o w l y b u t s t e a d i l y decaying s t o n e s of t h e monuments by t a k i n g c h e m i c a l , m e t e o r o l o g i c a l , b i o c h e m i c a l and g e o g r a p h i c a l a s p e c t s i n t o consideration. PRINCIPAL SOURCES OF CONTAIfiIINATION The primary c o n t a m i n a n t s t h a t a f f e c t t h e monuments' marble and sands t o n e a r e s u l p h u r d i o x i d e , o x i d e s of n i t r o g e n and suspended ( d u s t ) p a r t i c u l a t e matter.
The p r i n c i p a l s o u r c e s of a i r p o l l u t i o n a t Agra a r e
i n d u s t r i e s p a r t i c u l a r l y i r o n f o u n d r i e s , g l a s s works, power p l a n t s , r a i l w a y s h u n t i n g y a r d s , a u t o m o b i l e v e h i c l e s and many l i m e - k i l n works. I r o n foundThere a r e a b o u t 175 l a r g e s c a l e i r o n f o u n d r i e s w i t h c u p o l a m e l t i n g o p e r a t i o n s and 150 s m a l l s c a l e f o u n d r i e s c a l l e d K o t h a l i e s producing more t h a n 200,000 t o n s of c a s t i r o n goods p e r y e a r , w i t h an annual c a s t i n g c a p a c i t y of 450,000 t o n s . The i r o n f o u n d r i e s a r e s i t u a t e d w i t h i n a b o u t 0.3 t o 3.0 Kms. w e s t , north-west
o r n o r t h of T a j Mahal, Red F o r t and Itmad-ud-Daula
(Fig. 1 ) .
The m a t e r i a l s c h a r g e d e v e r y month i n t h e s e f o u n d r i e s amount 5,450 t o n s of h a r d coke and 1,200 t o n s of l i m e s t o n e and 20,000 t o n s of p i g i r o n and s c r a p i r o n .
M e l t i n g i s done at150O0C i n f a u l t y combustion chambers
i n which a i r r e g u l a t i o n i s n o t m a i n t a i n e d .
lo8
e x h a u s t e d from c u p o l a f u r n a c e s 32.8 x
The amount of f l u e g a s e s S.C.F.
p e r month.
The s u l p h u r
d i o x i d e l i b e r a t e d h a s been e s t i m a t e d t o be 0.004% by volume and it i s r e l e a s e d a t v e r y low h e i g h t s of about 5 meters b e c a u s e no s t a c k h e i g h t s t a n d a r d s ( r e f s . 2-3)
a r e followed.
A d e t a i l e d discussion regarding
t h e s e have a l r e a d y been p u b l i s h e d by one of t h e a u t h o r s Sharma J.S.
et al.
(ref. 4).
&
The s t a c k e m i s s i o n s a r e accompanied by l a r g e amounts
of carbon, s i l i c o n , i r o n o x i d e , manganese, c a l c i u m s i l i c a t e , s u l p h u r and o t h e r m e t a l l i c and non m e t a l l i c compounds.
The p a r t i c l e s i z e of t h e
s o l i d s v a r i e s from sub-microscopic t o 1000 micron and t h e i r s p e c i f i c g r a v i t y r a n g e s between 1.30 and 7 . 5 0 r ( r e f .
5)
Railway s h u n t i n g v a r d s a n d power houses There a r e 3 r a i l w a y s h u n t i n g y a r d s i n c l u d i n g one of Yamuna % r i d g e s i t e d between T a j Mahal and Itmad-ud-Daula o f c o a l e v e r y day.
( F i g . 1 A ) u s e s 40 t o 50 t o n s
The two power p l a n t s e a c h w i t h c a p a c i t y of 1 0 MW
using11,OOO t o n s of c o a l are s i ' t u a t e d v e r y n e a r t o t h e monuments.
The
power p l a n t a d j a c e n t t o Red F o r t which was i n o p e r , a t i o n f o r l a s t 54 y e a r s h a s been c l o s e d i n t h e y e a r 1981.
34
G l a s s works 374 g l a s s works a r e working i n a i n d u s t r i a l town of F i r o z a b a d S i n c e t h e wind d i r e c t i o n i s g e n e r a l l y
s i t u a t e d 4 2 Kms. e a s t o f Agra. away from Agra most o f t h e t i m e ,
it may be assumed t h a t it i s u n l i k e l y
f o r t h e e f f l u e n t s from t h e smelters t o r e a c h Agra monument.
However,
p o t e n t i a l impact would a r i s e from t h e s u l p h u r d i o x i d e which i s c o n t i nuously b e i n g added t o t h e atmosphere of t h e Agra r e g i o n by t h e comb u s t i o n o f a l a r g e q u a n t i t y of c o a l . One c a n n o t deny t h e f a c t t h a t t h i s i s l i k e l y t o a f f e c t t h e monumentsin l o n g r u n . Motor v e h i c l e s , n a t u r a l g a s 2 n d f o s s i l f u e l 53,000 motor v e h i c l e s r e g i s t e r e d i n Agra a t p r e s e n t c o n t a m i n a t e t h e atmosphere by p r o d u c i n g o x i d e s of n i t r o g e n which a r e p o t e n t t o s t o n e as w e l l a s i n d i r e c t l y h e l p t o i n c r e a s e t h e S O 2 f o r m a t i o n by r e d u c i n g
r e a c t i o n (1) i n t h e atmosphere ( r e f . 6 ) . Burning of 5 1396.84 t o n s o f k e r o s e n e , p e t r o l , d i e s e l and 2.4 x 1 0 Kg. of l i q u i d
sulphur trioxide,
n a t u r a l g a s p e r month a l s o add s u l p h u r ( r e f . 7 ) c o n t e n t s (Table 1) t o t h e a i r of Agra.
P o t e n t i a l p o l l u t i o n t h r e a t from o i l r e f i n e r y A l a r g e o i l r e f i n e r y w i t h a c a p a c i t y of p r o c e s s i n g of s i x m i l l i o n
t o n s p e r annum i s b e i n g commissioned s h o r t l y ( A p r i l 1 9 8 2 ) n e a r Mathura a b o u t 30 Km. upwind north-west
of Agra.
The down stream l o c a t e d monu-
ments of Agra b e i n g d e f i n i t e l y i n t h e most v u l n e r a b l e zone of i n f l u e n c e of t h e r e f i n e r y have a g r e a t p o t e n t i a l p o l l u t i o n t h r e a t from t h e refinery.
T h i s r e f i n e r y alone i s expected t o e m i t 100 t o n s of carbon
monoxide, 60 t o n s o f s u l p h u r d i o x i d e , 50 t o n s of hydrocarbon, 4 t o n s o f o x i d e s o f n i t r o g e n , 3 t o n s of s u l p h u r t r i o x i d e ,
2 t o n e s of a c r o p o l i s ,
1 0 t o n s of p a r t i c u l a t e s and enormous amounts of carbon-dioxide
t h e atmosphere of Agra-Mathura
into
r e g i o n everyday ( r e f . 8 ) .
EXTENT OF CONTAMINATION I N THE A I R
The l e v e l of a n n u a l a v e r a g e s u l p h u r d i o x i d e a t Agra h a s been e s t i m a t e d a t 16 t o 20 micrograms/m3 by p a r a r o s a a n i l i n e method ( r e f . 9) and i t s s e a s o n a l c o n c e n t r a t i o n i s p l o t t e d i n t h e b a r g r a p h (Fig. 2 A ) .
24-hour
a v e r a g e l e v e l of t h e suspended p a r t i c u l a t e m a t t e r ( F i g . 2B) i n w i n t e r r a n g e s around 200 t o 400 rnicrograms/m3
whereas t h e summer v a l u e s are 3
found t o be i n t h e o r d e r of 300-500 micrograms/m
.
Fig. 2 A MEAN SULPHUR DIOXIDE LEVELS IN THE AIR AT AGRA 6
2 -HOUR
( 1975- 1980 AIR MONITORING
1500
SUSPENDED PARTICULATE c 2 4 -HOUR
700 W
- HOUR
-24
a
600
I
fa 500
n
I
n
n r l
MAXIMUM
A
i
TAJ MAHAL
B
:
RED FORT
6 2 4 - HOUR
AVERAGE
C
i
ITMAD-UD-DAULA
D
i:
SIKANDRA
n.I II
AVERAGE
n
u 0
In
i3oa
: 200 E u
100 0 I
N
T
E
R
(1975-1980 1 Fig. 26
e 400
W
I
STATIONS
-24-HOUR
MATTER IN THE AIR AT AGRA
MAXIMUM
1
MAXIMUM
S
U
APR _.. .,.
M
I M
MAY ......
E
' R
/I '
JUN.
L
nn
I
0
JUL. R
I
AUG.
A
I
N
I Y
SEP.
36
NET PRODUCTION OF SULPHUR IN THE CITY'S ATNOSPHEKE From literature it is known that hard coke, coal, pig iron, fossil fuel and natural gas contain varied amount of sulphur (ref. 10). By putting the values of sulphur present in the energy consumption of the city (Table 1) it is calculated that approximately 705.96 tons of sulphur is produced every month. TABLE 1 Total sulphur of the city Quantity charged per month (in tons)
Kinds of material
Hard coke and coal Pig and scrap iron Fossil fuels: (Kerosene petrol and diesel) Natural gas Total
Sulphur produced per month (in tons1
7,950.00
636.00
20,000.00
60.00
1,396.84
5.16
240.00
4.80
29,586.84
705.96
CHENICAL INVESTIGATION OF MARBLE AND SANDSTONE The formation of black spots and decay has been noticed on the marble of Taj, Itmad-ud-Daula and Tomb of Salim Chisti in their certain zones. Exfoliation, white efforescence on the detaching layers and black encrusted layers are common features noticed on sandstones of Red Fort and Taj. The samples of degraded materials collected from each of the monuments during Nov.-Dec. 81 were chemically examined. The measurements of ionic components of the samples have been carried out by flame photometry (ref. 1 1 ) and the results (Table 2) are as given below. All concentrations are mean values of 3 samples taken from each monument. TABLE 2 Composition of water-soluble samples from marble and sandstone Ions
Concentrations (weight % of samples) ~~~~~
~
Marble samples Taj ItmadMahal daula Na+
0.81
0.76
Tomb S.Ch.
Sandstone samples Taj Red SikanMahal Fort dra
Fateh. sikri
0.32
0.56
0.61
0.58
0.62
37 K+
0.78
Ca2+ Mg2+
6.40
7.42
3.54
0.05
0.06
0.28
0.54
0.01
0.01
0.58
0.58
NOS
1.23
1.81
0.92
sop-
0.04
-
-
0.51 0.02
0.01
0.50 0.04 0.01
0.28
0.38
0.25
0.24
0.38
0.46
0.41
0.38
0.48
0.51
-
TOPOGRAPHICAL AND METEOROLOGICAL CONDITIONS It may be ernphasised that not only the great mass of emission but also a combination of topographical, rnetecrological and land use conditions of Agra and its region contribute to air pollution by concentrating the pollutants in the atmosphere surrounding the monuments. Situation of Agra on the banks of large Yamuna river at a wide bend, its surrounding countryside of a featureless level plain devoid of natural vegetation and its location in the semi-arid southern part of the upper Ganga Plain of north India profoundly affect the micro climate of Agra and thus important f o r the assessment of air contamination. Wind pattern Meteorological data indicate that the most frequent prevailing wind direction is westerly, north-westerly or south-westerly (Fig. 1B) and In winter strongly stable most frequent wind speed is 4 Km/hr. conditions of the atmosphere are observed, calm conditions prevail 43 to 68% of the time (Table 3). The normal wind pattern during summer month is little more active than winter months. TABLE 3 Directional pattern of wind and relative humidity at Agra Season
Average % of wind direction (1976-80)
-
Re1ative Humidity
N
NE
E
SE
S
SW
W
NW
CALM
0830 h r s IST %
Winter (Oct-Feb)
3.4
4.2
3.2
6.6
1.4
8.8
12.4
15.4
44.6
62.6
Summer (Mar-Jun)
8.0
6.2
3.2
3.5
4.0 12.3
25.5
16.3
21.0
37.8
Rainy (Jul-Sep)
2.4
6.3
6.7
6.3.
2.6
14.0
12.4
26.3
76.7
23.0
38
There is a good evidence that the large city of Agra, particularly during summer season of high speed winds, acts to some extent like mound, blocking the passage of air. Onrushing air from the west or north-west tries to flow around rather than through it, what flows through is slowed down considerably by the roughness of the structural elements of the city. Consequently, the prevailing westerly winds are deflected towards south-east and wind speeds are reduced 15 to 35% This impedes dispersion of pollutants discharged by the city. Inversion of temperature and focr A low level inversion of temperature takes place in Agra zone during several nights in months of December, January and early February, when Agra region is a l s o under the zone of high pressure system. Vast cold stretch of sandy bed of Yamuna during night intensify the ground inversion. This inversion condition (ref.6-2) prevents vertical diffusion and dilution of the pollutants. Fog also takes place over the city and surrounding countryside. Heavy smog is frequent in the early nights over the eastern part of the city. The relative humidity of the atmosphere ranges from 75-80% (Table 3 1 in rainy season to 60-70% in winter season (Tab1e 3). DISCUSSION After diagnosis of the nature and extent of contamination of the atmosphere and deterioration of monuments, the mechanism of steady corrosion of marble and sandstone surfaces of the monuments is as below: 1 The upcoming pollutants in flue gases from low level stacks of central pollution zone go up vertically due to high temperature and low density of fluids and then move horizontally in the direction of the monuments located downward in the direction of prevailing winds. 2 During winter season, mostly a period of strongly stable air structure inversion of temperature and calm conditions with high relative humidity heavy particles remain suspended in the air near the ground normlly for 6 to 10 hours in night and early morning. This suspended mass, often smog, contains acidic emissions which is enough to contaminate the atmosphere and corrode the stones of the monuments, by means of oxides of sulphur (Fig. 2A) and nitrogen. 3 It is evident from the Fig. 2A that the sulphur dioxide concentration is found maximum during winter months. The monthly 24-hours average 3 The m a . 2-hr ranges from 20 micrograms/m3 30 micrograms/m
-
.
value of sulphur dioxide viz 100 to 200 micrograms/m3 confirms that
39
there is a significant source of pollution in the neighbourhood of Taj Mahal, Red Fort, Itrnad-ud-Daula. Possibly, the contaminants created by iron foundries signify the high SO2 values (2-hr. max.) of Red Fort (208 micrograms/rn 3), Itmad-ud-Daula (155 micrograms/m 3 ) and Taj Mahal (135 rnicrograms/rn 31. On the other hand, the low 2-hr. max. SO2 value of 55 micrograms/m3 of Sikandra - being situated (Fig. 1A) away upwind from the iron foundries' source of pollution is very low. The existing level of the annual average sulphur dioxide at Agra is estimated to range from 16 to 20 micrograms/m 3 It is causing substantialsulphur dioxide pollution at Agra which is alarming. Published literature on the subject suggest that to avoid corrosion of building stones the permissible level of sulphur dioxide should be approximately 10-1 5 micrograms/m3 for long term (annual concentration) With the aforesaid concentration of SO2 in presence of high relative humidity (about 75%) the air flowing towards the direction of the monuments affects the stone surfaces of the monuments in one of the two ways: (a) Firstly it forms sulphurous acid, then sulphuric acid which reacts with marble and sandstone and makes their surfaces corroded, rough and porous. (b) Dust particles and other acidic compounds accumulate over the stone surfaces for long time and later on become their part, thus starts slow and steady corrosion of these stones, reactions (2-3). The other factor responsible for yellow-greyish dusty inner surfaces of the roof of the arches of the Taj, inaccessible to rain is the Black spots accumulation of some gypsum and silica, reaction ( 4 ) . of some projecting parts of the nlonunients, both on marble and sandstone are also observed due to the presence of heterotrophic bacteria, fungi and blue green algae which are sulphur oxidising and reducing in nature. A great water-body of Yamuna river adjoining the Taj Mahal, Red Fort, Itmad-ud-Daula provides additional moisture to the surrounding air of the monuments even in summer season by evaporation of river water. Therefore, it is an additional factor to increase the rate of formation of sulphurous and nitrous acid, reactions (1-2-3) which has a most deletorious corrosive effect upon the marble and sandstone. The moisture accelerates the rusting of many iron bars used in the structure. The phenomenon has increased the corrosion rate of some stone surfaces by providing additional hydroxyl ion to the surfaces of the stones, reaction (6).
.
.
4
5
6
7
40
8 Efflorescences of sandstone surfaces at Agra Fort is attributed to 2the maximum amount of SO4 and NO; ions (Table 2 ) developed at the
monument and formation of gypsum, reaction s(4-7)
.
CHEMISTRY OF CONTAMINATION Reactions NOX Bacteria’
“3 SO2
+
2H2S03 NO
+
s02
-
H20
+
H SO
O2
_I__*
2 3 2H2S04
2N02
O2
2HN03 + NO + H20 H2S03 + CaC03 _ _ _ j CaS03 + H 2 0 iC02 CaS04 . 2H20 2CaS03 + O 2 + H20 CaS04 + 2H20 + C02 H SO + CaC03 2 4 4Fe + 2H2S04 + 2 0 2 + 4FeS04 + 2H20 2N02
-
4FeS04 +
CaC03
+
‘2
2No;
+
6H20
+
+ 4FeO.OH
2H+ j
Ca(N03)2
+ +
4H2S04 C02 4- H20
(7)
ACKNOWLEDGEMENTS We are pleased to acknowledge the gracious co-operation of personnel at National Environmental Engineering Research Institute, Nagpur and Air Pollution Lab., Archaeological Survey of India, Agra especially Shri A.S. Tiwari as well as the advice and help of Prof. M.P. Singh of I.I.T., New Delhi, Atmospheric Sciences Research Centre. REFERENCES 1 E.B. Joshi (Ed.),Gazetteerof Agra, Govt. of U.P. Pub. 1965, pp.21-74 505. 2 W.L. Lee and A.C. Stern, J. Air. Pollu. Contr. Asso..23(1973) 3 A.C. Stern (Ed.), Air Pollu. Vol. V, Aca. Press Lond. 1977, pp. 666. 4 J.S. Sharma, Proc. 1st Symp. Ind. Ccuncil of Chemists,Agra, India, 1981, ING 25. 5 Indust. Air Cont. Asso.Tech. Sub Commi. Geneva Report Dec. 16, 1948. 6 R.A. Papetti and P.R. Gilmore, Edeavour, 7(1971), pp. 107-14. 7 V.B. Guthrie (Ed.),Petro. Produ.Hand Book, 1st ed. McGraw. 1960,p.3 8 T. Shivaji Rao, Proc. Indian. Environ. SOC. 23-24 Oct. 1978. 9 Air Ciual. Crit. for Sulphur oxides, U.S. Deptt., Health Education and Welfare, Nat. Air Pollu.Contro1 Adm. A.P. 50. 10 H.Groppe. Amm.Chem.Soc.Symp. Sanfrancisco, Calif., Apri 13-18, 1958. ll A . I . Vogel, Quant. Inorg.Anal!+ 4th ed., Long. 1978, N.Y., pp. 814-24.
-
41
A I R M O N I T O R I N G NETWORK PROGFLUI I N SAUDI ARABIA
T. Husain and S.M. Khan Water and Environment D i v i s i o n , The Research I n s t i t u t e U n i v e r s i t y of Petroleum and M i n e r a l s , Dhahran, Saudi A r a b i a
ABSTRACT
The Kingdom of Saudi A r a b i a h a s i n i t i a t e d a program t o i n s t a l l a i r q u a l i t y n e t work s t a t i o n s t h r o u g h o u t t h e c o u n t r y i n o r d e r t o measure c o n c e n t r a t i o n of t h e ambient a i r p o l l u t a n t s . The s i t e s e l e c t i o n o f t h e s e s t a t i o n s i s an i m p o r t a n t o b j e c t i v e t o be accomplished and must b e done based on s c i e n t i f i c and r a t i o n a l work. T o accomplish t h i s o b j e c t i v e , a m o d i f i e d v e r s i o n of a t m o s p h e r i c t r a n s p o r t and d i s p e r s i o n model, known as a i r r e s o u r c e s l a b o r a t o r i e s - a t m o s p h e r i c t r a n s p o r t and d i s p e r s i o n (ARLATAD) model, i s used t o e v a l u a t e l o n g range t r a n s p o r t and d i f f u s i o n o f a i r p o l l u t a n t s from major p o l l u t i o n c a u s i n g s o u r c e s such as r e f i n e r i e s , open-air b u r n i n g of assoc i a t e d g a s e s of o i l f i e l d s and m a j o r i n d u s t r i e s . Hourly m e t e o r o l o g i c a l d a t a f o r a p e r i o d o f t h r e e y e a r s (from 1977 t o 1979) on wind s p e e d , wind d i r e c t i o n , p r e s s u r e , and t e m p e r a t u r e from 20 s y n o p t i c s t a t i o n s i n Saudi A r a b i a i s p r o c e s s e d and used a s model i n p u t . In a d d i t i o n t o t h e s e , meteorol o g i c a l d a t a from t h r e e u p p e r a i r s t a t i o n s i s a l s o p r o c e s s e d i n o r d e r t o determine b a s e and t o p o f c r i t i c a l i n v e r s i o n h e i g h t s . Various p o l l u t i o n c a u s i n g s o u r c e s a r e i d e n t i f i e d w i t h i n t h e s t u d y a r e a . A i r t r a j e c t o r i e s a r e drawn w i t h s o u r c e s as t h e o r i g i n s o f t h e t r a j e c t o r i e s and t h e d i s p e r s i o n c h a r a c t e r i s t i c s i s s t u d i e d w i t h d i s t a n c e and t i m e . Based on l o n g term m e t e o r o l o g i c a l r e c o r d s , t h e a d v e r s e l y a f f e c t e d zones a r e s t a t i s t i c a l l y i d e n t i f i e d for potential station s i t e s .
INTRODUCTION
The s p a t i a l and t e m p o r a l v a r i a t i o n s o f t h e p o l l u t a n t s i n t h e atmosphere caused by t h e e m i s s i o n s o u r c e s , which i s complex and dynamic i n n a t u r e , depend upon t h e m e t e o r o l o g i c a l and t o p o g r a p h i c a l c o n d i t i o n s .
In order t o characterize the variations
of t h e s e p o l l u t a n t s i n s p a c e and t i m e domains e i t h e r m o n i t o r i n g o r modeling o r combinations of t h e s e two are needed. A i r m o n i t o r i n g a l o n e i s e x p e n s i v e , t i m e consuming, and r e q u i r e s s k i l l e d manpower and s o p h i s t i c a t e d equipments. It is t h e r e f o r e n e c e s s a r y to develop s i m u l a t i o n models which must b e f l e x i b l e enough
42 t o d e t e r m i n e t h e p o l l u t i o n c o n c e n t r a t i o n w i t h t h e change i n t h e e m i s s i o n s o u r c e s and
v a r i e d m e t e o r o l o g i c a l c o n d i t i o n s . Such models can b r o a d l y b e c a t e g o r i z e d
i n t o m i c r o s c a l e and m e s o s c a l e models. The m i c r o s c a l e models are used t o e s t i m a t e p o l l u t i o n l e v e l s n e a r t h e s o u r c e w h i l e t h e l o n g range i m p a r t o f t h e s o u r c e c a u s i n g background c o n c e n t r a t . i o n i s e s t i m a t e d u s i n g m e s o s c a l e mode1.s. M i c r o s c a l e models are u s u a l l y developed f o r s o u r c e s such a s a u t o m o b i l e e x h a u s t e m i s s i o n b u t t h e mesoscale models a r e used f o r l a r g e p o i n t s o u r c e s such as p e t r o c h e m i c a l i n d u s t r i e s , r e f i n e r i e s and open a i r b u r n i n g of n a t u r a l g a s e s e t c . T h i s s t u d y i s p r i m a r i l y b a s e d on t h e concept o f m e s o s c a l e modeling.
OBJECTIVES Due t o r a p i d f u t u r e i n d u s t r i a l development i n Saudi Arabia ( r e f . 8 ) , i t i s becoming a n i n c r e a s i n g l y i m p o r t a n t i s s u e t o i n s t a l l a n optimum a i r m o n i t o r i n g network t o c o l l e c t d a t a on background l e v e l c o n c e n t r a t i o n . The main o b j e c t i v e o f t h i s s t u d y i s , t h e r e f o r e , t o i d e n t i f y l o c a t i o n s o f t h e optimum a i r m o n i t o r i n g s t a t i o n s f o r p r o p e r s p a t i a l r e s o l u t i o n o f background l e v e l c o n c e n t r a t i o n due t o t h e p o l l u t a n t s e m i t t i n g from l a r g e p o i n t s o u r c e s . To accomplish t h i s o b j e c t i v e , v a r i o u s t y p e s o f l o n g range t r a n s p o r t models a r e reviewed and a i r r e s o u r c e s l a b o r a t o r i e s t r a j e c t o r y model i s s e l e c t e d f o r t h i s s t u d y due t o i t s s i m p l i c i t y , f l e x i b i l i t y t o v a r i e d e n v i r o n m e n t a l c o n d i t i o n s , and a d a p t a b i l i t y t o o u r meteorol o g i c a l conditions.
A I R TRAJECTORY MODELS Smith and J e f f r y ( r e f . 7 ) c a r r i e d o u t t r a j e c t o r y c a l c u l a t i o n s by hand which i n v o l v e d e s t i m a t i n g winds from t h e m e t e o r o l o g i c a l c h a r t s . T h i s i s v e r y t i m e consuming methodology which cannot b e used where t h e l a r g e number o f t r a j e c t o r i e s
are needed t o b e drawn. Due t o a d v e n t of computer and e a s y a c c e s s i b i l i t y t o t h e m e t e o r o l o g i c a l i n f o r m a t i o n , computer programs have been developed t o c a l c u l a t e t r a j e c t o r i e s . Henrickson ( r e f . 3 ) proposed n u m e r i c a l f o r e c a s t model t o c a l c u l a t e i s o b a r i c t r a j e c t o r i e s . Nagel and C l a r k ( r e f . 5) computed t r a j e c t o r i e s on i s e n t r o p i c s u r f a c e s w h i l e Mesinger ( r e f . 4 ) used c o n s t a n t d e n s i t y s u r f a c e t o trace t h e p a t h of a b a l l o o n . Barnum and D i e r e k s ( r e f . 1 ) computed t h r e e d i m e n s i o n a l t r a j e c t o r i e s
t o d e t e r m i n e c l o u d , t e m p e r a t u r e , and m o i s t u r e f i e l d s a t s p e c i f i c p r e s s u r e l e v e l s . Reap ( r e f . 6 ) a l s o developed a t h r e e d i m e n s i o n a l t r a j e c t o r y model u s i n g f o r e c a s t e d h o r i z o n t a l wind f i e l d s and g e o s t r o p h i c wind f i e l d s o b t a i n e d from m u l t i l a y e r p r i m i t i v e e q u a t i o n model. A i r r e s o u r c e s l a b o r a t o r i e s t r a j e c t o r y model used f o r t h i s s t u d y which is developed by H e f f t e r e t a l . ( r e f . 2 ) h a s been v e r y p o p u l a r i n t h e p a s t . The c o n c u r r e n t 6-hourly m e t e o r o l o g i c a l o b s e r v a t i o n s on wind s p e e d ,
43 wind d i r e c t i o n i n a d d i t i o n t o t e m p e r a t u r e and p r e s s u r e p r o f i l e d a t a , a r e used as i n p u t t o t h i s model.
PROBLEM FORMULATION
A t r a j e c t o r y segment i s computed from t h e a v e r a g e wind i n t h e t r a n s p o r t l a y e r
a t each r e p o r t i n g s t a t i o n w i t h i n a chosen r a d i u s of t h e segment o r i g i n as f o l l o w s (ref. 2). n
c
i = l Di Ai
Si
S =
C Di Ai i=1
where,
S -
i s t h e t r a j e c t o r y segment d u r i n g t h e t i m e i n t e r v a l A t , c o n t r i b u t e d by In'
r e p o r t i n g s t a t i o n s f a l l i n g w i t h i n t h e r a d i u s R f r o n t h e segment
origin. S.-
i s t h e c o n t r i b u t i o n from s t a t i o n i e q u a l t o V.. A t where Vi
is t h e
a v e r a g e wind speed a t s t a t i o n i i n t h e t i m e increment At=3 h o u r s D.-
A.-
i s t h e d i s t a n c e weighing f a c t o r e q u a l t o 1/d2 where, d . i s t h e d i s t a n c e i' from i t h s t a t i o n t o t h e midpoint o f S i' i s t h e alignment weighing f a c t o r which i s a f u n c t i o n of D and e q u a l i 1-0.51 S i n . O i l where,@. is t h e a n g l e between S . and a l i n e from t h e
segment o r i g i n t o t h e s t a t i o n .
The t r a j e c t o r y computation i n t h i s model must have a t l e a s t two r e p o r t i n g s t a t i o n l o c a t i o n s w i t h i n t h e r a d i u s R o r one s t a t i o n l o c a t e d w i t h i n h a l f of t h e r a d i u s . For t h i s s t u d y r a d i u s , R , i s t a k e n as 300 km. I f t h e above c o n d i t i o n i s n o t f u l f i l l e d , t h e t r a j e c t o r y w i l l b e t e r m i n a t e d . The computer program i s designed t o a n a l y z e t h e wind d a t a from a l l s t a t i o n s w i t h i n t h e radius.. The wind vectors o f a l l r e p o r t i n g s t a t i o n s are d i v i d e d i n t o X & Y components. Each components g i v e s t r a j e c t o r y segment i n X & Y d i r e c t i o n by u s i n g
E q . 1 . The combined a f f e c t a t segment o r i g i n i s determined by f i r s t adding X and
Y components of t h e t r a j e c t o r y segments s e p a r a t e l y and t h e n computing t h e r e s u l t a n t v a l u e o f t h e s e components.
44 ANALYSIS
Six-hourly m e t e o r o l o g i c a l r e c o r d s f o r t h r e e y e a r s ( 1 9 7 6 - 7 8 ) on wind speed and d i r e c t i o n from a l l s y n o p t i c m e t e o r o l o g i c a l s t a t i o n s i n t h e Kingdom which a r e l i s t e d i n Table 1, were p r o c e s s e d . The l o c a t i o n s of t h e p o t e n t i a l p o l l u t i o n c a u s i n g s o u r c e s were t h e n i d e n t i f i e d as shown i n Table 2 . Using p r o c e s s e d s i x - h o u r l y m e t e o r o l o g i c a l d a t a , t h e t r a j e c t o r i e s s t a r t i n g from t h e s o u r c e o f p o l l u t i o n were c a l c u l a t e d . The c o o r d i n a t e s of t h e t r a j e c t o r i e s p a s s i n g from v a r i o u s g r i d s i n t h e s t u d y a r e a w e r e s t o r e d f o r frequency e s t i m a t i o n . Four t r a j e c t o r i e s p e r day from each s o u r c e were p l o t t e d . TABLE 1
M e t e o r o l o g i c a l s t a t i o n s i n Saudi A r a b i a ~~
S. No.
1
Station Identific a t i o n No.
16 17 18
356 357 36 1 362 37 3 375 394 400 405 4 16 430 438 4 39 477 4 80 495 49 8 569
19 20
5 70 572
2
3 4 5 6 7 8 9 10 11 12 13 14
15
*
Name of Station
Turaif Badana A l - Jou f Rafha Quaifsumah" Tabouk" Hail Al-Wajh" Gassim DhahranX Madina Riyadh" Y anb o Jeddah" Taif Sulayed Bisha KhamisMushait N ej r a n Gizan
Latitude (Degrees)
Longitude (Degrees)
E l e v a t i o n Above M. S . L . (Meters)
31.68 30.97 29.93 29.63 28.33 28.36 27.52 26.23 26.30 26.27 24.55 24.70 2 L . 12 21.50 21.48 20.47 19.97
38.67 40.98 40.20 43.48 46.12 36.58 41.73 36.43 43.97 50.17 39.72 46.73 38.05 39.20 40.53 45.67 42.67
824 537 559 440 356 76 9 944 19 745 21 6 32 608 6 11 1457 6 12 1161
18.30 17.60 16.87
42.80 44.42 42.58
205 7 1206 3
Upper A i r M e t e o r o l o g i c a l d a t a i s a l s o r e c o r d e d
I n o r d e r t o e s t i m a t e t h e e x t e n t by which t h e t r a j e c t o r i e s a r e p a s s i n g o v e r an a r e a , t h e c o n c e p t o f f r e q u e n c y d i s t r i b u t i o n i s u s e d . The s t u d y area i s d i v i d e d
i n t o g r i d s o f one d e g r e e l a t i t u d e by one d e g r e e
longitude.
Number of t r a j e c t o r i e s
a r e drawn f o r one complete c a l e n d e r y e a r ( 1 9 7 8 ) , u s i n g 6-hourly m e t e o r o l o g i c a l r e c o r d s . The p e r c e n t f r e q u e n c y o f o c c u r r e n c e of t r a j e c t o r i e s p a s s i n g through each g r i d are computed and t h e r e s u l t s are shown i n c o n t o u r forms. Based on one y e a r t r a j e c t o r y r e c o r d s , s t a r t i n g from each s o u r c e ( T a b l e 2)
, c o n t o u r maps of
p e r c e n t f r e q u e n c y of t r a j e c t o r y t r a v e r s e s are computed. The combined e f f e c t s of a l l m a j o r s o u r c e s , i n t h e form of r e l a t i v e f r e q u e n c y of Occurrence of
45
t h e t r a j e c t o r i e s p a s s i n g t h r o u g h v a r i o u s g r i d s a r e shown by c o n t o u r map ( F i g . 1).
TABLE 2 The m a j o r a i r p o l l u t i o n s o u r c e s w i t h i n t h e Kingdom o f Saudi Arabia
S . No.
1 2 3 4 5 6
L o c a t i o n o f Major Sources
Latitude (Degrees)
Safania o i l f i e l d Jubail Ghawar o i l f i e l d Riyadh Jeddah Y anb u
27.9 26.7 25.5 24.5 21.5 24.2
Longitude (Degrees)
48.8 49.8 49.5 46.5 39.2 38.3
Type o f S o u r c e s
N a t u r a l Gas F l a r e d Chemical I n d u s t r i e s N a t u r a l Gas F l a r e d Petroleum Refineries Petroleum Refineries Chemical I n d u s t r i e s
CONCLUSIONS The f o l l o w i n g c o n c l u s i o n s are drawn from t h i s s t u d y :
- A i r t r a j e c t o r y c o n c e p t i s a u s e f u l t o o l i n d e t e r m i n i n g t h e movements o f a i r p a r c e l c a r r y i n g t h e p o l l u t a n t s from l a r g e e m i s s i o n s o u r c e s .
- Computer drawn t r a j e c t o r i e s are e f f i c i e n t and r e l i a b l e s i n c e number o f m e t e o r o l o g i c a l f a c t o r s , i n a d d i t i o n t o wind s p e e d and d i r e c t i o n , c a n b e taken i n t o account.
- The a d v e r s e l y a f f e c t e d zones ( F i g . 1) as i n v e s t i g a t e d by u s i n g f r e q u e n c y d i s t r i b u t i o n o f t h e t r a j e c t o r i e s p a s s i n g t h r o u g h v a r i o u s g r i d s and o r i g i n a t i n g from number o f e m i s s i o n s o u r c e s , are t h e zones f o r p r e l i m i n a r y m o n i t o r i n g p u r p o s e s . The m a j o r c i t i e s f a l l i n g i n t h e s e zones are J u b a i l , Abqaiq, Dhahran, Riyadh and B i s h a . It i s t h e r e f o r e recommended t o i n s t a l l a i r m o n i t o r i n g s t a t i o n s i n t h e s e c i t i e s p r e f e r a b l y i n t h e down wind d i r e c t i o n o f t h e most p r e v a i l i n g wind which i s n o r t h - n o r t h - w e s t .
ACKNOWLEDGEMENTS The a u t h o r s a r e g r a t e f u l t o D i r e c t o r , Research I n s t i t u t e f o r h i s p e r m i s s i o n t o submit t h i s paper f o r t h e conference. REFERENCES
1 D . C . Barnum and J.W. D i e r e c k s , J o u r n a l o f A p p l i e d Meteorology, 8(1969)3-14. 2 J . L . H e f f t e r , A.D. T a y l o r and G . J . F e r b e r t , NOAA T e c h n i c a l Memo, Environmental Research L a b o r a t o r y , ARL-50( 1975). 3 A.B. H e n r i c k s o n , S e r i e M e t e o r o l o g i , Stockholm, 27(1971). 4 F. Mesinger, J o u r n a l o f Atmospheric S c i e n c e , 22(1971)479-492. 5 R.E. Nagle and J . R . C l a r k , Meteorology I n t e r n a t i o n a l I n c . , F i n a l R e p o r t , 1966, C o n t r a c t Cwb-11254. 6 R.M. Reap, J o u r n a l o f A p p l i e d Meteorology, 11(1972)1193-1202. 7 F.B. Smith and G.H. J e f f e r y , J o u r n a l o f t h e Atmospheric Environment, 9(1975)643-659. 8 T h i r d Development P l a n (1980-85), M i n i s t r y o f P l a n n i n g , Kingdom of S a u d i Arabia.
Fig. 1 . Contour map of Frequency D i s t r i b u t i o n of T r a j e c t o r y T r a v e r s e s due t o m u l t i p l e s o u r c e s
41
A
STUDY OF PHYSICOCHEMICAL CHARACTERISTICS OF RESPIRABLE DUST
I N AN
I N D I A N COAL M I N E
N. S. RAWAT
I n d i a n School of Mines, Dhanbad-826004,
INDIA
ABSTRACT
The r e s p i r a b l e coal d u s t samples w e r e c o l l e c t e d from t h e mine atmosp h e r e d u r i n g d r i l l i n g o f c o a l seams u s i n g ' H e x l e t ' apparatus. Sixteen d u s t samples were collected from each t h r e e d i f f e r e n t seams f o r invest i g a t i o n s . A f t e r d e s t r u c t i o n of t h e o r g a n i c matter by w e t o x i d a t i o n and f i l t e r i n g o f f t h e c l a y and s i l i c a , Fe, Ca, Mg, N a , K, Mn, Zn, Cu, C d and N i were determined d i r e c t l y in t h e r e s u l t i n g s o l u t i o n by atomic a b s o r p t i o n s p e c t r o p h o t o m e t r i c methods. The x-ray d i f f r a c t i o n s t u d i e s have shown t h e p r e s e n c e o f k a o l i n i t e , q u a r t z , p i r r s o n i t e , and beidel l i t e c l a y minerals i n t h e coal dust. The mass-size d i s t r i b u t i o n of t h e c o a l d u s t h a s been s t u d i e d by u s i n g micron p h o t o s i z e r . The r e s u l t s showed t h a t t h e d i s t r i b u t i o n are unimodal, asymmetric, and p o s i t i v e l y skew. Although t h e assumption of log-normality w a s u s e f u l i n i n t e r p r e t i n g t h e r e s u l t s , c l o s e r obsemat i o n s i n d i c a t e d t h a t t h e r e l a t i o n s h i p between t h e s i z e and weight of t h e p a r t i c l e s can be r e p r e s e n t e d by a second degree p a r a b o l i c equation 2 W = a + bS + CS , where W and S are weight and s i z e of t h e p a r t i c l e s and a, b and c are c o n s t a n t s . This e q u a t i o n h e l p s u s to c h a r a c t e r i s e t h e mass of t h e respirable p a r t i c l e s i f t h e s i z e is known. The s t u d i e s throw l i g h t on t h e n a t u r e and mode o f t r a c e elements found in I n d i a n Coal a s w e l l as on t h e c a u s e s of r e s p i r a t o r y d i s e a s e , pneumoconiosis, a f f e c t i n g t h e workers i n t h e mine environmental condition.
INTRODUCTION
Among d i f f e r e n t o p e r a t i o n s i n c o a l mines, d r i l l i n g i n c o a l seams f o r s h o t h o l e s f o r b l a s t i n g produces m a x i m u m q u a n t i t y of a i r b o r n e dust. Dust p a r t i c l e s less t h a n 1 micron s i z e t e n d to s t i c k t o g e t h e r on cont a c t due t o Brownian movement ( r e f . 1). The p a r t i c l e s g r e a t e r than
48
7 micron s i z e a r e removed through s e t t l i n g by g r a v i t y whereas p a r t i c l e s between 1-7 micron s i z e remain suspended i n a i r f o r a long t i m e . The 1-7 micron s i z e p a r t i c l e s are c a l l e d r e s p i r a b l e d u s t and a r e t h e cause of pneumoconiosis, a lung d i s e a s e ( r e f . 21, among t h e coal miners. I t is n o t p r e s e n t l y known whether only t h e c o a l dust, o r s p e c i f i c elements o r chemical compounds or s y n e r g i s t i c e f f e c t s of s e v e r a l compounds assoc i a t e d with r e s p i r a b l e d u s t is r e s ? o n s i b l e for t h e d i s e a s e . EXPERIMENTAL
The r e s p i r a b l e c o a l d u s t samples used f o r t h e study w e r e c o l l e c t e d by C a s e l l a ' s 'Hexlet' apparatus ( r e f . 3 ) , e s p e c i a l l y designed and f i t t e d with a h o r i z o n t a l e l u t r i a t o r t o c o l l e c t t h e r e s p i r a b l e d u s t f r a c t i o n simulating c l o s e l y t h e l u n g ' s r e t e n t i o n c o n d i t i o n s of t h e coal miners. Dust samples w e r e c o l l e c t e d immediately a f t e r d r i l l i n g a t t h e working s i t e from I, I1 and 111 seams. The w e t o x i d a t i o n procedure of E l l i n g t o n and Adams ( r e f . 4 ) w a s adopted to d e s t r o y t h e o r g a n i c m a t t e r i n c o a l d u s t and to b r i n g t h e c o n s t i t u e n t s to be determined i n t o s o l u t i o n using A R q u a l i t y chemicals. The u l t i m a t e s o l u t i o n was obtained a s 25 cm3 f i l t r a t e . By t a k i n g suit a b l e a l i q u o t p o r t i o n s of t h i s s o l u t i o n t h e v a r i o u s elements w e r e det e m i n e d with a Varian-Tech t r o n atomic absorption spect r o p hotome ter For d e t e c t i o n of c l a y minerals, a p a r t of t h e c o l l e c t e d d u s t samples was ashed a t 380% f o r 16 hrs. While the low temperature ashing does not cause decomposition of c l a y minerals, i t ensures complete oxidation of c o a l d u s t due to prolonged p e r i o d of heating. X-ray d i f f r a c t i o n powder p a t t e r n s of ashed samples were taken f o r i d e n t i f i c a t i o n of c l a y m i n e r a l s using Rich S i e f a r t Instrument ( n i c k e l - f i l t e r e d CuKotradiation with 35 KV and 20 mA c u r r e n t ) . The c l a y m i n e r a l s were i d e n t i f i e d by matching Id' v a l u e s with hS?M standard c a r d value. Mass and frequency s i z e measurement of t h e d u s t p a r t i c l e s w a s done by micron p h o t o s i z e r Instrument of S e i s h i n E n t e r p r i s e Co. Ltd., Japan. I t is based on t h e p r i n c i p l e of sedimentation and photo-extinction.
.
RESULTS AND DISCUSSION
The averaged r e s u l t s of a n a l y s i s of 16 r e s p i r a b l e c o a l d u s t samples from d i f f e r e n t seams a r e given i n Table 1. Each sample was analysed by atomic absorption spectrophotometer f o r f i v e minor elements (Fe, Ca, Mg, Na and K) and f i v e trace elements (Mn, Cu, Zn, C d and N i ) . A f t e r complete d i s s o l u t i o n of t h e sample t h e standard a d d i t i o n method desc r i b e d by Manning ( r e f . 5) was used t o determine t h e recovery of t h e
49
element. The absorbance d a t a showed no s t a t i s t i c a l d i f f e r e n c e s t h u s v e r i f y i n g t h a t there a r e no mutual i n t e r f e r e n c e s from e l e m e n t s t h a t a r e usually p r e s e n t i n coal dust. It w a s reported e a r l i e r (ref.6) t h a t t h e r e is a tendency f o r p o t e n t i a l l y more hazardous c o n s t i t u e n t s l i k e Cu, Cd, Zn and N i t o p r o g r e s s i v e l y c o n c e n t r a t e i n r e s p i r a b l e c o a l d u s t . The r e s u l t s of t h e s t u d i e s c a r r i e d o u t h e r e c o r r o b o r a t e t h o s e of t h e s t u d i e s r e l a t i n g t o US c o a l s ( r e f . 7) by d i f f e r e n t methods. TABLE 1
Average minor and t r a c e elements of r e s p i r a b l e c o a l mine d u s t Element
R e s p i r a b l e Coal Mine Dust (Minus 7 micron) I Seam XI Seam 111 Seam
Fe%
2.32 250 1 1490 650 886 89 145 38 26 20
Ca Na K
Mn Zn cu Cd N i
2.12 2580 1310 530 890 80 140 33 28 21
2.05 2612 1212 470 875 75 135 35 27 20 ~
A l l v a l u e s i n ppm u n l e s s o t h e r w i s e s t a t e d .
The r e s u l t s o f x-ray d i f f r a c t i o n a n a l y s i s of 15 c o a l d u s t samples from I, I1 and 111 seams (5 from each a s s e r i a l l y numbered i n Table 2) show t h a t t h e m i n e r a l c o n s t i t u e n t s a r e k a o l i n i t e , p i r r s o n i t e , beidel l i t e and q u a r t z . With t h e exception of h a r d e r q u a r t z , t h e s o f t and p l a t y c l a y m i n e r a l s are e n g u l f e d i n t o t h e p h a g o c y t i c c e l l s more e a s i l y under a given s t r e n g t h o f impact. These may a c t as c a t a l y s t s f o r pneumoconiosis. Frequency s i z e d i s t r i b u t i o n a n a l y s i s For each seam b e f o r e averaging, t h e 16 r e s u l t s , o b t a i n e d i n a l l s i z e ranges, were converted to p e r c e n t a g e s on weight b a s i s t o ensure t h e seamwfse frequency s i z e d i s t r i b u t i o n a t d i f f e r e n t l e v e l s , a s shown i n Table 3. The cummulative frequency o f p a r t i c l e diameter f o r i n d i v i d u a l as w e l l a s average l e v e l e x h i b i t s p o s i t i v e skewness for a l l t h e t h r e e sample sets and g i v e s r e a s o n a b l e approximation to s t r a i g h t l i n e when p l o t t e d on l o g - p r o b a b i l i t y p a p e r (Fig. 1) i n d i c a t i n g a log-normal d i s t r i b u t i o n . T h i s is i n agreement with t h e f i n d i n g s of Whitby e t a1 (ref. 8).
50
TABLE 2 I d e n t i f i c a t i o n of minerals i n r e s p i r a b l e coal d u s t No.
1 2 3 4 5 6
Intensity w M-
MS s M M
7 v v w
a
w
9
w
10 11
M
12 13 14 15
M M+ Me+
s S
'd' A.U. 3.346 2.283 2.62 4.58 5.150 4.924 4.240 3.340 2.554 1.982 1.375 3.568 1.452 7I160 4.331
Kaolinite
Luartz B e i d e l l i t e 3.34
2.284
2.282 2.60 4.45
2.55
2.48 1.987 1.375 3.57
Pirrsonite
4.26 3.34 2.458
5.10 4.92 4.29 2.60
1.450
7.15 4.35
4.45
TABLE 3
Frequency s i z e d i s t r i b u t i o n d a t a of r e s p i r a b l e p a r t i c u l a t e s a t each level
-
Seam
Depth from s u r f a c e l e v e l (m)
No.
of Samples
Averaqe wt. % i n s i z e (micron) 7-6
6-4
4-2
I I1 1x1
55 36 24
16 16 16
7.5 5.6 9.5
22.5 30.9 28.3
52.4 59.3 51.7
0.1
Fig. 1.
05 2 10 30 C U M M U L A T I V E '/OMASS<
50 70 90 PARTICLE SIZE
17.6 4.2 10.5
98
Composite mass-size d i s t r i b u t i o n of r e s p i r a b l e p a r t i c u l a t e s comprising t h r e e c o a l seams p l o t t e d on log-probability coordinates.
51
The mass median diameter (MMD), t h e r a t i o R, of t h i r d t o f i r s t obtained q u a r t i l e diameters and t h e geometric standard d e v i a t i o n s d g' from t h e s e l o g - p r o b a b i l i t y p l o t s of each seam a r e computed i n Table 4. TABLE 4 Variation of s i z e parameters of t h e r e s p i r a b l e d u s t p a r t i c l e s from d i f f e r e n t seams. ~~
Seam
Depth N o . of MMD Geometric (m) samples (micron) sn
75% s i z e (micron)
25% s i z e (micron)
Ratio
2.3
1.9 1.5 1.8
R
(U1
I I1 I11
55 36 24
16 16 16
3.2 3.6 3.5
1.6 1.3 1.5
4.4 4.5 4.7
2.9 2.6
I t i s e v i d e n t from T a b l e 4 t h a t t h e average m a s s median diameter
f o r a l l t h e t h r e e seams v a r i e s from 3.2 t o 3.6 microns whereas 25% of t h e r e s p i r a b l e p a r t i c l e s i s l e s s than 3 micron s i z e and t h e remaining 75% p a r t i c l e s i s around 4.5 micron s i z e . The averaged computed r e s u l t s of Table 3 show t h a t 10.8"A of t h e r e s p i r a b l e p a r t i c l e s a r e of minus two micron s i z e . Moreover, a consistency of mass median diameter, geometric standard d e v i a t i o n and t h e l a c k of any v i s i b l e t r e n d i n t h e percentage of mass having a diameter below 2 micron i n s i z e i n a l l t h e seams suggest t h a t within t h e l i m i t of experimental e r r o r t h e r e w a s no v a r i a t i o n i n d i s t r i b u t i o n of v a r i o u s s i z e f r a c t i o n s among the three seams. However, a s i s e v i d e n t from Table 4, t h e r e e x i s t s an Inverse c o r r e l a t i o n between t h e q u a r t i l e r a t i o and t h e mass median diameter ( r e f . 9). A comparison of Tables 3 and 4 r e v e a l s a t y p i c a l d u s t d i s t r i b u t i o n p a t t e r n of r e s p i r a b l e p a r t i c u l a t e s . As t h e q u a r t i l e r a t i o i n c r e a s e s the p a r t i c l e s i z e less than two micron (which i s most l i k e l y t o be r e t a i n e d i n lungs of exposed workers) a l s o increases. The r e s u l t s conform to t h e f i n d i n g s of Odgon e t a1 ( r e f . 10). A f i n a l e v a l u a t i o n t o c h a r a c t e r i s e t h e d i s t r i b u t i o n curve i s to f i n d a mathematical f u n c t i o n which f i t s them. Although Fig. 1 i s usef u l i n i n t e r p r e t i n g t h e c h a r a c t e r i s t i c s f o r comparative purposes and r e a d i l y g i v e s t h e cummulative percentage of t h e p a r t i c u l a t e s i n t h e v a r i o u s s i z e rangescovered, t h i s type of p l o t is, howetter, u n s u i t a b l e f o r r e g r e s s i o n purposes. The s i z e v e r s u s mass d i s t r i b u t i o n curve was found to f i t w e l l to a second degree p a r a b o l i c equation as shown i n Pig. 2 f o r I seam. S i m i l a r curves are o b t a i n e d f o r o t h e r seams also.
52
2
A B O L IC C U R V E
01
I
I
I
I
I
I
I
I
1
2
3
4
5
6
7
8
PARTICLE
SIZE
/l m
Fig. 2. IIDeg. Parabolic curve showing the r e l a t i o n between the s i z e and d i s t r i b u t i o n pattern of coal dust i n I seam.
The second degree parabolic equation €or the respirable dust p a r t i c l e s may be represented a s W = a
+ bS +
cS
2
where W and S represent weight and m e a n size of the p a r t i c l e
53
r e s p e c t i v e l y and a, b and c a r e constants. The t h r e e parameters a, b and c determine t h e percentage weight of t h e p a r t i c l e s i f t h e mean s i z e is known. The v a l u e s of a, b and c f o r F e s p i r a b l e p a r t i c u l a t e s f o r t h e t h r e e seams were determined by t h e p r i n c i p l e of l e a s t square regression, and a r e given i n Table 5. The observation is p a r t i c u l a r l y t r u e for c h a r a c t e r i s i n g t h e mass-size d i s t r i b u t i o n of r e s p i r a b l e p a r t i c u l a t e s analysed with micron p h o t o s i z e r model SKN 1000.
TABLE 5
Values of a, b and c f o r d i f f e r e n t seams Seams
a
b
I
3.34
10.48
-1.54
I1
-6.90
17.40
-2.39
I11
-2.55
12.94
-1.72
C
The s t u d i e s throw l i g h t on t h e presence of some minor and t r a c e elements, t h e n a t u r e of c l a y minerals and t h e r e l a t i o n s h i p of second degree p a r a b o l i c equation between m a s s and s i z e of t h e r e s p i r a b l e c o a l d u s t p a r t i c l e s i n an Indian mine.
ACKNOWLEDGEMENTS
The author expresses h i s thanks t o t h e members of h i s research group f o r t h e i r h e l p i n completing t h i s work. Special thanks a r e a l s o extended t o S h r i B N Sahoo f o r t e c h n i c a l a s s i s t a n c e .
REFERENCES
1
Lee, J.S. 6(1972) 593.
R.E.
Coldwall and G.S.
Morgan, Atmospheric Environ.,
54
2
3 4 5 6
R.P. Fairman, R.J. O'Brien, S. Sweeker, H.E. Amandur and E.P. Shoub, Arch. Environ. Health, 32 (1977) 211. B.M. Wright, B r i t . J. I n d u s t r . Med., ll(1954) 284. P. E l l i n g t o n and W.N. A d a m s , Fuel (London), 30(1951) 272. D.C. Manning, A t . Absorpt. N e w s l e t t . , 14(1975) 99. N.S. R a w a t , B.N. Sahoo and J.K. Sinha, Chemistry and I n d u s t r y ,
13 (1981) 470-471. D.J. Von Lehmdev, R.E. Jengens and R.E. Lee ( J r . ) , Anal. Chem., 46 (1974) 239-245. 8 K.T. Whitby, R.B. Husar and B.Y.H. Liu, I n d u s t r i a l Aerosols and Atmospheric Chemistry ( e d i t e d by G.N. Hidy) Academic, New York* (1971) 237. 9 J. Dodgon and W. Whittaker, Ann. Occup. Hyg., 16(1973) 373. 10 T.L. Odgon and A.M. Rickman, Ann. Occup. Hyg., 20(1977) 257.
7
55
OF SOILS AND PLANTS BY MERCURY AS INFLUENCED BY THE PROXIMITY TO
CONTAMINATION
INDUSTRIES I N ALEXANDRIA, EGYPT.
I.H.
ELSOKKARY
S o i l & Water S c i . Dept., F a c u l t y Of A g r i c u l t u r e , A l e x . , Univ., and Univ. of Alexa n d r i a Research C e n t e r (UNARC)
. Egypt.
ABSTRACT The amounts of t o t a l Hg i n t h e s o i l s and t h e e d i b l e p a r t s of seven v e g e t a b l e p l a n t c r o p s grown i n u n p o l l u t e d and p o l l u t e d s o i l s were s t u d i e d . The h i g h l y p o l l u t e d s o i l s c o n t a i n e d h i g h e r l e v e l s of Hg (495 ppb) t h a n t h o s e i n t h e u n p o l l u t e d (35 ppb).
The t o p s o i l w a s h i g h l y e n r i c h e d w i t h Hg t h a n t h e
s u b s o i l a s t h e r e s u l t of t h e d e p o s i t i o n of Hg p a r t i c u l a t e s produced from t h e industries. P l a n t s grown i n s o i l s n e a r i n d u s t r i e s c o n t a i n e d h i g h l e v e l s of Hg up to 362 ppb.
The amounts of Hg i n t h e p l a n t s p e c i e s which grown i n w i n t e r were h i g h e r
t h a n t h o s e grown i n summer.
INTRODUCTION E a r l i e r s t u d y showed g r e a t p o s s i b i l i t y f o r Hg accumulation i n t h e p l a n t s grown i n t h e s o i l s of A l e x a n d r i a d i s t r i c t due t o t h e i n c r e a s i n g s o u r c e s of c o n t a m i n a t i o n by Hg ( R e f . 3 ) .
The main s o u r c e s of Hg p o l l u t i o n i n t h a t a r e a a r e c h l o r i n e a l k a l i
i n d u s t r i e s , paper f a c t o r i e s , e l e c t r i c g e n e r a t i o n , o t h e r d i f f e r e n t t y p e s of indust r i e s and a g r i c u l t u r a l a c t i v i t i e s . The o b j e c t i v e of t h e p r e s e n t work w a s t o e v a l u a t e t h e magnitude of contamina t i o n of seven v e g e t a b l e p l a n t c r o p s grown i n s o i l s of s i x s i t e s i n A l e x a n d r i a d i s t r i c t by mercury.
MATERIALS AND METHODS S i x s i t e s i n t h e a g r i c u l t u r a l l a n d i n A l e x a n d r i a were s e l e c t e d t o r e p r e s e n t u n p o l l u t e d and p o l l u t e d zones ( F i g . 1 ) . (pH = 7 . 5
-
These s o i l s have and a l k a l i n e r e a c t i o n
8.11, low o r g a n i c m a t t e r ( 1 . 6 - 2 . 8 % ) , r e l a t i v e l y h i g h t o t a l c a r b o n a t e
( 2 - 4 % ) and s o i l t e x t u r e of c l a y loam.
56 S o i l s of s i t e No.1 are n o t s u b j e c t e d t o any s o u r c e s of p o l l u t i o n by Hg e x c e p t t h o s e from a g r i c u l t u r a l a c t i v i t i e s w h i l e s o i l s of s i t e s No. 2 , 3 , 4 , 5 and 6 a r e s u b j e c t e d t o v a r i o u s s o u r c e s of p o l l u t i o n from t h e s u r r o u n d i n g i n d u s t r i e s . Seven v e g e t a b l e p l a n t c r o p s ; l e t t u c e (Lactuca s a t i v a ) , cabbage ( B r a s s i c a o l e r a c e a v a r . c a p i t a t a ) , c a r r o t s (Dancus c a r o t a ) , p a r s l e y ( P e t r o s e l i n u m h o r t e n s e ) , pepper (Capsium f r u t e s c e n s ) , j e w ' s mallow (Corchorus o l i t o r i u s ) and r a d i s h (Raphanus s a t i v u s ) ; which a r e grown i n t h e s e s i t e s were c o l l e c t e d .
The e d i b l e p a r t s of t h e s e
p l a n t s were washed w i t h d i s t i l l e d water, d r i e d a t 35°C f o r 24 h o u r s , c r u s h e d by hand and s t o r e d f o r Hg a n a l y s i s . T o t a l Hg was d e t e r m i n e d by d i g e s t i n g t h e s o i l o r t h e p l a n t m a t e r i a l w i t h c o n c e n t r a t e d HN03 (Ref.4). spectrophotometer
Mercury was measured by f l a m e l e s s a t o m i c a b s o r p t i o n
.
F i g . 1- L o c a t i o n s of t h e c u l t i v a t e d s i t e s .
RESULTS AND DISCUSSION Mercury i n s o i l s :
T o t a l Hg i n t h e s u r f a c e s o i l l a y e r v a r i e d from 12-30 ppb
i n t h e u n p o l l u t e d s o i l s and from 60-495 ppb i n t h e p o l l u t e d s o i l s ( T a b l e 1 ) . T h i s p o i n t s o u t t o t h e o c c u r r e n c e of h i g h c o n t a m i n a t i o n o f t h e s e s o i l s by Hg due t o the increasing industrial a c t i v i t i e s i n that area. w e r e found i n s i t e s No. 4 , 5 and 6.
The h i g h e s t l e v e l s of p o l l u t i o n
The d a t a a l s o show a n accumulation of Hg i n
t h e t o p s o i l which i n d i c a t e s t h a t Hg t r a n s p o r t i n t h e s o i l p r o f i l e i s v e r y slow. T h i s i s due t o t h e low s o l u b i l i t y of H g - p a r t i c u l a t e s d e p o s i t e d on t h e s o i l a s t h e
57 of h i g h s o i l pH a n d / o r f o r m a t i o n o f low s o l u b l e Hg compounds.
F i g . 2 showes
t h e r e l a t i o n s h i p between s o i l d e p t h and t o t a l Hg i n six s o i l p r o f i l e s r e p r e s e n t i n g the six s i t e s . TABLE 1
V a r i a t i o n s i n t h e amounts o f t o t a l Hg (ppb) w i t h t h e s o i l d e p t h i n t h e s i x s i t e s .
Site No
Soil depth cm
Number of samp 1e s
Range
Average
1
0-15 15-30 30-60
7 7 7
12-30 12-35 10-25
25 20 20
2
0-15 15-30
60-75 58-80 35-48
68 66
44
197-235 80-105 44-67
205 95 56
0-15 15-30
296-345
30-60
80-99
315 185 89
7 7 7
285-415 170-265 60-96
355 200 80
7 7 7
310-495 150-285 60-100
385 200 85
30-60
3
4
5
0-15 15-30
7 7
30-60
7
0-15 15-30 30-60
6
0-15 15-30 30-60
Mercury i n p l a n t s :
160-218
The e d i b l e p a r t s o f v e g e t a b l e s grown in s o i l s of s i t e
No 1 c o n t a i n e d t h e l o w e s t l e v e l s of Hg w h i l e t h o s e grown i n s o i l s of s i t e s No 4 ,
5 and 6 c o n t a i n e d t h e h i g h e s t l e v e l s ( T a b l e s 2 and 3 ) .
The r e s u l t s a l s o show
v a r i a t i o n s i n Hg c o n t e n t s i n t h e l e a v e s of d i f f e r e n t p l a n t s p e c i e s grown i n t h e s a m e s i t e which a matter of m o r p h o l o g i c a l and g e n e t i c c h a r a c t e r i s t i c s of e a s h
p l a n t a s found w i t h l e t t u c e , r a d i s h , cabbage and p a r s l e y . The p l a n t s grown i n w i n t e r c o n t a i n e d h i g h Hg t h a n t h o s e grown i n summer (Table 2 ) .
T h i s c l e a r l y show t h e i n f l u e n c e o f s e a s o n a l v a r i a t i o n s on Hg c o n t e n t s
58
T o t a l s o i l Hg ppb
T o t a l s o i l Hg ppb 0
Soil depth cm
.
0
?
15
-
30
-
45
-
i
-
i
c
u
m
e
L
0 0 r -
1c
I
0 0 N
r
0 0 n .
0 0 3
0 0
0
0
,
60 *
S i t e No.1
I
S i t e No.2
75..
*
90
Soil depth cm
-
0-
.
:f soil depth cm
.
60
.
15
-
90
-
S i t e No.3
S i t e No.4
0.
15
.
45 30
Fig.2-
60
-
75
-
90
L
S i t e No.5
S i t e No.6
R e l a t i o n s h i p b e t w e e n s o i l d e p t h and t o t a l Hg (ppb) i n s i x s o i l p r o f i l e s representing t h e s i x sites.
59 TABLE 2
Mean v a l u e s of t o t a l Hg (ppb) i n t h e e d i b l e p a r t s of v e g e t a b l e p l a n t s grown i n s o i l s of t h e s i x s i t e s c o l l e c t e d i n J a n . and Aug. 1980 (Values between parent h e s i s d e n o t e s of t h e number of p l a n t samples).
Site No
Lettuce
Radish
Parsley
.
.
Jan.
Aug
20(11)
18(5)
Jan.
Aug
41(5)
30(3)
32(6)
90(7)
68(5)
45(4)
32(5)
38(4)
38(4)
3
115(6)
78(5)
118(8)
66(7)
46(6)
40(7)
4
282(7)
190(6)
212(6)
154(5)
115(3)
95(4)
5
291(5)
205(8)
200(6)
165(6)
118(5)
98(6)
6
345(6)
280(8)
287(5)
215(7)
125(7)
lOO(6)
Jan.
Aug.
1
38(6)
2
TABLE 3
Mean v a l u e s of t o t a l Hg (ppb) i n t h e e d i b l e p a r t s of v e g e t a b l e p l a n t s grown i n s o i l s of t h e s i x s i t e s ( v a l u e between p a r e n t h e s i s d e n o t e s t o t h e number of p l a n t samples).
i n t h e p l a n t s and g i v e a n i d e a about t h e e f f e c t i v e n e s s of atmospheric p r e c i p i t a t i o n , which i s h i g h e r i n w i n t e r t h a n i n summer. It i s c l e a r t h a t l e a v e s of t h e p l a n t s c o n t a i n e d u s u a l l y t h e h i g h e s t l e v e l s
of Hg.
I t i s obvious t h a t f r u i t s c o n t a i n t h e lowest l e v e l s w h i l e r o o t s could
accumulate r e l a t i v e l y moderate l e v e l s .
I n t h i s s t u d y , t h e amounts of Hg i n pepper
f r u i t d i d n o t i n c r e a s e , by t h e same r a t e a s occurred w i t h l e a v e s of o t h e r p l a n t s , by i n c r e a s i n g r a t e of p o l l u t i o n (Table 3 ) .
This could be expected w i t h such f r u i t s .
60 CONCLUSION The l e v e l s of Hg and t h e i r d i s t r i b u t i o n i n t h e s o i l p r o f i l e of t h e p o l l u t e d s i t e s show h i g h a c c u m u l a t i o n of Hg i n t h e t o p s o i l . polluted soils.
T h i s i s n o t found i n t h e un-
The d i f f e r e n c e between t h e amounts of Hg i n t h e t o p s o i l and t h e
s u b s o i l i n c r e a s e d w i t h i n c r e a s i n g r a t e of p o l l u t i o n .
This indicates t h a t t h e
f a l l o u t of p a r t i c u l a t e s on t h e s o i l from t h e i n d u s t r i e s i s t h e major s o u r c e of Hg.
The r a t e of c o n t a m i n a t i o n i s g e n e r a l l y r e l a t e d t o t h e magnitude and p r o x i m i t y
t o t h e s o u r c e of p o l l u t i o n .
Even i n d u s t r i a l a c t i v i t i e s n o t d i r e c t l y r e l a t e d t o
Hg c a n g i v e r i s e t o s u b s t a n t i a l r e l e a s e of t h i s m e t a l i n t h e environment. Comparing l e v e l s of Hg i n o u r p l a n t s w i t h t h o s e r e p o r t e d i n t h e l i t e r a t u r e , i t i s c l e a r t h a t t h e s t u d i e d p l a n t s c o n t a i n e d r e l a t i v e l y h i g h l e v e l s of Hg and
it i s h i g h l y p o l l u t e d (Ref. 1 and 2 ) . S i n c e most of t h e s e c u l t i v a t e d v e g e t a b l e s a r e of s h o r t growth p e r i o d and have s u r f a c e and s h o l l o w r o o t systems, Hg i n t h e s e p l a n t s w i l l be absorbed by t h e i r r o o t s and f o l i a r p a r t s .
A t t h e s e e n v i r o n m e n t a l c o n d i t i o n s , growing v e g e t a b l e s
a s l e t t u c e , r a d i s h , p a r s l e y , cabbage and j e w ' s mallow i n t h e s e s o i l s a r e n o t recommended.
ACKNOWLEDGEMENTS The a u t h o r w i s h e s t o e x p r e s s h i s t h a n k s t o P r o f . D r . A. El-Sadr;
d i r e c t o r of
UNARC, f o r t h e f a c i l i t i e s a v a i l a b l e and h i s encouragement d u r i n g c a r r i n g on t h a t
work.
REFERENCES
1- Bouquiaux, J. P r o c . of t h e I n t . Symp. on t h e problem o f c o n t a m i n a t i o n of man and h i s environment by mercury and cadmium. Luxembourg 3-5 J u l y 1973 CEC Luxemburg (1974) p 23. 2- E l s o k k a r y , I . H . and J-Lag, B e i t r a g e t r o p . L a n d w i r t s c h , Veterinarmed., 1 8 , J g (1980) 35-47. 3- E l s o k k a r y , I . H . S t u d i e s i n Environ. Sc. Vol. 8 , Atmos. P o l l . , M.N.Benarie (Ed.), P r o c . of t h e 1 4 t h I n t . Colloquium, P a r i s F r a n c e May 5-8 (1980) E l s e v i e r , pp 433-438. 4- Holak, W.B., J. Assoc. O f f . Anal. Chem. 55 (1972). 741-742.
61
STUDY OF ATMOSPHERIC POLLUTION I N AN URBAN ZONE DEPRIVED OF MEASUREMENT
SYSTEMS, FOR PURPOSES OF LEGISLATION APPLICATION TO THE C I T Y OF TUNIS
M.C.
ROBE and J. CARBONNELLE
Commissariat h 1 ' E n e r g i e Atomique, I n s t i t u t d e P r o t e c t i o n e t d e Silret6 N u c l g a i r e , DGpartement d e P r o t e c t i o n , S e r v i c e s Techniques d e P r o t e c t i o n , S e r v i c e d e P r o t e c t i o n Technique, C e n t r e d ' E t u d e s N u c l 6 a i r e s d e S a c l a y ,
91191 Gif-sur-Yvette
Cedex. F r a n c e .
ABSTRACT I n o r d e r t o l e g i s l a t e on and p r o v i d e a g a i n s t t h e a t m o s p h e r i c p o l l u t i o n s p e c i f i c t o a c o u n t r y i n a r e g i o n d e p r i v e d of measurement s y s t e m s , i t i s f i r s t n e c e s s a r y t o examine t h e f o l l o w i n g p o i n t s :
-
l o c a t i o n of c h i e f p o l l u t i o n s o u r c e s ,
- e m i s s i o n c h a r a c t e r i s t i c s of t h e main s o u r c e ,
-
e f f e c t s of t h e s o u r c e on t h e environment, p r e d i c t a b l e e f f e c t s of a p p l i e d l e g i s l a t i o n . I n t h e c i t y of T u n i s f o r example t h e road t r a f f i c was i d e n t i f i e d a s t h e major
s o u r c e of p o l l u t i o n . Ways t o c u t down t h e p o l l u t i o n l e v e l a r e proposed on t h e b a s i s o f d i f f e r e n t s h o r t - t e r m measurements
. Calculation
shows t h a t i f r u l e s s i m i l a r t o t h o s e l a i d
down i n F r a n c e were a p p l i e d and t h e t r a f f i c f l o w o r g a n i s e d t h e l e v e l s of c e r t a i n p o l l u t a n t s (CO, NOx) would b e s u b s t a n t i a l l y r e d u c e d .
INTRODUCTION
G e n e r a l l y s p e a k i n g t h e a n t i - p o l l u t i o n campaign i s guided by two p r i n c i p l e s :
- i d e n t i f i c a t i o n and l o c a t i o n of p o l l u t i o n a g e n t s and e m i t t e r s , - a c q u i s i t i o n of t h e t e c h n i c a l , s t a t u t o r y and c o n t r a c t u a l means t o m o n i t o r , r e d u c e and e l i m i n a t e p o l l u t a n t e m i s s i o n s i n t o t h e atmosphere.
A f i r s t p o s s i b i l i t y , c o n t i n g e n t on economic c o n d i t i o n s , i s t o s e t up a complex system of measurements a p p r o p r i a t e t o a long-term s t u d y . T h i s w i l l show up t h e i n f l u e n c e of a l l e x t e r n a l p a r a m e t e r s and a l l o w t h e e f f e c t s of l e g i s l a t i o n t o be monitored a f t e r w a r d s .
62 Otherwise i t i s p o s s i b l e w i t h p r e s e n t measurement f a c i l i t i e s t o o r g a n i s e short-term r u n s s u f f i c i e n t l y r e p r e s e n t a t i v e of t h e a c t u a l s i t u a t i o n so t h a t techn i c a l o r s t a t u t o r y a n t i - p o l l u t i o n s t e p s may be t a k e n . By t h e same means a l s o t h e eventual measurement system may be optimised f o r permanent monitoring of t h e reduced p o l l u t i o n l e v e l o b t a i n e d . An example i s given by t h e enquiry conducted i n t h e c i t y of Tunis, where no measurement system o r p o l l u t i o n d a t a were a v a i l a b l e except f o r a l i s t of i n d u s t r i a l f i r m s i n s t a l l e d on t h e s i t e .
EXPERIMENTS An enquiry of t h i s kind i s conducted i n f o u r s t a g e s :
- p o l l u t i o n survey, - study of t h e main source t h u s d e f i n e d ,
-
e f f e c t of t h e source on t h e environment, p o l l u t i o n r e d u c t i o n measures.
P o l l u t i o n survey A p r e l i m i n a r y survey i s c a r r i e d o u t t o determine t h e main cause of causes of
p o l l u t i o n . Although t h e time spent on t h i s survey i s l i m i t e d t h e maximum number of t y p i c a l l o c a l m e t e o r o l o g i c a l s i t u a t i o n s must be included. Mobile measurement systems a r e used, t o g e t h e r w i t h m e t e o r o l o g i c a l f a c i l i t i e s i f t h e r e l e v a n t d a t a a r e n o t a v a i l a b l e on t h e s p o t . A s f a r a s p o s s i b l e , according t o t h e meteorological d a t a of t h e s y n o p t i c g r i d a period r e p r e s e n t i n g t h e worst c o n d i t i o n s f o r pollut i o n i s chosen.
In t h e c a s e of Tunis (Figure 1 ) t h e major p o l l u t a n t c o n c e n t r a t i o n s (CO, NOx, SO2,
C H ) were mapped over a l l t h e b u i l t up a r e a and t h e main cause of p o l l u t i o n X Y
was determined by t h e u s e of a v e h i c l e c a r r y i n g a number of a n a l y s e r s . Meteorological d a t a were supplied by t h e s y n o p t i c g r i d on t h e one hand and by an a c o u s t i c probe on t h e o t h e r . F i g u r e 2 g i v e s an example of t h e c h a r t obtained f o r CO i n a given d i s p e r s i o n situation. An a n a l y s i s of t h e r e s u l t s showed t h a t a p a r t from a s t r o n g l o c a l e f f e c t of t h e i n d u s t r i a l zone, t h e major problem came a s a r u l e from t h e emissions of motor v e h i c l e s (Ref. 1 ) .
Study of t h e main source The c h i e f source being t h u s e s t a b l i s h e d i t s emission c h a r a c t e r i s t i c s must t h e n be determined. I n t h e c a s e of motor t r a f f i c t h e problem i s complicated by t h e f a c t t h a t t h e source c o n s i s t s of many small emissions, n o t n e c e s s a r i l y identical
.
63
Fig. 1
monoxyde de carbone
-Q 5 m g . n ~ - ~ )HHCC
%>lo
5 i 10 mg.rnm3 mg.m-3
I Fig. 2
I
\
1
64
I n T u n i s t h e t r a f f i c s i t u a t i o n i s q u i t e d i f f e r e n t from t h a t i n Western Europe. The C O , NOx,
SO2 and C H
c o n c e n t r a t i o n of e x h a u s t g a s e s were measured on about
X Y
200 v e h i c l e s . A check a g a i n s t e x i s t i n g c a r r e g i s t r a t i o n s t a t i s t i c s proved t h e sample t o be
r e p r e s e n t a t i v e of t h e normal t r a f f i c on t h e r o a d s .
3 x
2 h
Fig.
3
Fig. 4
F i g u r e 3 shows t h e sample d i s t r i b u t i o n f o r e x h a u s t CO c o n c e n t r a t i o n . Given t h e c h a r a c t e r i s t i c s of t h e v e h i c l e s i t i s p o s s i b l e t o c a l c u l a t e a n e m i s s i o n r a t e ( f i g u r e 4 ) , t h e n knowing t h e h o u r l y t r a f f i c f l o w a t a c e r t a i n p o i n t t o c a l c u l a t e t h e amount of p o l l u t a n t i n t r o d u c e d a t t h i s p o i n t .
E f f e c t s of t h e s o u r c e o n t h e environment The q u a n t i t y of p o l l u t a n t s e m i t t e d b e i n g known, t h e i r e f f e c t o n t h e environment may b e i n f e r r e d from a knowledge of t h e l o c a l d i f f u s i o n c o n d i t i o n s . T h i s however i m p l i e s a d e t a i l e d m i c r o m e t e o r o l o g i c a l s t u d y which c a n b e l o n g and c o s t l y . Another method i s t o measure t h e c o n c e n t r a t i o n s i n t h e environment under chosen m e t e o r o l o g i c a l c o n d i t i o n s (Ref. 2 ) . Two k i n d s of measurement were t h u s c a r r i e d o u t s i m u l t a n e o u s l y i n c e n t r a l Tunis :
- from a v e h i c l e c a r r y i n g a n a l y s e r s and t r a v e l l i n g a l o n g t h e t h o r o u g h f a r e s studies,
- from a f i x e d measurement s t a t i o n w i t h sampling p o i n t s a t d i f f e r e n t a l t i t u d e s , s e t up t e m p o r a r i l y a t a p o i n t on t h e p a t h of t h e v e h i c l e . T h i s m o b i l e system n o t o n l y c h a r t s t h e p o l l u t a n t c o n c e n t r a t i o n o v e r t h e p a t h t r a v e l l e d , b u t a l s o g i v e s o t h e r i n f o r m a t i o n such as t h e a v e r a g e t r a f f i c speed a t t h e t i m e of measurement o r t h e amount of p o l l u a n t i n h a l e d by a n o b s e r v e r f o l l o w i n g t h e same p a t h .
65
30
-a
25 28
\
p 15
v
c &10 5 0 -
N
m
*
l
n
c
o
h
m
Rverage veloclty (m/s) Fig. 5
F i g u r e 5 shows t h e i n f l u e n c e of t h e a v e r a g e t r a f f i c speed on t h e CO concentrat i o n i n a g i v e n t h o r o u g h f a r e . The f i x e d s t a t i o n s u p p l i e s d a t a on t h e p o l l u t a n t v a r i a t i o n and i t s v e r t i c a l c o n c e n t r a t i o n g r a d i e n t d u r i n g t h e day ( f i g u r e 6 ) , as w e l l a s t h e e f f e c t of t r a f f i c peaks (Ref. 2 ) . A s t a t i s t i c a l t r e a t m e n t r e v e a l s t h e i n f l u e n c e of e x t e r n a l p a r a m e t e r s :
-
t r a f f i c f l o w o n CO c o n c e n t r a t i o n ( f i g u r e 7 ) ,
-
t e m p e r a t u r e g r a d i e n t on v e r t i c a l CD p r a d i e n t .
#%
......... ......... ..........
......... ..........
......... ......... c 0
t
2!
.4 0 U
.........l
;
8 .....................
...... ........ .......... ........ ; ................................. ! ! l f
! 4 $ 3 f f g f Traffic flow
-
.....
PARIS 19 TUNIS 19
Fig. 7
Fig. 8
P o l l u t i o n r e d u c t i o n measures Once t h e e m i s s i o n c o n d i t i o n s and e f f e c t s on t h e environment a r e known, i t i s p o s s i b l e t o draw up a n a n t i - p o l l u t i o n p l a n (Ref. 3 ) . I n t h e c a s e of T u n i s f o r example t h i s d i f f e r e n t a c t i o n were proposed :
a
-
S t a t u t o r y measures
A comparison of CO e m i s s i o n s from v e h i c l e s i n F r a n c e and i n T u n i s i a (Table 1 )
( f i g u r e 8) shows t h a t t h e a p p l i c a t i o n of French r e g u l a t i o n s (Table 1 )
(Ref. 4
and 5) would c u t down t h e d i s c h a r g e by n e a r l y 20 Z f o r a v e h i c l e of c y l i n d e r c a p a c i t y 1 200 cm3 t r a v e l l i n g a t a v e r a g e speed 20 km.h
-1
on a n u r b a n t h o r o u g h f a r e .
66
TABLE 1
CO C o n c e n t r a t i o n
* b
France
Number of v e h i c 1e s
*
Tunisia
< 5 %
53 %
38 Z
> 7 %
22 %
43 %
French norm : maximum CO c o n c e n t r a t i o n a t reduced speed 4 , 5 %.
-
T e c h n i c a l measures It i s shown t h a t t h e American CO norm
of 10 m g . ~ n - ~i n 8 h o u r s c a n b e r e s p e c t e d
by o r g a n i s i n g t h e t r a f f i c f l o w i n such away a s t o keep a n a v e r a g e speed of more than 5 m.s-'
i n c e r t a i n t h o r o u g h f a r e s , i . e . a n e x p e r i m e n t a l o u t p u t of 1500
v e h i c l e s a n h o u r . T h i s c o r r e s p o n d s t o a r e d u c t i o n of a b o u t 20 Z o n t h e t r a f f i c f l o w a t peak h o u r s f o r t h e r o a d c o n s i d e r e d .
CONCLUSION T h i s method of approach t o a complex problem, u s u a l l y s o l v e d by t h e compiling of many d a t a o v e r a l o n g p e r i o d , i s p a r t i c u l a r l y w e l l s u i t e d t o c o u n t r i e s where economic c o n s i d e r a t i o n s l i m i t t h e p o s s i b i l i t i e s o f a c t i o n i n t h e environmental f i e l d . It implies : a ) The m a s t e r y of m o b i l e o r e a s i l y p o r t a b l e measurement systems and t h e a c q u i s i t i o n of d a t a i n s i t u . b ) C a r e f u l f o r e t h o u g h t . S i n c e e x p e r i m e n t a l r u n s a r e s h o r t ( t w i c e 15 days i n t h e c a s e of T u n i s ) it i s i m p o r t a n t t h a t a s many u s e f u l m e t e o r o l o g i c a l s i t u a t i o n s as p o s s i b l e should b e e n c o u n t e r e d . T h i s may b e a c h i e v e d by c o n s u l t i n g t h e r e c o r d s of t h e m e t e o r o l o g i c a l s y n o p t i c g r i d , u s u a l l y a v a i l a b l e , and by c l o s e c o o p e r a t i o n
w i t h t h e a u t h o r i t i e s concerned. c ) A d e t a i l e d a n a l y s i s of t h e d a t a o b t a i n e d (computer p r o c e s s i n g ) . Given t h e s e p r e c a u t i o n s i t i s p o s s i b l e t o o b t a i n , q u i c k l y and a t minimum c o s t , enough i n f o r m a t i o n t o a l l o w :
-
s t a t u t o r y o r technical a n t i - p o l l u t i o n s t e p s t o be taken, t h e i n s t a l l a t i o n of a permanent m o n i t o r i n g system t o b e o p t i m i s e d .
ACKNOWLEDGEMENTS The measurements campaing i n t h e c i t y of T u n i s was f i n a n c e d i n t h e c o n t e x t of Franco-Tunisian agreements by t h e French Environment M i n i s t r y , and backed by t h e T u n i s i a n A g r i c u l t u r e M i n i s t r y and t h e T u n i s i a n N a t i o n a l M e t e o r o l o g i c a l Bureau
.
REFERENCES 1 J . D e l s e y , L a p o l l u t i o n due aux moyens d e t r a n s p o r t , Note d ' h f o r m a t i o n no 13.
I R T - CERNE - Mars 1979, 56. 2 H.W. G e o r g i i , E . Busch, E . Weber, I n v e s t i g a t i o n o f t h e temporal and s p a t i a l d i s t r i b u t i o n of t h e immission c o n c e n t r a t i o n of c a r b o n monoxyde i n F r a n k f u r t / Main, R e p o r t s of t h e I n s t i t u t e f o r Meteorology and Geophysics of t h e Univers i t y of F r a n k f u r t h i n , May 1967. 3 R . J . Larbey, Tendances dans l a r 6 d u c t i o n d e s 6 m i s s i o n s 1 l'dchappement d e s v o i t u r e s europdennes e t amGricaines, OP 7 9 / 1 . O c t e l S.A., P a r i s , J a n v i e r 1979. 4 P . J a r r a u l t , L i m i t a t i o n s d e s dmissions d e p o l l u a n t s e t q u a l i t 6 d e l ' a i r . V a l e u r s r d g l e m e n t a i r e s en v i g u e u r e n 1980 d a n s l e s p r i n c i p a u x pays i n d u s t r i e l s . Normes d e Q u a l i t 6 d ' A i r , Volume I , I n s t i t u t FranGais d e l ' E n e r g i e , no 66, 1980.
5 A i r q u a l i t y c r i t e r i a f o r c a r b o n monoxide, U.S. Department of H e a l t h . Education, and W e l f a r e , C h a p i t r e 8 , p. 1-57. C h a p i t r e 9, p . 1-20. March 1970.
This Page Intentionally Left Blank
69
MODELING
More specialized meetings, such as the Worth A t l a n t i c Treaty Organization's Committee f o r Challenges of t h e Modern Society: Expert Panel on Air Pollution Modelling o r the American Meteorological S o c i e t y ' s Symposia on Turbulence, Diffusion and Air Pollution deal more with submodules of the models and aim r a t h e r a t t h e development of modeling as a t o o l . A . Eschenroeder points towards t h e use of such t o o l s - - chemical a n d dispersion modules -- i n s e t t i n g l i m i t s and designing s t r a t e g i e s f o r a i r q u a l i t y improvements. The paper of G . Neumann-Hauf and G. H a l b r i t t e r i s in t h e same extensive s p i r i t : modeling i s used t o assess t h e environmental impacts t o be expected, in t h i s case those of an expanded use of coal in the Federal Republic i n Germany. In both i n s t a n c e s , t h i s i s a f a r cry from modeling as an i n t e l l e c t u a l exercise.
The a i r pollution model serves t o
improve our standards of l i v i n g , health included, a t l e s s c o s t and l e s s liquid-fuel expenditure. Subsequent papers discuss more speci i c a s p e c t s , mostly representing t o p i c s of considerable present i n t e r e s t episode f o r e c a s t , calm wind conditions, problems of complex t e r r a i n transport.
accidental r e l e a s e s a n d mesoscale
This Page Intentionally Left Blank
71
ATMOSPHERIC DYNAMICS OF NOx E M I S S I O N CONTROLS
ALAN ESCHENROEDER Arthur
D. L i t t l e , I n c . , Cambridge, Massachusetts, USA
ABSTRACT Fundamental p h y s i c a l and chemical processes i n f l u e n c i n g t h e e f f e c t i v e n e s s of o x i d e s o f n i t r o g e n (NOx) a i r p o l l u t i o n c o n t r o l s a r e surveyed i n t h i s paper. Phenomenological d e s c r i p t i o n s a r e t r e a t e d f o r some of t h e main f e a t u r e s analyzed i n r e c e n t r e s e a r c h work.
The p a r t i c i p a t i o n o f NOx as a p r e c u r s o r t o secondary
p o l l u t a n t s depends b o t h on t h e r a t e o f m i x i n g and t h e r a t e o f r e a c t i o n w i t h o t h e r atmospheric p r e c u r s o r r e a c t a n t s .
M i x i n g i n t h e l a r g e s c a l e may depend on plume
d i s p e r s i o n and i n t h e s m a l l s c a l e on cascading o f t u r b u l e n t c o n c e n t r a t i o n eddies down t o m o l e c u l a r s c a l e . n i t r i c o x i d e (NG),
A c c o r d i n g l y , r e a c t i o n s between t h e p r i m a r y e m i t t a n t ,
and ambient ozone
(0,) produce s h o r t - t e r m n i t r o g e n d i o x i d e
(NO2); whereas l o n g e r t e r m g e n e r a t i o n depends on o r g a n i c a l l y - d e r i v e d c h a i n c a r r i e r s t h a t o x i d i z e NO t o NO2.
These i n t e r a c t i o n s between emissions and t h e en-
v i r o n m e n t p l a y key r o l e s i n s e t t i n g l i m i t s on b o t h 0, and NO2-production t h r o u g h the a l t e r a t i o n o f emission r a t e s .
The paper concludes w i t h some b a s i c c r i t e r i a
t h a t must be addressed i n d e s i g n i n g s t r a t e g i e s f o r a i r q u a l i t y improvements t h r o u g h NOx emissions c o n t r o l .
INTRODUCTION Ba c kq r o und F o s s i l f u e l combustion i s t h e m a i n a n t h r o p o g e n i c o r i g i n o f o x i d e s o f n i t r o g e n e m i s s i o n s i n t o t h e atmosphere.
N i t r i c o x i d e i s t h e p r i n c i p a l compound e m i t t e d
d i r e c t l y by combustion sources; however, o u r main concern i s t h e chemical format i o n o f t h e secondary p o l l u t a n t s , n i t r o g e n d i o x i d e and ozone, i n areas o f potent i a l human exposure.
Because o f t h e q u a n t i t y generated and t h e widespread
p o t e n t i a l f o r adverse e f f e c t s on p u b l i c h e a l t h and w e l f a r e , NOx emissions and a s s o c i a t e d secondary p o l l u t a n t s have been t h e s u b j e c t o f s t a n d a r d - s e t t i n g and r u l e m a k i n g by e n v i r n n m e n t a l management a u t h o r i t i e s . T h i s paper t r a c e s t h e consequences o f changing NOx emissions t h r o u g h t h e i r t r a n s p o r t , d i s p e r s i o n , t r a n s f o r m a t i o n and f a t e i n t h e atmosphere.
Principal
72
e f f e c t s a r e t r e a t e d h e r e w i t h q u a n t i t a t i v e examples i l l u s t r a t i n g t h e i n t e r a c t i o n s governing these e f f e c t s .
The t h e o r e t i c a l and e x p e r i m e n t a l f o u n d a t i o n s o f
t h e examples a r e drawn f r o m t h e l i t e r a t u r e ; t h e r e f o r e , o n l y t h e h i g h l i g h t s l e a r n e d f r o m t h e r e s u l t s a r e d i s c u s s e d below.
The e x p e r i e n c e i n t h e USA i s
chosen t o p r o v i d e most o f t h e q u a n t i t a t i v e aspects o f t h e t r e a t m e n t because of i t s e x t e n s i v e documentation i n t h e p u b l i c domain.
Thus, o u r scope i s l i m i t e d t o
t h e emphasis o f a few s i g n i f i c a n t phenomena p u n c t u a t e d w i t h examples based on methods t h a t a r e comprehensively developed elsewhere. Receptor E f f e c t s B e f o r e we examine t h e consequences o f c o n t r o l e f f o r t s , i t i s i n s t r u c t i v e t o g e t some p e r s p e c t i v e r e g a r d i n g t h e i r p r i m a r y g o a l s : health.
t h e p r o t e c t i o n of p u b l i c
The q u a l i t a t i v e s i m i l a r i t y o f n i t r o g e n d i o x i d e h e a l t h e f f e c t s and those
o f ozone i s expressed e i t h e r as suspected i n c r e a s e s i n c h r o n i c pulmonary disease (e.g.,
emphysema o r b r o n c h i t i s ) o r i n c r e a s e s i n t h e d i s a b i l i t y due t o p r e e x i s t -
i n g c h r o n i c pulmonary d i s e a s e .
Acute e f f e c t s a t t r i b u t e d t o exposures t o these
p o l l u t a n t s a r e i n c r e a s e s i n r e s p i r a t i o n r a t e and decrease i n t i d a l volume.
Also,
i n c r e a s e d s u s c e p t i b i l i t y t o r e s p i r a t o r y i n f e c t i o n has been under i n v e s t i g a t i o n f o r b o t h O3 and NO2.
The l i t e r a t u r e on t h e s e h e a l t h e f f e c t s and t h e i r i n v e s t i -
g a t i o n i s summarized i n d e t a i l i n r e f s . 1, 2 and 3; t h e r e f o r e , f u r t h e r c i t a t i o n s w i l l n o t be made h e r e . C o n t r o l agencies s e t ambient g o a l s f o r a i r q u a l i t y a c c o r d i n g t o c r i t e r i a based on n o t i o n s o f dose-response b e h a v i o r o f t h e p o l l u t a n t s .
Because of funda-
m e n t a l s c i e n t i f i c and e t h i c a l problems, we c a n n o t know w i t h c e r t a i n t y t h e doseresponse c h a r a c t e r i s t i c s ; t h u s , s t a n d a r d - s e t t i n g must proceed on t h e b a s i s o f c o l l e c t i v e opinions o f experts.
S i n c e t h i s i s an accepted approach, i t seems
r e a s o n a b l e t o use a q u a n t i t a t i v e method based on c o l l e c t i v e judgments of doseresponse e f f e c t s .
T h i s has been d e v i s e d ( 4 ) u s i n g a D e l p h i s t u d y approach w i t h
a panel o f f o u r t e e n m e d i c a l e x p e r t s .
F i g . 1 shows t h e ranges o f dose-response
t h u s o b t a i n e d f o r n i t r o g e n d i o x i d e compared w i t h t h o s e f o r ozone (as a s u r r o g a t e f o r photochemical o x i d a n t ) .
The upper l i m i t o f each dose response area i s
e s t a b l i s h e d by i n c a p a c i t y l e v e l s w h i l e t h e l o w e r corresponds t o d i s c o m f o r t levels.
The reason t h a t t h e c h a r a c t e r i s t i c s f o r t h e two p o l l u t a n t s can be com-
p a r e d on t h e same p l o t i s t h a t i d e n t i c a l approaches a r e used f o r d e f i n i n g t h e c o n d i t i o n s o f i n c a p a c i t y and d i s c o m f o r t f o r b o t h p o l l u t a n t s f o r normal i n d i v i duals.
The d e f i n i t i o n used f o r i n c a p a c i t y i s :
"May p r e c i p i t a t e r e s p i r a t o r y and c a r d i a c problems, broncho-pneumonia." The d e f i n i t i o n used f o r d i s c o m f o r t i s : "Eye i r r i t a t i o n ; n o n - p r o d u c t i v e coughing, c h e s t t i g h t n e s s . "
A v e r y i m p o r t a n t c o n c l u s i o n t o b e drawn f r o m F i g . 1 i s t h a t n i t r o g e n d i o x i d e c o n c e n t r a t i o n s must be 5 t o 10 t i m e s t h o s e o f ozone t o produce t h e same e f f e c t .
73
T
T
I = Incapacity D = Discomfort
1 I
5
I 10
I
I
20
1 1 , I I I 40 50 70 80 90 Percent of Population Responding
95
3
F i g . 1. D e l p h i dose-response curves f o r normal a d u l t s exposed t o n i t r o g e n d i o x i d e and t o ozone ( 4 ) . D e s p i t e t h e l a r g e range o f v a l u e s between d i s c o m f o r t and d i s a b i l i t y , t h i s f i n d ing i s distinctly significant.
The U.S.
s t a n d a r d f o r n i t r o g e n d i o x i d e i s 0.05 ppm
on an annual b a s i s , b u t F i g . 1 i s f o r a c u t e e f f e c t s t h a t p e r s i s t f o r p e r i o d s measured i n hours.
The C a l i f o r n i a s t a n d a r d f o r one h o u r i s 0.25 ppm f o r n i t r o h o u r l y s t a n d a r d i s 0.12 ppm f o r ozone.
gen d i o x i d e and t h e U.S.
t h a t t h e former i s f a r more c o n s e r v a t i v e t h a n t h e l a t t e r .
I t would appear
lhese considerations
e s t a b l i s h t h e magnitude o f t h e g o a l s o f a c o n t r o l program f o r l i m i t i n g n i t r o g e n d i o x i d e and ozone by NO
X
emissions r e s t r i c t i o n s .
view of t h e o t h e r s i d e o f t h e problem: various source categories.
L e t us t u r n now t o an over-
t h e magnitude o f t h e emissions from
Emission Sources The U.S.
i n v e n t o r y of NOx emissions f o r e i g h t y e a r s d u r i n g t h e p a s t decade i s
summarized i n T a b l e I .
The p r o p o r t i o n s o f t h e e m i s s i o n problem a r e t h a t s t a -
t i o n a r y combustion i n c l u d i n g e l e c t r i c u t i l i t i e s , i n d u s t r i a l and space h e a t i n g , i s s t e a d i l y r e s p o n s i b l e f o r a p p r o x i m a t e l y 56% o f t h e emissions, w h i l e v e h i c u l a r sources a c c o u n t f o r 38 t o 40% o f t h e emissions.
Electric u t i l i t i e s contribute
a p p r o x i m a t e l y h a l f of t h e s t a t i o n a r y combustion source emissions on a n a t i o n a l basis.
R e l a t i v e l y l i t t l e i s c o n t r i b u t e d by t h e o t h e r t h r e e source c a t e g o r i e s .
TABLE 1
6 (10 M t / y r ) (Ref. 5
Oxides o f N i t r o g e n Emissions E s t i m a t e s f o r t h e U.S. S t a t iona ry
Industrial
Solid Total
1970 1971 1972 1973 1974 1975 1976 1977
7.9 8.7 9.0 8.6 8.6 9.4 9.2
11.3 11.9 12.3 12.1 11.5 12.4 13.0
0.6 0.7 0.7 0.7 0.7 0.7 0.7
0.2 0.2 0.2 0.2 0.1 0.1 0.1
0.2 0.1 0.1 0.1 0.2 0.1
19.6 20.2 21.6 22.3 21.7 21 .o 22.8 23.1
I t appears f r o m t h i s t a b l e as i f t h e main c o n t r o l i s s u e i s b a l a n c i n g s t r a t e g i e s between t r a n s p o r t a t i o n and s t a t i o n a r y f u e l combustion sources.
The growth w i t h
t i m e o f t h e f o r m e r averages f i f t y p e r c e n t h i g h e r t h a n t h a t o f t h e l a t t e r source category . Approach o f t h i s Paper With these perspectives i n mind f o r t h e receptor effects
and f o r t h e source
c o n t r i b u t i o n s , we w i l l focus on t h e atmospheric c o n n e c t i o n between t h e two f o r t h e remainder o f t h i s paper.
I n t h e n e x t s e c t i o n we examine t h e p h y s i c a l i n f l u -
ences o f t h e atmosphere on t h e NOx emissions as t h e y a r e t r a n s p o r t e d and mixed. F o l l o w i n g t h a t i s a s e c t i o n d i s c u s s i n g t h e chemical t r a n s f o r m a t i o n s t h a t f o r m pathways f o r NO2 and O3 p r o d u c t i o n and removal.
The c o u p l i n g o f t h e t u r b u l e n t
e n t r a i n m e n t w i t h t h e NOx-03 chemical c y c l e l e a d s us i n t o t h e s e c t i o n on l o c a l and r e g i o n a l i m p l i c a t i o n s o f NOx-control i n t h e South Coast A i r B a s i n o f California.
A b r i e f s e t o f c o n c l u d i n g remarks c l o s e s t h e paper.
ATMOSPHERIC PHYSICAL EFFECTS V e r t i c a l D i s p e r s i o n I n f l u e n c e s on Short-Term Impacts The s u r f a c e c o n c e n t r a t i o n d i s t r i b u t i o n of p o l l u t a n t s produced by NOx emiss i o n s i s e s t a b l i s h e d by t h e p a t t e r n o f sources and by m e t e o r o l o g i c a l processes. I n t h e p r e v i o u s s e c t i o n we n o t e d t h a t NO,
sources f e l l i n t o two p r i m a r y c a t e -
g o r i e s : t r a n s p o r t a t i o n and s t a t i o n a r y combustion.
L e t us examine by way o f a
highly s i m p l i f i e d a n a l y s i s t h e r e l a t i v e ground concentration contribution of uniformly deployed area sources ( t o model t r a n s p o r t a t i o n ) and an elevated source ( t o model combustion e m i t t e r s g e n e r i c a l l y ) . Selecting the South Coast Air Basin (SCAB) o f C a l i f o r n i a as a t e s t environment, we can c o n s t r u c t t h e a n a l y s i s based on r e a l i s t i c ranges of parameters. Since NOx emissions a r e precursors of b o t h NO2 and O3 formation, t h e i r morning concentrations along with those of organic gases a r e considered c r i t i c a l i n determining the secondary p o l l u t a n t l e v e l s . This meteorology a l s o simulates p e r s i s t e n t conditions on winter mornings when NO2 episodes occur. I n e i t h e r event i t c o n s t i t u t e s an extreme lower l i m i t of elevated source influence. (Following t h i s a n a l y s i s i s a treatment of an upper l i m i t c a s e . ) T h u s , we w i l l assume s t a b l e atmospheric conditions c h a r a c t e r i s t i c of a t h i c k surface based inversion i n the morning i n the SCAB.
Fig. 2 . Qe @
Xe xY u Y o
Z
Geometry of d i f f u s i o n source configuration Strength of source a t (O,O,H) Source f l u x over (q x 6 ) area Concentration a t ground due t o elevated source = Concentration a t ground due t o surface sources = = Horizontal d i f f u s i o n parameter = Vertical d i f f u s i o n parameter = =
Figure 2 i l l u s t r a t e s t h e geometry assumed. Elevated sources a r e aggregated a t a s i n g l e height and l a t e r i t w i l l be seen t h a t t h e i r horizontal dispersion parameter (T i s forced t o approach q / 2 as x 5 t o model t h e merging of multiple Y plumes a t some e l e v a t i o n within the broad f l a t urban plume. Neglecting chemistry we f i n d t h a t the s u r f a c e concentration a t the downwind edge of t h e rectangle ( x = 5 ; z = 0) i s approximated by -f
Mass p e r u n i t volume o f p o l l u t a n t e m i t t e d by ground-based sources D i s t a n c e s i n c o o r d i n a t e frame d e f i n e d i n F i g u r e 2 Mass e m i s s i o n r a t e p e r u n i t area f r o m surface-based sources assuming a u n i f o r m d i s t r i b u t i o n a t t h e average v a l u e Wind speed D i s p e r s i o n parameter Eq. ( 1 ) i s o b t a i n e d f o l l o w i n g t h e approach o f H o l z w o r t h ( 6 ) and Lucas ( 7 ) who assumed t h a t t h e s u r f a c e sources were approximated by a n a g g r e g a t i o n o f doubly
i n f i n i t e c r o s s w i n d l i n e sources. i n t e r e s t ; i . e . uz <<
0.
T h i s i s a good a p p r o x i m a t i o n f o r t h e case of
I f t h e ASME power law f o r m u l a s ( 8 ) a r e employed f o r t h e b where values o f a and b a r e em-
d i s p e r s i o n parameters uz t a k e s the f o r m o f ax
p i r i c a l l y d e t e r m i n e d f o r each s t a b i i i t y c l a s s . Using t h i s t o i n t e g r a t e t q . ( l ) , we o b t a i n
xg =
2Qg 5 uzu(l-b)
The c o r r e s p o n d i n g e x p r e s s i o n f o r t h e s u r f a c e c o n c e n t r a t i o n under t h e a x i s o f t h e e l e v a t e d s o u r c e plume i s ( 9 )
Now i f we d e f i n e t h e t o t a l mass e m i t t e d by ground-based sources as Q obtain Q
=
@gn 5.
we g’ We f i n d by s u b s t i t u t i o n o f t h i s r e l a t i o n s h i p i n t h e concen-
g t r a t i on e q u a t i o n s t h a t
(4) Z
Note t h a t t h e geometry and w i n d dependence vanishes e x c e p t for t h e argument of t h e e x p o n e n t i a l where H depends upon u and u z , upon 5 f o r any p a r t i c u l a r source configuration.
F i g u r e 3 shows t h e i n f l u e n c e c o e f f i c i e n t K as i t depends upon
plume h e i g h t H where
K i s d e f i n e d on t h e p l o t .
77
0.25
am
0.20
-
m x ‘a, 0.15
-
,a‘
a .I. I
-111 A’
Y +a,
‘G .- 0.10
-
Lc
a,
0 01
c
-2
0.05
-
Lc
-C 0
0.1
0.2 0.3 Plume Height - km
0.4
0.5
F i g . 3. Surface c o n c e n t r a t i o n i n f l u e n c e o f e l e v a t e d sources r e l a t i v e t o s u r f a c e based a r e a sources under s t a b l e c o n d i t i o n s ( b = 0 . 7 1 )
Examining E q . 4 and F i g . 3, we n o t e s e v e r a l s i g n i f i c a n t f e a t u r e s : The downwind d i s t a n c e and w i n d speed dependences a r e i m p l i c i t i n
ti and uz. A l l i n f l u e n c e curves appear t o approach maximum K v a l u e s between 20 and 25% r e g a r d l e s s of downwind d i s t a n c e . F o r t y p i c a l plume h e i g h t s , t h e i n f l u e n c e c o e f f i c i e n t i s more n e a r l y 10%. Thus, a t e x t r e m e l y l o w - l i d d e d i n v e r s i o n c o n d i t i o n s , t h e s u r f a c e c o n c e n t r a t i o n c o n t r i b u t i o n of e l e v a t e d sources r e l a t i v e t o t h a t o f surface-based a r e a sources i s o n l y 10 t o 20%.
L e t us now t u r n b r i e f l y t o t h e o t h e r extreme, t h a t o f c l o s e range plume i m pact.
The s c e n a r i o chosen h e r e i s an e l e v a t e d i n v e r s i o n base a t t h e a s y m p t o t i c
h e i g h t o f t h e plume.
T h i s c o n d i t i o n p r e c l u d e s upward p e n e t r a t i o n o f t h e i n v e r -
s i o n by t h e plume and c o n f i n e s d i s p e r s i o n t o downward f u m i g a t i o n .
I f we assume
( 9 ) t h a t t h e plume f i l l s t h e u n s t a b l e l a y e r u n d e r l y i n g t h e i n v e r s i o n l a y e r a t we f i n d t h e f o l l o w i n g
a downwind d i s t a n c e o f t w i c e t h a t where o z = 0.47H,
c h a r a c t e r i s t i c s f o r m i n i m i z i n g t h e d i s t a n c e f o r plume touchdown f o r t h e SCAB
78 e l e v a t e d sources : 6
I n v e r s i o n base e l e v a t i o n s between 600 and 800 m above an u n s t a b l e l a y e r .
0
Downwind d i s t a n c e s o f 6 t o 10 km.
Under t h e s e c o n d i t i o n s , e p i s o d e l e v e l NU2 c o n c e n t r a t i o n s a r e n o t a c h i e v e d because i n c i d e n t s o l a r energy s u f f i c i e n t t o s u p p o r t > 600 m u n s t a b l e l a y e r depths r a p i d l y d r i v e s t h e p h o t o c h e m i s t r y w e l l beyond t h e NO2 p e a k i n g phase.
A t down-
wind d i s t a n c e s o f 6 t o 10 km f r o m t h e s o u r c e under t h e s e u n s t a b l e c o n d i t i o n s , t h e l a t e r a l s p r e a d i n g o f t h e plume w i l l be l a r g e and
t i t r a t i o n o f ozone w i l l be t h e
p r i m a r y chemical s t e p o c c u r r i n g i n t h e a f f e c t e d environment (see t h e n e x t sect i o n f o r e x p l a n a t i o n s o f t h e chemical dynamics o f NO2-peaking and t i t r a t i o n by ozone). Weinstock, Chang and Norbeck ( 1 0 ) have i n v e s t i g a t e d t h e combined m i x i n g and p h o t o c h e m i s t r y i n an i n v e s t i g a t i o n o f t h e r e l a t i v e e f f e c t i v e n e s s o f v e h i c l e e m i s s i o n c o n t r o l and s t a t i o n a r y power p l a n t e m i s s i o n c o n t r o l .
They used a photo-
chemical d i f f u s i o n model w i t h c a r e f u l l y d e r i v e d m e t e o r o l o g i c a l d a t a and emissions i n p u t s d r i v i n g a n u m e r i c a l s o l u t i o n o f an a i r p a r c e l h i s t o r y .
The c o n c l u s i o n s
drawn above f o r e p i s o d e m e t e o r o l o g i c a l c o n d i t i o n s were s u p p o r t e d g e n e r a l l y by the findings o f r e f .
10.
I f t h e emissions o f , say, e l e c t r i c a l u t i l i t y sources were o n l y o n e - f i f t h o f
t h o s e o f t h e t r a n s p o r t a t i o n sources ( w h i c h t h e y were a p p r o x i m a t e l y i n t h e 1979 i n v e n t o r y ) , t h e i r s u r f a c e c o n c e n t r a t i o n c o n t r i b u t i o r k would b e i n t h e r a t i o o f o n l y 1:26 because o f t h e
%
20% i n f l u e n c e c o e f f i c i e n t f o r e l e v a t e d sources.
In a
s i m p l i f i e d example where t h e s e were t h e o n l y sources, a 50% r e d u c t i o n i n v e h i c l e emissions would reduce t h e s u r f a c e c o n c e n t r a t i o n b y 48%; whereas a 50% r e d u c t i o n i n power p l a n t emissions would reduce t h e s u r f a c e c o n c e n t r a t i o n by o n l y 1.9%. I f p r o p o r t i o n a l r o l l b a c k were used f o r each c l a s s o f s o u r c e i n t h e 1 : 5 emissions
r a t i o scenario,
t h e 50% emissions r e d u c t i o n s i n each s o u r c e c l a s s would y i e l d
e s t i m a t e d c o n c e n t r a t i o n decreases o f 42% and 8% r e s p e c t i v e l y .
Thus, a p p l i c a t i o n
o f p r o p o r t i o n a l r o l l b a c k would g i v e t h o s e r e s p o n s i b l e f o r v e h i c l e systems a b a s i s f o r c o m p l a i n t t h a t t h e i r already-mandated e x h a u s t c o n t r o l s a r e b e i n g undercounted; whereas t h o s e r e s p o n s i b l e f o r i n s t a l l i n g power p l a n t systems would have cause f o r c o m p l a i n t t h a t f u t u r e l a r g e emissions r e d u c t i o n s would n o t be c o s t e f f e c t i v e because o f a n o v e r e s t i m a t e o f t h e i r b e n e f i t s u s i n g r o l l b a c k .
Feedback
f r o m t h e s e two i n d u s t r i a l groups has r e s u l t e d i n p r o p o s i n g m o d i f i e d c o n t r o l system g o a l s f o r b o t h sources by F e d e r a l , s t a t e and r e g i o n a l a u t h o r i t i e s .
This
s h i f t i n p o l i c y a l s o tends t o be s u p p o r t e d by d i s p a r i t i e s between human h e a l t h tolerance levels o f
NO2 and O 3 i l l u s t r a t e d i n F i g . 1.
As we s h a l l see i n t h e
chemical s e c t i o n o f t h i s paper, a n e a r - f i e l d r e d u c t i o n i n NO2 f r e q u e n t l y r e p l a c e s t h e NO
2
w i t h O3 on a o n e - f o r - o n e b a s i s .
79 H o r i z o n t a l T r a n s p o r t I n f l u e n c e s on A n n u a l l y Averaged Impacts A l t h o u g h t h e most p r o m i n e n t l y d i s c u s s e d h e a l t h e f f e c t s o f NO2 a r e a c u t e ones due t o s h o r t - t e r m exposures, t h e N a t i o n a l Ambient A i r Q u a l i t y Standard f o r t h e U.S. i s an annual average. d a t a f o r NO2 ( r e f s . standard).
( D i f f i c u l t i e s i n a s s e s s i n g t o x i c o l o g i c a l and e p i d e m i o l o g i c a l
1, 2, 3 and 4) have d e l a y e d t h e a d o p t i o n o f a s h o r t - t e r n
I n response t o t h i s r e g u l a t o r y c l i m a t e , G u t f r e u n d and c o l l e a g u e s (11)
have developed and a p p l i e d a s e m i - e m p i r i c a l model t o p r o v i d e q u a n t i t a t i v e e s t i mates o f each m a i n e m i s s i o n s o u r c e c a t e g o r y t o t h e annual average NO2 c o n c e n t r a t i o n a t any s p e c i f i e d m o n i t o r i n g s t a t i o n .
l h e model approach, which emphasizes conser-
v a t i v e ( h i g h ) e s t i m a t e s of p r i n c i p a l e l e v a t e d s t a t i o n a r y c o n t r i b u t i o n s ,
i s in-
tended t o t r e a t : 0
complex f l o w f i e l d s such as t h o s e i n t h e SCAB
0
NOx l o s s t h r o u g h d e p o s i t i o n o r n i t r i c a c i d f o r m a t i o n
0
v a r i a t i o n i n mixing height
0
day-to-day c a r r y o v e r o f p o l l u t a n t s
I n c o n t r a s t t o t h e a n a l y s i s p r e s e n t e d above, t h i s model focuses on t h e h o r i z o n t a l t r a n s p o r t o f p o i n t s o u r c e e m i s s i o n s averaged o v e r many hours ( t h r e e y e a r s : 1974, 1975 and 1979).
I t assumes a l l NOx i s e m i t t e d and i s homogenously mixed f r o m t h e
s u r f a c e t o t h e m i x i n g h e i g h t ; i t f u r t h e r assumes t h a t a l l o f t h e NOx i n t h e gas phase i s NO2 a t a l l p o i n t s .
The combined s u r f a c e and n i t r i c a c i d loss pathways
a r e r e p r e s e n t e d b y a c o n s t a n t 7% p e r h o u r l o s s . These assumptions a r e embodied i n a n a i r p a r c e l t r a c k i n g program ( t h a t g i v e s t h e model i t s name: NOXTRAK) t h a t uses t h r e e h o u r l y averaged windspeeds t o c a l c u l a t e t r a j e c t o r i e s downwind f r o m each m a j o r ( r e f i n e r y o r power p l a n t ) s t a t i o n a r y p o i n t s o u r c e o f NOx u n t i l i t l e a v e s t h e b a s i n o r i t d i s s i p a t e s t h e NOx l e v e l below a c e r t a i n preset threshold.
T h i s i m a g i n a r y p a c k e t o f a i r has a h e i g h t equal t o
t h e m i x i n g h e i g h t , a w i d t h o f 10 km c e n t e r e d on each mass p o i n t on t h e t r a j e c t o r y and a l e n g t h e s t i m a t e d by t h e t i m e i n t e r v a l o f c o m p u t a t i o n ( 1 5 m i n u t e s ) d i v i d e d by t h e w i n d speed as t h e a i r passes o v e r t h e source.
D i r e c t i o n s and speeds t h a t
d e t e r m i n e t h e 15-minute v e c t o r s a r e i n t e r p o l a t e d among n e i g h b o r i n g m e t e o r o l o g i c a l stations.
The c o n c e n t r a t i o n i n t h e moving box i s t h e e m i s s i o n r a t e of t h e p o i n t
s o u r c e t i m e s t h e t i m e s p e n t o v e r t h e s o u r c e d i v i d e d by t h e box volume.
T h i s con-
c e n t r a t i o n i s i n f l u e n c e d o n l y by t h e l o s s processes c i t e d above d u r i n g t h e subsequent h i s t o r y o f i t s t r a v e l .
Any m o n i t o r i n g s t a t i o n t r a v e r s e d by i t s 10 km wide
swath i s counted as a " h i t " a t t h e c o n c e n t r a t i o n c u r r e n t l y i n t h e box.
The number
o f h i t s , each w e i g h t e d b y t h e c o n c e n t r a t i o n a r e counted f o r each s o u r c e - r e c e p t o r p a i r and t h e c o n t r i b u t i o n o f t h e p o i n t sources w i t h i n a c l a s s t o each s t a t i o n ' s annual average. A t t h i s p o i n t t h e t r a j e c t o r y m o d e l i n g i s complete, and t h e sum o f t h e p o i n t sources i s s u b t r a c t e d f r o m t h e observed annual average f o r t h e s t a t i o n o v e r t h e
80 corresponding time i n t e r v a l .
T h i s p r o c e d u r e i s t h e e m p i r i c a l p a r t o f t h e approach.
The remainder i s a p p o r t i o n e d i n t o m o b i l e sources and o t h e r sources u s i n g p u b l i s h e d emissions i n v e n t o r y and m e t e o r o l o g i c a l d a t a i n a m u l t i - s o u r c e Gaussian d i s p e r s i o n model w i t h a l l NOx assumed t o be
NO2. Thus, f r o m NOXTRAK t r a j e c t o r y a n a l y s i s , t h e
e l e c t r i c power and p e t r o l e u m i n d u s t r y c o n t r i b u t i o n s a r e determined s y n t h e t i c a l l y . From t h e measured v a l u e of t o t a l annual average and f r o m m o d e l - d e r i v e d a p p o r t i o n ilient t h e m o b i l e and o t h e r s o u r c e c o n t r i b u t i o n s a r e determined a n a l y t i c a l l y . F o r t h e y e a r s s t a t e d above, t h e c a l c u l a t i o n s (11) y i e l d v a l u e s o f t h e measure of e f f e c t i v e n e s s o f r e d u c t i o n s i n annual average NO
2 c o n c e n t r a t i o n s as a conse-
quence of r e d u c t i o n s i n emissions f r o m each d e s i g n a t e d s o u r c e c a t e g o r y . [his i s 3 s t a t e d as AX/AQ, o r t h e change i n c o n c e n t r a t i o n (ug/ni ) p e r u n i t change i n emissions (kg/s).
H i g h e r v a l u e s o f A X / A Q denote h i g h e r degrees of a s o u r c e t y p e ' s
i n f l u e n c e on p r o d u c i n g a c o n c e n t r a t i o n r e d u c t i o n t h r o u g h c o n t r o l o f t h e emissions o f t h a t source type.
T a b l e 2 d i s p l a y s t h e e f f e c t i v e n e s s of each o f t h e f o u r
s o u r c e t y p e s f o r each of t h e two m o n i t o r i n g s t a t i o n s b e l i e v e d t o pose t h e g r e a t e s t problems i n 1987. TABLE 2 C o n t r o l E f f e c t i v e n e s s ( A x / A Q ) ~by Source ype f o r Two M o n i t o r i n g S t a t i o n s i n t h e South Coast A i r B a s i n o f C a l i f o r n i a (pg/m ) + ( k g / s ) (Ref. 11)
!i
~~~~
Station Source Type M o b i l e Sources E l e c t r i c Power I n d u s t r y Petroleum I n d u s t r y Otherb
Burbank
Pasadena
14.0 2.5 1.0 10.5
13.5 2.0 2.0 8.5
aQ
a
A x 2 Annual average c o n c e n t r a t i o n change;
b
" O t h e r " i n c l u d e s r e s i d e n t i a l space h e a t i n g , r a i l w a y o p e r a t i o n s , d i e s e l c o n s t r u c t i o n equipment, i n d u s t r i a l b o i l e r s and j e t a i r c r a f t
5
E m i s s i o n change
S e v e r a l s i g n i f i c a n t c o n c l u s i o n s emerge t r o m T a b l e 2: 0
M o t o r v e h i c l e c o n t r o l s a r e many times more e f f e c t i v e as t h o s e on
0
The b a s i c p a t t e r n of p r o p o r t i o n a l i t y i s r e p i i c a t e d a t t h e two
r e f i n e r i e s and power p l a n t s i n r e d u c i n g t h e annual coverage. stations. Based on a n a l y s i s o f t h e s i x h i g h e s t s t a t i o n s , i t was concluded by G u t f r e u n d e t a1 ( 1 1 ) t h a t m o t o r v e h i c l e c o n t r o l s a r e i n t h e a r e a o f f o u r t i m e s h i g h e r on t h e A x / A Q s c a l e t h a n power p l a n t s and r e f i n e r i e s .
R e t u r n i n g t o o u r example a t t h e end o f t h e l a s t s u b s e c t i o n i n w h i c h i t was assumed t h a t e l e c t r i c u t i l i t y sources were h a l f of t h e motor v e h i c l e sources i n aggregate emissions, we can r e r u n t h e comparison between model r e s u l t s p r e s e n t e d h e r e and r o l l b a c k .
Using G u t f r e u n d ' s e s t i m a t e of f o u r f o r t h e e f f e c t i v e n e s s r a t i o ,
we f i n d t h a t 50% r e d u c t i o n o f t h e m o t o r v e h i c l e e m i s s i o n s a l o n e w o u l d improve t h e combined ( m o t o r v e h i c l e p l u s e l e c t r i c u t i l i t y ) c o n t r i b u t i o n by 47%; whereas a 50%
81 e l e c t r i c u t i l i t y emissions c u t would o n l y e f f e c t a 2.4% improvement i n t h e annual average c o n c e n t r a t i o n o f NO2.
W i t h p r o p o r t i o n a l 50% r o l l b a c k o f each source t y p e
i n t h e 1:5 e m i s s i o n s r a t i o we r e c a l l t h a t t h e e s t i m a t e s would have been 42% and 8% i n s t e a d o f 47% and 2.4% r e s p e c t i v e l y .
Again, t h i s i n d i c a t e s t h a t m o t o r v e h i c l e
c o n t r o l s i n p l a c e w i l l be more e f f e c t i v e t h a n p l a n n e d and t h a t proposed e l e v a t e d source c o n t r o l s w i l l b r i n g a b o u t l e s s c o n c e n t r a t i o n r e d u c t i o n t h a n t h e amount hoped f o r on t h e b a s i s o f l i n e a r r o l l b a c k . A l t h o u g h t h e s e d i s c u s s i o n s o f p h y s i c a l a t m o s p h e r i c dynamics o f NUx c o n t r o l a r e f a r f r o m e x h a u s t i v e , t h e y do s e r v e t o p o i n t o u t how modeling r e s u l t s can be used t o a i d i n decision-making.
I t i s g r a t i f y i n g t o note t h a t these a n a l y t i c a l
s t u d i e s t h a t a r e t i e d c l o s e l y t o o b s e r v a t i o n a l d a t a produce c o r r o b o r a t i v e r e s u l t s as t o t h e r e l a t i v e e f f e c t i v e n e s s o f d i f f e r e n t approaches t o NOx c o n t r o l .
L e t us
t u r n now t o t h e p r i m a r i l y chemical aspects o f t h e same problem.
ATMOSPHERIC CHEMICAL EFFECTS
-
The Ozone C y c l e and NOx S i n k s
Emissions o f NOx as t h e y undergo a t m o s p h e r i c processes a r e i n v o l v e d i n pathways l e a d i n g t o NO2 and O 3 formation; mates a r e p l o t t e d i n F i g . 1.
t h e p o l l u t a n t s whose h e a l t h e f f e c t s
esti-
The b e g i n n i n g s of t h e pathways and t h e u l t i m a t e
f a t e o f NOx a r e dominated b y i n o r g a n i c r e a c t i o n s whose r o l e s have been r a t h e r w e l l d e f i n e d (e.g.,
see r e f . 3 ) .
The p a r t i c i p a t i o n o f NO2 and NO i n t h e ozone c y c l e i s d e s c r i b e d b y t h e t h r e e r e a c t i o n steps: hv (290 - 430 nm) + NO2 + O(3P) + NO O (3 P ) + 0 2 + M + 0 3 + M
O3 + NO
+ NO2 + O2
rhe photon o r i g i n a t i n g f r o m u l t r a v i o l e t p o r t i o n s of s u n l i g h t d i s s o c i a t e s NO2 t o f o r m a ground s t a t e oxygen atom which r e a c t s r a p i d l y i n t h e second s t e p t o form ozone.
The ozone r e a c t s i n a c h a r a c t e r i s t i c t i m e o f l e s s t h a n a m i n u t e t o p r o -
duce NO2 and an oxygen m o l e c u l e .
T h i s system e f f e c t i v e l y c o l l a p s e s t o an
e q u i l i b r i u m between photons and NO2 d r i v i n g one way w i t h ozone and NO w o r k i n g i n opposition.
The b a l a n c e i n t h e atmosphere between NO and NO2 i s s e t up by
t h e p h o t o n f l u x and t h e ambient ozone. e m i t t e d , i t i s NO2 t h a t produces 03.
Note t h a t a l t h o u g h p r i m a r i l y NO i s I n t e r v e n i n g i n t h i s c y c l e i s an o r g a n i c a l l y -
s u p p o r t e d pathway f o r o x i d i z i n g NO t o NO2 i n p o l l u t e d atmospheres.
This
mechanism, w h i c h i s d i s c u s s e d i n t h e n e x t s u b s e c t i o n , t i p s t h e b a l a n c e of t h e q u a s i - e q u i l i b r i u m s e t up by (+02)
hv
+ NO2 2
NO + 03
82
toward t h e f o r m a t i o n of more NO2.
Emissions of NO i n i t i a l l y c o n t a c t i n g t h e a i r
g e n e r a t e NO2 r a p i d l y b y t h e t h i r d r e a c t i o n i n t h e s e t i n i t i a l l y i n t r o d u c e d . O t h e r branches o f ozone c y c l e a r e s e t up by
O3
NO2
f
-+
NO3
f
O2
w h i c h feeds NO3 + NO2 + N205 D i n i t r o g e n p e n t o x i d e can r e d i s s o c i a t e t o r e t u r n NO3 and NO2 t o t h e system. Where t h e r e i s a s m a l l c o n c e n t r a t i o n o f NO, such as i n r u r a l areas, t h e ozone p h o t o d i s s o c i a t i o n may be i m p o r t a n t v i a
O3 + hv ( 2 9 0
-
1 350 nm) -+ O2 + O ( D)
-
700 nm)
or
O3
h v (450
f
-+
O2 + O(3P)
T e r m i n a t i o n o f c h a i n s i n v o l v i n g NOx s p e c i e s o c c u r s as a r e s u l t o f s i n k r e actions.
Some o f t h e s e a r e
HO f NO + M N205 f H20
-+
HON02 + M 2 HON02
+.
HONO
+.
and
HO
NO
f
f
M
f
M
p r o d u c i n g n i t r i c a c i d and n i t r o u s a c i d r e s p e c t i v e l y . a t e t o r e t u r n h y d r o x y l (HO) r a d i c a l t o t h e system.
The l a t t e r can p h o t o d i s s o c i -
HO i s p r e s e n t i n p o l l u t e d
atmospheres due t o t h e o r g a n i c r e a c t i o n s and i n n o n p o l l u t e d atmospheres due t o
O(’D)
f
H20 -+ 2HO.
The a c i d - f o r m i n g r e a c t i o n s a r e e x t r e m e l y i m p o r t a n t as c h a i n
t e r m i n a t o r s i n s e t t i n g t h e r e a c t i v i t y l e v e l o f atmospheric m i x t u r e s ; hence, addi n g NOx t o a system i n h i b i t s i t s secondary p o l l u t a n t f o r m i n g p o t e n t i a l . The n e t r e s u l t s of t h e ozone c y c l e r e a c t i o n s and t h e s i n k r e a c t i o n s a r e t o c o n v e r t NO t o NO2 and t o remove t h e s e two s p e c i e s from t h e system r e s p e c t i v e l y . The R o l e o f NOx i n Secondary P o l l u t a n t F o r m a t i o n v i a t h e Organic C y c l e I n urban atmospheres t h e c o n v e r s i o n o f NO t o p r e d i c t e d by t h e r e a c t i o n s o u t l i n e d above.
NO2 goes w e l l beyond t h e amounts
T h i s o c c u r s because of t h e p a r t i c i -
p a t i o n o f o r g a n i c compounds and t h e i r oxygenated i n t e r m e d i a t e s o r p r o d u c t s .
The
o r g a n i c s a r e a t t a c k e d by HO r a d i c a l s t o f o r m a l k y l r a d i c a l s b y
OH + O r g a n i c
-+
Re
+ H20
The a l k y l r a d i c a l (R.),
w h i c h has a f r e e e l e c t r o n , q u i c k l y r e a c t s w i t h m o l e c u l a r
oxygen t o f o r m a l k y l p e r o x y l r a d i c a l s v i a M
+
R.
+ 02
+.
R02@+ M
w h i c h p r o v i d e an oxygen atom t o o x i d i z e NO t o NO2 i n t h e r e a c t i o n ROp t NO +. ROe t NO2
83
The a1 k o x y l RU produces h y d r o p e r o x y l r a d i c a
ROO + 02
-+
OHC + H02*
which regenerates
H02e
f
NU
-+
H02* v i a
OH by way of
OH + NO2.
T h i s i l l u s t r a t e s t h e p r o d u c t i o n of a t l e a s t two NO2 m o l e c u l e s f o r each OH- c y c l e . Because o f o r g a n i c c h a i n b r a n c h i n g , t h i s f a c t o r i s - t y p i c a l l y up a t v a l u e s greater than three. The r e s u l t s o f t h e s e r e a c t i o n s a r e t w o f o l d : ( 1 ) They produce NO2 f r o m NO from t h e oxygen a b s t r a c t i o n from R02*. ( 2 ) They a l l o w ozone t o b u i l d up more t h a n o t h e r w i s e by removing i t s r e a c t i o n p a r t n e r , NU, f r o m t h e system. Hence, t h e presence of o r g a n i c p r i m a r y p o l l u t a n t s enhances t h e r a t e of product i o n o f b o t h o f t h e secondary p o l l u t a n t s , NO2 and 0 3 . F o r p l a n n i n g purposes, an E m p i r i c a l K i n e t i c Model A n a l y s i s (EKMA) has been developed t o r e f l e c t t h e combined r o l e s o f NO, ozone ( 1 2 ) .
and o r g a n i c s i n t h e p r o d u c t i o n o f
EKMA i s based on a k i n e t i c s model ( o r models) t o e s t i m a t e maximum
a f t e r n o o n ozone c o n c e n t r a t i o n as i t depends upon m o r n i n g ambient l e v e l s of nonmethane hydrocarbons (NMHC) and NOx.
I t i s e m p i r i c a l i n t h a t i t uses an ob-
s e r v e d ozone l e v e l and observed p r e c u r s o r r a t i o s (NMHC/NOx) t o l o c a t e an i n i t i a l p o i n t f o r beginning c o n t r o l s t r a t e g y c a l c u l a t i o n s . F i g u r e 4 shows one o f t h e e a r l y EKMAs based on a smog chamber d e r i v e d mechanism t h a t r e p r e s e n t s a t m o s p h e r i c o r g a n i c m i x t u r e s w i t h a s u r r o g a t e m i x t u r e o f propene and n-butane.
E n t e r i n g a t a g i v e n ozone p o i n t a l o n g an i s o p l e t h
d e f i n e d b y a r a y o f c o n s t a n t p r e c u r s o r r a t i o emanating f r o m t h e o r i g i n , we The
scale emissions according t o the precursor concentrations along the axis.
scaled-down c o o r d i n a t e s d e f i n e t h e c o n t r o l p o i n t on t h e diagram which defines a new ozone i s o p l e t h v a l u e . F o r o u r purposes i n t h i s paper, t h e diagram i s used t o i l l u s t r a t e q u a l i t a t i v e t r e n d s r a t h e r t h a n p r e d i c t s p e c i f i c v a l u e s as a r e needed i n s t r a t e g y p l a n n i n g exercises.
Indeed, t h e r e i s c u r r e n t l y a f o r m a l e f f o r t underway t o e v a l u a t e and
r e v i s e EKMA t e c h n o l o g y because of q u e s t i o n s t h a t have a r i s e n f r o m e v a l u a t i o n t e s t s and s p e c i a l a p p l i c a t i o n s .
The most p r o m i n e n t f e a t u r e o f t h e diagram i s
b e s t v i s u a l i z e d by i m a g i n i n g t h a t ozone c o n c e n t r a t i o n i s p l o t t e d o u t o f t h e page i n t h e t h i r d dimension.
A r i d g e i n t h i s ozone s u r f a c e r i s e s f r o m t h e
o r i g i n toward t h e upper r i g h t hand c o r n e r .
This i n d i c a t e s t h a t t h e r e i s a locus
of o p t i m a l p r e c u r s o r c o n c e n t r a t i o n combinations.
Above and t o t h e l e f t o f t h e
r i d g e , NOx decreases t e n d t o i n c r e a s e ozone; t h e r e i t appears as i f NMHC reduct i o n s a l o n e a r e t h e most d i r e c t anil e f f e c t i v e p a t h t o ozone r e d u c t i o n s . r i g h t and below t h e r i d g e ( a t h i g h NMHC/NOx
To t h e
r a t i o s ) , ozone l e v e l s a r e almost
t o t a l l y i n s e n s i t i v e t o NMHC changes w h i l e t h e y a r e d i r e c t l y r e l a t e d t o NO,
84
changes. direction.
Most areas a r e above t h e r i d g e and moving i n a d o m i n a n t l y l e f t w a r d The NOx c o n t r o l i m p l i c a t i o n s a r e o b v i o u s :
w h i l e NO2 l e v e l s may go
down, we a r e p a y i n g d i r e c t l y by t r a d i n g each NO2 f o r an 0 3 .
Considering the
h e a l t h i m p l i c a t i o n s shown i n F i g . 1, t h i s r e s u l t s s e v e r a l t i m e s t h e h e a l t h d e t r i m e n t i n O3 enhancement as t h e r e i s improvement caused by NO2 decreases.
NMHC. ppmC
F i g . 4. S e n s i t i v i t y o f maximum a f t e r n o o n ozone c o n c e n t r a t i o n s t o morning p r e c u r s o r l e v e l s measured upwind.
The C o m p e t i t i o n Between C h e m i s t r y and M i x i n g
As NOx i s e m i t t e d i n t h e a i r , t h e dominant s p e c i e s NO w i l l r e a c t r a p i d l y w i t h ambient 0 3 , u s u a l l y as r a p i d l y as i t i s i n t i m a t e l y mixed.
Concentration fluctua-
t i o n s h a v i n g a s c a l e t h e o r d e r of h a l f a plume w i d t h and a s s o c i a t e d f l u c t u a t i o n v e l o c i t i e s measured i n t e n t h s o f meters p e r second w i l l r e q u i r e s e v e r a l minutes t o a c h i e v e t h e d i s s i p a t i o n s c a l e where m o l e c u l a r m i x i n g t a k e s p l a c e .
T h i s con-
d i t i o n i s necessary f o r t h e r e a c t i o n of NO t o proceed w i t h O 3 e n t r a i n e d i n t h e plume from ambient a i r .
S i n c e t h e h a l f l i f e o f t h e NO + O 3 r e a c t i o n w i l l be
l e s s t h a n a m i n u t e a t ozone c o n c e n t r a t i o n s g r e a t e r t h a n 0.1 ppm, t h e a p p a r e n t r e a c t i o n r a t e w i l l b e c o n t r o l l e d by t h e m i x i n g r a t e . Thus,
i t i s a c o n s e r v a t i v e assumption when p r e d i c t i n g
NO2 l e v e l s t o use
plume-averaged c o n c e n t r a t i o n i n t h e chemical k i n e t i c s e q u a t i o n s as i f t h e s p e c i e s
85
a r e homogeneously mixed.
Indeed, t h i s assumption has been adopted i n t h e model
approaches r e v i e w e d i n t h e n e x t s e c t i o n .
To c o r r e c t f o r t h e m i x i n g i n t e r f e r e n c e
w i t h r e a c t i o n r a t e s r e q u i r e s t h e use of t u r b u l e n t t h e o r e t i c a l t r e a t m e n t s of t h e s t a t i s t i c s o f concentration f l u c t u a t i o n covariances.
The a d d i t i o n a l accuracy
o b t a i n e d by t h i s t y p e o f c o r r e c t i o n has n o t g e n e r a l l y been c o n s i d e r e d t o be w o r t h t h e a d d i t i o n a l computing e f f o r t r e q u i r e d .
Having r e v i e w e d t h e main p h y s i -
c a l and chemical f e a t u r e s o f NOx p o l l u t i o n i n t h e atmosphere, we w i l l b r i e f l y examine some examples o f c a l c u l a t i o n s of a i r q u a l i t y i n f l u e n c e s b r o u g h t a b o u t by hypothetical control strategies.
EXAMPLES OF NO,
CONTROL STRATEGY ANALYSES
*
A L o c a l S c a l e Example The a i r p o l l u t i o n c o n t r o l a u t h o r i t i e s have proposed r e g u l a t i o n s r e s t r i c t i n g values of NOx emissions f o r v a r i o u s c l a s s e s of sources i n an e f f o r t t o m i n i m i z e secondary p o l l u t a n t i m p a c t s i n t h e SCAB.
The example we w i l l examine h e r e con-
s i d e r s an i n d u s t r i a l g a s - f i r e d furnace t h a t i s a c a n d i d a t e f o r such c o n t r o l s . S i n c e h o u r l y ambient s t a n d a r d s f o r ozone a r e s e t by Federal a u t h o r i t i e s and f o r NO2 by s t a t e a u t h o r i t i e s , a u s e f u l s c e n a r i o t o examine i s t h e e f f e c t o f t h e p r o -
posed c o n t r o l s on nearby ambient a i r q u a l i t y . c o n d i t i o n s and NO,
T a b l e 3 summarizes t h e s t a c k
emissions w i t h and w i t h o u t t h e proposed c o n t r o l s .
TABLE 3 E m i s s i o n Source S p e c i f i c a t i o n s f o r Loca7 S c a l e Example Stack Height S t a c k Diameter Velocity Temperature Volume Flow NO, E m i s s i o n NO, E m i s s i o n
40 f t . 42 i n . 26 f p s 400°F 13,000 dscfm 65 I b / h r u n c o n t r o l l e d 41.7 l b / h r c o n t r o l l e d
I n o r d e r t o a n a l y z e t h e i m p a c t o f t h e s e two s o u r c e c o n f i g u r a t i o n s , p e r f o r m a t w o - s t e p c a l c u l a t i o n p r o c e d u r e f o r each.
we can
The f i r s t s t e p i s t o e s t i -
mate t h e ground l e v e l c o n c e n t r a t i o n p a t t e r n of a l l of t h e NOx e m i t t e d u s i n g a Gaussian plume model assuming s t a b l e e m i s s i o n and m e t e o r o l o g i c a l c o n d i t i o n s t h r o u g h o u t an h o u r .
The second s t e p i s t o p a r t i t i o n t h e NO,
i n t o NO and NO2
a c c o r d i n g t o a n assumption of p h o t o s t a t i o n a r y e q u i l i b r i u m among t h e f i r s t t h r e e r e a c t i o n steps s t a t e d i n the previous section.
The Gaussian model s e l e c t e d was
X
The a u t h o r i s i n d e b t e d t o F. Lurmann o f Environmental Research and Technology, I n c . f o r c r e a t i n g t h e URBANOX program and t o A. C o l e l l a o f A r t h u r D. L i t t l e , I n c . f o r a p p l y i n g i t a l o n g w i t h t h e I S C program t o produce t h e r e s u l t s i n t h i s subsection.
86
t h e I n d u s t r i a l Source Complex (ISC) program o p e r a t e d i n a s i m p l e mode f o r an uno b s t r u c t e d i s o l a t e d p o i n t source.
The NOx c o n c e n t r a t i o n p a t t e r n was t h e n i n p u t
t o a p h o t o s t a t i o n a r y s t a t e program c a l l e d URBANOX.
T h i s s o l v e s f o r l o c a l values
o f ozone, n i t r o g e n d i o x i d e and n i t r i c o x i d e u s i n g t h e NO,
i n p u t s along w i t h the
ambient ozone l e v e l and i n t e r n a l l y c a l c u l a t e d s u n l i g h t - i n d u c e d p h o t o d i s s o c i a t i o n t h a t depend on l o c a t i o n , t i m e and c l o u d cover.
T a b l e 4 summarizes t h e c o n d i t i o n s
d u r i n g a September 1979 p o l l u t i o n e p i s o d e t h a t were used i n t h e c a l c u l a t i o n . TABLE 4 M e t e o r o l o g i c a l C o n d i t i o n s f o r L o c a l S c a l e Example ~~
September 8, 1979 0.15 ppm 63 deg ees 2.4 ms2
Date Background Ozone Wind D i r e c t i o n Wind Speed S t a b i l i t y Class
f
Because we a r e c o n s i d e r i n g t h r e e p o l l u t a n t s and two c o n d i t i o n s , s i x i s o p l e t h maps c o u l d b e shown; however, o n l y one composite map i s necessary t o i l l u s t r a t e t h e main p o i n t o f t h e e x e r c i s e .
I t i s shown on F i g u r e 5 w h i c h shows t h e d i f -
f e r e n c e between ambient ozone l e v e l s w i t h and w i t h o u t c o n t r o l s .
B o t h cases
depress t h e ozone l e v e l s , b u t t h e one w i t h o u t c o n t r o l s depress them a p p r o x i m a t e l y one p a r t p e r hundred m i l l i o n ( o u t o f 12 o r 13 maximum) more t h a n t h e one with controls.
L i k e w i s e , t h e NO2 changes w i l l be t h e i n v e r s e o f t h e c o n d i t i o n s
shown i n F i g . 5 because o f t h e t i t r a t i o n r e a c t i o n , O 3 + NO, p r o d u c i n g one NO2 f o r each O3 i t consumes.
Here again, t h e t r a d e o f f i s o n e - f o r - o n e between NO2
r e d u c t i o n s and O 3 i n c r e a s e s .
\
OlnlnCe from Source = 1500m
Angle from North
Source
t.4 @
+I+
0
t.4 @
+.3
&
@-
t.2
0
t.1
All values are m pphm and a l i d li*S we 1.0 pphm intmals.
F i g . 5. Map o f [(ozone w i t h NOx c o n t r o l ) - (ozone w i t h o u t NOx c o n t r o l ) ] f o r a p o i n t s o u r c e i n t h e SCAB on September 8, 1979.
87
Regional S c a l e Examples D u r i n g 1981, t h e q u e s t i o n of p a c i n g t h e NOx c o n t r o l w i t h t h a t o f v o l a t i l e o r g a n i c compounds has been r a i s e d f o r t h e C a l i f o r n i a South Coast A i r B a s i n w i t h t h e r e s u l t t h a t s l o w i n g t h e r e s t r i c t i o n s on NOx would h a s t e n a t t a i n m e n t o f t h e ozone standard.
The f o l l o w i n g c i t a t i o n s r e p r e s e n t s t r o n g statements o f t h i s
principle. A photochemical d i f f u s i o n model was used by Chock e t a1 ( 1 3 ) t o s t u d y t h e i n f l u e n c e o f added o x i d e s o f n i t r o g e n c o n t r o l s on motor v e h i c l e s on p o l l u t a n t l e v e l s on smoggy days i n Southern C a l i f o r n i a .
The model was d e r i v e d from
l a b o r a t o r y c h e m i s t r y s t u d i e s and checked a g a i n s t carbon monoxide l e v e l s t o verify i t s diffusion logic.
The emissions were v a r i e d t o g e n e r a t e v a r i o u s
scenarios; namely, b a s e l i n e (1973) and f u t u r e c o n d i t i o n s w i t h and w i t h o u t 1983 C a l i f o r n i a NOx emissions c o n t r o l s .
The r e d u c t i o n o f v e h i c l e emissions w i t h non-
v e h i c u l a r emissions f i x e d a t 1973 v a l u e s reduced C O , NO, NO2, 0 3 , PAN and HN03 throughout t h e basin.
When n o n v e h i c u l a r emissions a r e h e l d f i x e d a t f u t u r e
c o n d i t i o n s , a decrease i n v e h i c l e NOx a c t u a l l y i n c r e a s e s t h e ozone and PAN a l o n g t h e whole t r a j e c t o r y w h i l e NO2 s t i l l decreases. exceeds t h e
The ozone i n c r e a s e g e n e r a l l y
NO2 decrease.
The consequences o f t h e s e f i n d i n g s f o r s t a t i o n a r y s o u r c e NOx c o n t r o l s a r e obvious:
i f NOx c o n t r o l on a s u r f a c e - b a s e d s o u r c e complex l e a d s t o i n c r e a s e d
ozone o v e r t h e whole e a s t e r n e x t e n t of t h e b a s i n , an e l e v a t e d s o u r c e c o n t r o l would e x e r t t h i s same q u a l i t a t i v e i n f l u e n c e o v e r an even l o n g e r range; however, t h e s i z e o f t h e e f f e c t w o u l d b e s m a l l e r f o r s t a t i o n a r y sources.
These c a l c u l a -
t i o n s were done a l o n g a t r a j e c t o r y e x t e n d i n g a l l t h e way t o R i v e r s i d e .
A s t u d y by I n n e s ( 1 4 ) approached t h e o b j e c t i v e o f examining t h e r o l e of NOx c o n t r o l s i n b o t h t h e r e c e n t p a s t ozone t r e n d s and on f u t u r e smog l e v e l s i n t h e
Los Angeles b a s i n .
A number of a p p r o x i m a t e k i n e t i c s c a l c u l a t i o n s were demon-
s t r a t e d t o e s t i m a t e r a t e s o f p h o t o o x i d a t i o n , peak ozone and i n f l u e n c e s of oxides o f n i t r o g e n c o n t r o l s .
I t was s t a t e d t h a t :
0
t i m e s f o r NO d e p l e t i o n and ozone o n s e t can be e s t i m a t e d a n a l y t i c a l l y .
0
r e a c t i v i t y o f v a r i o u s o r g a n i c p o l l u t a n t s can be expressed t h r o u g h a v a r i e t y o f c o e f f ic i e n t s .
0
t h e peak ozone method used by EPA t o r a n k hydrocarbons i s u n s a t i s factory .
0
f o r emissions o f p a r a f f i n s , peak ozone r i s e s m o n o t o n i c a l l y w i t h HC/NOx r a t i o , b u t goes t h r o u g h a maximum f o r o l e f i n s .
0
f o r l o n g ( 3 t o 6 h o u r s ) i r r a d i a t i o n s , t h e ozone l e v e l i s essent i a l l y p r o p o r t i o n a l t o HC/NOx r a t i o up t o a b o u t 10.
88 0
an 80% i n c r e a s e i n NOx/HC i n Los Angeles s h o u l d r e s u l t i n a t t a i n ment o f t h e 0.12 ppm ambient h o u r l y ozone s t a n d a r d s u g g e s t i n g a s t r a t e g y c o n s i s t i n g o f a " r e a s o n a b l e i n c r e a s e " i n NOx t o g e t h e r w i t h a decrease i n hydrocarbon emissions.
0
a decrease i n NOx emissions would be l i k e l y t o i n c r e a s e ozone
0
p r o p o r t i o n a t e decreases i n NO2 l e v e l s a r e n o t o b t a i n e d from NOx
l e v e l s f o r v a r i o u s m e t r o p o l i t a n c e n t e r s o t h e r t h a n Los Angeles. emissions c o n t r o l s . 0
c o n s i d e r i n g t h e t r a d e o f f o f NOz f o r ozone, t h e removal of ozone a t t h e expense o f h i g h e r NO2 i s b e n e f i c i a l because NOz t o x i c i t y i s o f t h e o r d e r o f 10% o f t h a t o f 0 3 .
T h i s paper, as t h e p r e v i o u s one, has c l e a r i m p l i c a t i o n s t h a t NOx r e d u c t i o n s a r e c o u n t e r p r o d u c t i v e w i t h r e s p e c t t o human h e a l t h e f f e c t s .
These r e s u l t s
demonstrate c l e a r l y t h a t r e g u l a t i o n o f l a r g e e l e v a t e d s t a t i o n a r y source o x i d e s o f n i t r o g e n emissions must be c a r e f u l l y paced i n r e l a t i o n s h i p t o hydrocarbon emission c o n t r o l s i f they a r e t o e x e r t a b e n e f i c i a l e f f e c t . An i n t e r e s t i n g comparison can be made between t h e I n n e s a n a l y s i s ( 1 4 ) and t h a t of EKMA ( 1 2 ) u s i n g t h e s t a n d a r d approach f o r t h e SCAB.
Ifwe t a k e t h e
d e r i v a t i v e o f t h e peak ozone l e v e l w i t h r e s p e c t t o p r e c u r s o r NOx c o n c e n t r a t i o n a t c o n s t a n t NMHC ( i . e . ,
- 0.097 f r o m EKMA and
d[03]/d[NOx]
-
a t NMHC = c o n s t ) , we o b t a i n a v a l u e of
0.12 f r o m I n n e s .
A l t h o u g h t h i s i s a 20% disagreement,
i t i s s u r p r i s i n g l y c l o s e c o n s i d e r i n g t h e g r e a t l y d i f f e r e n t k i n e t i c s approaches
employed by t h e two methods. Tesche, O l i v e r and Haney ( 1 5 ) summarized t h e r e s u l t s o f some 60 s e n s i t i v i t y s i m u l a t i o n s u s i n g a d e t a i l e d g r i d a i r s h e d model and assembled a s e t o f r e s u l t s t o i l l u s t r a t e t h e e f f e c t s o f d i f f e r e n t c o n t r o l s t r a t e g i e s on a g i v e n e m i s s i o n i n v e n t o r y (1979) i n t h e SCAB and t h e e f f e c t s o f a l r e a d y adopted c o n t r o l s w i t h t h e passage of t i m e (1974, 1979 and 1987).
E x t e n s i v e ozone i s o p l e t h maps were
presented t o r e p o r t the r e s u l t s o f the simulations. The c o n c l u s i o n s t h a t a r e drawn a r e as f o l l o w s : 0
The g r i d a i r s h e d model i s a c c u r a t e t o w i t h i n 26 p e r c e n t f o r h i g h
0
ozone l e v e l s d u r i n g t h e e p i s o d e chosen. P r e d i c t i o n s o f 1979 ozone a r e v e r y s i m i l a r t o those o f 1974 ozone.
0
The measures under t h e p r e s e n t A i r Q u a l i t y Management P l a n a r e n o t adequate t o a t t a i n t h e s t a n d a r d by 1987 f o r ozone; i n f a c t , t h e c o n t r o l s f a l l f a r s h o r t o f the goal.
0
The maximum h o u r l y O 3 c o n c e n t r a t i o n a t t h e w o r s t s t a t i o n (Upland) f o r t h e e p i s o d e c a l c u l a t e d f o r 1 / 3 s t a t i o n a r y s o u r c e and 2/3 m o t o r v e h i c l e s o u r c e c o n t r o l s show a b e t t e r r e d u c t i o n w i t h RHC c o n t r o l s o n l y (34.0 pphm t o 25.5 pphm) t h a n w i t h RHC + NOx c o n t r o l s (34.0 pphm t o 26.4 pphm).
89 A g i v e n f r a c t i o n a l r e d u c t i o n i n m o t o r v e h i c i e emissions i s more e f f e c t i v e i n c o n t r o l l i n g ozone t h a n t h a t same f r a c t i o n a l r e d u c t i o n i n s t a t i o n a r y source emissions. These s t u d i e s show t h a t t h e c o n t r o l of NOx emissions must be c a r e f u l l y phased w i t h t h a t o f o r g a n i c emissions t o h a s t e n t h e a t t a i n m e n t o f t h e 0,
J
standard.
More a t t e n t i o n seems t o have been devoted t o t h i s i s s u e t h a n t o t h e a t t a i n m e n t
o f t h e NO2 s t a n d a r d .
CONCLUDING REMARKS We have d e s c r i b e d t h e dominant p h y s i c a
NO,
i n t h e atmosphere.
and chemical processes t h a t a f f e c t
These i n v e s t i g a t i o n s p r o v i d e i n s i g h t s i n t o t h e key
i s s u e of c o n t r o l e f f e c t i v e n e s s ; namely, t h e mechanisms g o v e r n i n g s u r f a c e l e v e l c o n c e n t r a t i o n changes as t h e y a r e i n f l u e n c e d by emissions r a t e changes. The p h y s i c a l processes o f m i x i n g and t r a n s p o r t i n g s t a t i o n a r y e l e v a t e d p o i n t s o u r c e e m i s s i o n s i n f l u e n c e s t h e i r c o n t r o l e f f e c t s on ambient compared w i t h t h e e f f e c t s o f pervasive area source emissions.
F i r s t , t h e source e l e v a t i o n i t s e l f
can l o w e r t h e l e v e r a g e o f c o n t r o l l i n g l a r g e sources by as much as a f a c t o r o f f i v e f o r a wide range o f plume h e i g h t s and downwind d i s t a n c e s .
T h i s was demon-
s t r a t e d above by a s i m p l e d i s p e r s i o n c a l c u l a t i o n o f t h e f a t e of a n o n r e a c t i v e p o l l u t a n t e m i t t e d f r o m a s i n g l e e l e v a t e d p o i n t s o u r c e a t t h e upwind edge o f a u n i f o r m l y d i s t r i b u t e d a g g r e g a t i o n o f a r e a sources.
Because o f t h e need t o f i x
t h e c o o r d i n a t e system a l o n g a s i n g l e w i n d d i r e c t i o n f o r t h i s s c e n a r i o , i t is a p p r o p r i a t e f o r d e s c r i b i n g s h o r t - t e r m c o n d i t i o n s ( l e s s t h a n an h o u r ) o n l y . F o r l o n g - t e r m averages, l i k e a y e a r , a n o t h e r t e c h n i q u e i s needed, and r e s u l t s c i t e d f r o m t h e l i t e r a t u r e show c o n s e r v a t i v e l y n e g l e c t i n g v e r t i c a l d i s p e r s i o n o r chemical i n h i b i t i n g f a c t o r s t h a t s t a t i o n a r y p o i n t s o u r c e c o n t r o l s a r e o n l y a p p r o x i m a t e l y o n e - f o u r t h as e f f e c t i v e as surface-based area source c o n t r o l s . B o t h t h e s h o r t - and l o n g - t e r m r e s u l t s i m p l y changes f r o m t h e l i n e a r r o l l back o r p r o p o r t i o n a l m o d e l i n g r e s u l t s .
V e h i c l e NO,
c o n t r o l s a l r e a d y scheduled
t o t a k e e f f e c t w i l l b r i n g a b o u t g r e a t e r b e n e f i t s t h a n t h o s e expected from p r e v i o u s analyses, w h i l e t h e o p p o s i t e w i l l be t h e case w i t h t h e p l a n s t o reduce
NOx e m i s s i o n s f r o m l a r g e e l e v a t e d s t a t i o n a r y sources.
Adding t h e chemical
aspects o f NO t o NO2 c o n v e r s i o n and t h e f i n i t e m i x i n g r a t e s w i l l r e i n f o r c e t h i s conclusion. The chemical b e h a v i o r o f NOx e m i s s i o n e i t h e r reduces t h e ozone o r p a r t i c i pates i n i t s production.
The f o r m e r case occurs i n t h e immediate v i c i n i t y o f
a s o u r c e where NO r e a c t s w i t h ozone and i s t i t r a t e d t o form NO2.
The l a t t e r
t a k e s p l a c e i n c o m b i n a t i o n w i t h o r g a n i c compounds i n a c h a i n r e a c t i o n s u p p o r t e d by h y d r o x y l and o t h e r f r e e r a d i c a l s . the production
A l t h o u g h NOx compounds a r e r e a c t a n t s i n
of ozone, t h e i r dominance as a p r e c u r s o r t o t h i s process lowers
90
t h e e f f i c i e n c y w i t h w h i c h i t occurs.
T h i s i n t u r n slows t h e c o n v e r s i o n o f NO
t o NO2; t h u s , t h e f o r m a t i o n o f t h e secondary p o l l u t a n t made from NOx i s a c t u a l l y i n h i b i t e d by NOx-rich c o n d i t i o n s .
There i s an optimum m i x t u r e f o r ozone produc-
t i o n as i n d i c a t e d by t h e ozone r i d g e on t h e EKMA diagram. The c o m b i n a t i o n o f m i x i n g and r e a c t i o n processes i n m o d e l i n g c a l c u l a t i o n s o f
NOx e f f e c t s i n t h e SCAB shows t h a t n e a r - f i e l d ozone c o n c e n t r a t i o n s a r e depressed l e s s w i t h c o n t r o l s t h a n t h e y a r e w i t h o u t c o n t r o l s because o f d i f f e r i n g degrees o f effectiveness o f the t i t r a t i o n reaction. expected consequence o f NOx-control; f o r ozone g e n e r a t i o n , NO,
Regional s t u d i e s a l l e x h i b i t an
namely, a t NOx l e v e l s above t h e optimum
r e d u c t i o n s must be accompanied by hydrocarbon reduc-
t i o n s t o a v o i d r a i s i n g t h e ozone l e v e l .
These c o n s i d e r a t i o n s have and w i l l
temper o u r approaches t o t h e r e d u c t i o n of NOx f o r secondary p o l l u t a n t c o n t r o l ; e s p e c i a l l y i n l i g h t of t h e l a r g e r p o t e n t i a l h e a l t h t h r e a t posed by ozone i n comparison w i t h t h a t o f n i t r o g e n d i o x i d e . REFERENCES 1 2 3
4
5 6 7 8 9 10
11
12 13 14 15
N i t r o g e n Oxides, N a t i o n a l Academy o f Science, Washington, D.C., 1977 Oxides o f N i t r o g e n , E n v i r o n m e n t a l H e a l t h C r i t e r i a , World H e a l t h O r g a n i z a t i o n , Geneva, 1977. A i r Q u a l i t y C r i t e r i a f o r Oxides o f N i t r o g e n , U.S. Environmental P r o t e c t i o n Agency, Revised E x t e r n a l Review D r a f t , 1979. S. Leung, E. G o l d s t e i n and N. Dalkey, Human H e a l t h Damages f r o m M o b i l e Source A i r P o l l u t i o n , U.S. Environmental P r o t e c t i o n Agency R e p o r t EPA-600/5-78-016a, J u l y 1978. N a t i o n a l A i r Q u a l i t y , M o n i t o r i n g and Emissions Trends Report, U.S. E n v i r o n m e n t a l P r o t e c t i o n Agency R e p o r t EPA-450/2-78-052, December 1978. G.C. H o l z w o r t h , M i x i n g H e i g h t s , Wind Speeds, and P o t e n t i a l f o r Urban A i r P o l l u t i o n Throughout t h e Contiguous U n i t e d S t a t e s , Environmental P r o t e c t i o n Agency R e p o r t AP-101, January 1972. D.H. Lucas, The I n t e r n a t i o n a l J o u r n a l o f A i r P o l l u t i o n , 1 (1958)71-86. American S o c i e t y o f Mechanical Engineers, 1968: Recommended Guide f o r t h e P r e d i c t i o n o f t h e U i s p e r s i o n o f A i r b o r n e E f f l u e n t s , M. Smith ( e d . ) New York, New York. D.B. T u r n e r , Workbook o f Atmospheric D i s p e r s i o n E s t i m a t e s , U.S. Department o f H e a l t h , E d u c a t i o n and W e l f a r e , P u b l i c H e a l t h S e r v i c e . NAPCA. C i n c i n n a t i , Ohio, 1972. B. Weinstock, T.Y. Chang and J.M. Norbeck, The R e l a t i o n s h i p Between V e h i c l e NO, Emissions and A i r Q u a l i t y : An Update, Proceedings o f t h e Conference on A i r Q u a l i t y Trends i n t h e South Coast A i r Basin, C a l i f o r n i a I n s t i t u t e of Technology, February 1980. P.D. G u t f r e u n d , S.R. Hayes, W.R. O l i v e r , S.D. Reynolds, and P.M. Roth, Assessment o f NO, Emissions C o n t r o l Requirements i n t h e South Coast A i r B a s i n : A P r e l i m i n a r y R e p o r t f o r C o n s i d e r a t i o n i n P r e p a r i n g t h e AQMP, Systems A p p l i c a t i o n s , I n c . No. 81277, November 13, 1981. Uses, L i m i t a t i o n s and T e c h n i c a l B a s i s o f Procedures f o r Q u a n t i f y i n g Relat i o n s h i p s Between Photochemical O x i d a n t s and P r e c u r s o r s , U.S. Environmental P r o t e c t i o n Agency R e p o r t EPA-450/2-77-021a, 1977. D.D. Chock, A.M. Dunker, S. Kumar and G.S. Sloane, E f f e c t o f NOx Emission Rates on Smog F o r m a t i o n i n t h e C a l i f o r n i a South Coast A i r Basin, E n v i r o n m e n t a l Science and Technology, 15(1981)933-939. W.B. Innes, E f f e c t o f N i t r o g e n Oxide Emissions on Ozone L e v e l s i n Metrop o l it a n Regions, Environmental Science and Technology, 1 5 ( 1981 )904-912. T.W. Tesche, W.R. O l i v e r and J.L. Haney, S e n s i t i v i t y o f S A I A i r s h e d Model Ozone P r e d i c t i o n s t o Emission I n v e n t o r y P e r t u r b a t i o n s , Systems A p p l i c a t i o n s I n c o r p o r a t e d , R e p o r t 81225, September 1981.
91
S i t e and Season-specific V a r i a t i o n s o f t h e Atmospheric P o l l u t a n t Transport and D e p o s i t i o n on t h e Local and Regional Scale G . Neumann-Hauf,
Abteilung
fur
6 . Hal b r i t t e r
Angewandte Systemanalyse des Kernforschungszentrurns K a r l sruhe,
K a r l sruhe (F.R.G.)
ABSTRACT I n o r d e r t o assess and e v a l u a t e t h e environmental impacts o f an expanded use o f c o a l i n t h e Federal Republic o f Gennany s i t e and season-specific v a r i a t i o n s o f the atmospheric p o l l u t a n t t r a n s p o r t and d e p o s i t i o n were i n v e s t i g a t e d on a l o c a l and r e g i o n a l scale. The i m p o r t a n t m e t e o r o l o g i c a l parameters f o r 8 s e l e c t e d s i t e s were compared and area mean values o f t h e long-term d r y and wet d e p o s i t i o n f a c t o r s f o r a e r o s o l s were c a l c u l a t e d . While t h e r e were no d i s t i n c t d i f f e r e n c e s i n t h e area mean values around sources o f a h e i g h t o f 200 m i n t h e n o r t h e r n Gennan lowlands, h i g h e r d i f f e r e n c e s were found i n t h e southern p a r t o f t h e c o u n t r y v a r y i n g m a i n l y between 116 and 160 %, and sometimes even between 116 and 218 % w i t h r e s p e c t t o t h e n o r t h e r n German s i t e on t h e c o a s t . C a l c u l a t i o n s o f t h e t o t a l amount o f p o l l u t a n t s deposited between 44'-62'N,
lOoW
-
20°E demonstrated r e g i o n a l d i f f e r e n c e s
due t o t h e long-range t r a n s p o r t and d e p o s i t i o n o f p o l l u t a n t s e m i t t e d a t 2 German s i t e s i n t h e n o r t h e r n and southern p a r t o f t h e country, r e s p e c t i v e l y . Season-specific v a r i a t i o n s o f the p o l l u t a n t t r a n s p o r t and d e p o s i t i o n were i n v e s t i g a t e d f o r one selected s i t e i n southern Gennany. On the l o c a l and r e g i o n a l s c a l e values o f t h e d e p o s i t i o n f a c t o r s were h i g h e s t d u r i n g the summer period, e s p e c i a l l y f o r wet d e p o s i t i o n , w h i l e t h e r a t i o o f l o s s by wet d e p o s i t i o n t o l o s s by d r y d e p o s i t i o n i s h i g h e r i n w i n t e r than i n summer time. INTRODUCTION I n t h e c o n t e x t of assessing and e v a l u a t i n g t h e consequences o f an expanded use
o f coal i n t h e Federal Republic o f Germany t h e atmospheric t r a n s p o r t and deposit i o n o f p o l l u t a n t s e m i t t e d from h i g h stacks were i n v e s t i g a t e d f o r v a r i o u s s i t e s on t h e l o c a l and r e g i o n a l s c a l e w i t h r e f e r e n c e t o seasonal v a r i a t i o n s . The l a t t e r were considered w i t h regard t o t h e s p e c i a l importance o f summer time as growing p e r i o d f o r p l a n t s . I n o r d e r t o c a l c u l a t e t h e p o l l u t a n t exposure on t h e l o c a l scale s i t e s were s e l e c t e d where t h e m e t e o r o l o g i c a l c o n d i t i o n s were r e p r e s e n t a t i v e
for
l a r g e r areas. For the purpose o f comparison, i n a d d i t i o n a l s o s i t e s were consider-
92
ed where t h e m e t e o r o l o g i c a l c o n d i t i o n s a r e governed by t y p i c a l mesoscale phenomena. On t h e r e g i o n a l s c a l e , t h e long-range t r a n s p o r t and d e p o s i t i o n o f p o l l u t a n t s e m i t t e d a t two s i t e s i n n o r t h e r n and s o u t h e r n Germany, r e s p e c t i v e l y , were i n v e s t i g a t e d w i t h a view t o d i f f e r e n c e s i n t h e l o n g - r a n g e p o l l u t a n t d i s p e r s a l caused b y l a r g e - s c a l e v a r i a t i o n s i n t h e s y n o p t i c f l o w f i e l d . C a l c u l a t i o n s were performed f o r t h e emissions o f a e r o s o l s from s t a c k s o f a h e i g h t o f 200 m u s i n g a m o d i f i e d Gaussian-Plume model and t h e t r a j e c t o r y - p u f f model PESOS ( r e f . 1). SITE-SPECIFIC DIFFERENCES Four main c l i m a t i c p r o v i n c e s can be d e f i n e d f o r t h e area o f t h e Federal R e p u b l i c o f Germany: ( 1 ) t h e l o w l a n d s n o r t h o f t h e c e n t r a l h i g h l a n d s ; ( 2 ) t h e h i g h l a n d s ; ( 3 ) t h e n o r t h e r n A l p i n e f o r e l a n d and ( 4 ) t h e A l p s ( r e f . 2 ) . I n o r d e r t o d e s c r i b e
t h e atmospheric d i s p e r s i o n c o n d i t i o n s f o r 3 o f t h e 4 main c l i m a t i c p r o v i n c e s s t a t i s t i c s o f wind speed, a t m o s p h e r i c s t a b i l i t y , p r e c i p i t a t i o n and l o w - l e v e l i n v e r s i o n were analysed f o r Hannover, a s i t e i n t h e l o w l a n d s , Essen, a s i t e on t h e n o r t h w e s t e r n b o r d e r o f t h e l o w l a n d s , S t u t t g a r t - E c h t e r d i n g e n and Nurnberg, 2 s i t e s i n t h e h i g h l a n d s , and Miinchen i n t h e n o r t h e r n A l p i n e f o r e l a n d as w e l l as f o r 4 o t h e r s i t e s w i t h s p e c i a l l o c a l f e a t u r e s such as Emden, a n o r t h e r n German s i t e on t h e c o a s t o f t h e N o r t h Sea, F r e i b u r g , w i t h an u r b a n c l i m a t e c h a r a c t e r i z e d b y i t s l o c a t i o n a t t h e f o o t o f t h e western s l o p e o f t h e B l a c k F o r e s t , and K a r l s r u h e , s i t u a t e d i n t h e Upper Rhine V a l l e y and i n f l u e n c e d by t h e urban c l i m a t e . W h i l e t h e mean wind speed decreases form n o r t h t o south, t h e i n c i d e n c e o f calm s i t u a t i o n s i n c r e a s e s ( e s p e c i a l l y i n t h e c i t y o f F r e i b u r g up t o 30 9 ) as w e l l as t h e frequency o f s t a b l e and u n s t a b l e atmospheric c o n d i t i o n s and o f l o w - l e v e l
inversions. Preci-
p i t a t i o n i s s t r o n g l y i n f l u e n c e d by topography w i t h h i g h e s t v a l u e s a t F r e i h u r g . Beside t h e above mentioned d i f f e r e n c e s from n o r t h t o s o u t h i n c r e a s i n g c o n t i n e n t a l i t y i s a l s o found from west t o e a s t . TABLE 1 2 Long-term d e p o s i t i o n f a c t o r s f o r areas o f 20 x 20 km i n t h e s u r r o u n d i n g s o f s e l e c t e d s i t e s i n t h e Federal R e p u b l i c o f Germany.
Stati o n
F a c t o r (m-’)
P
1 Emden
1
R a t i o t o Emden
Dry D e p o s i t i o n
Essen Freiburg Hannover Karl sruhe Munch en Nu r nb e r g Stuttgart-
4.7 5.1 9.5 5.1 7.2 6.2 6.5
E-12 E-12 E-12 E-12 E-12 E-12 E-12
7.2
E-12 I
Wet D e p o s i t i o n
R a t i o t o Emden
in %
F a c t o r (m-’)
in %
100 108 202 108 152 132 139
4.5 4.8 9.8 3.7 6.2 7.2 5.2
E-12 E-12 E-12 E-12 E-12 E-12 E-12
100 107 218 82 138 160 116
152
6 . 4 E-12
142
93 For t h e above-mentioned s i t e s a r e a mean v a l u e s o f t h e l o n g - t e r m d r y and wet d e p o s i t i o n factors'
were c a l c u l a t e d from a 10 y e a r s ' f r e q u e n c y d i s t r i b u t i o n o f
m e t e o r o l o g i c a l parameters. The d i f f e r e n c e s f o r d r y and wet d e p o s i t i o n f a c t o r s were l e s s t h a n 10 o r 25 %, r e s p e c t i v e l y , among t h e n o r t h e r n s i t e s Emden, Essen, and Hannover, and up t o 20 o r 50 %, r e s p e c t i v e l y , f o r d r y and wet. d e p o s i t i o n f a c t o r s among t h e s o u t h e r n s i t e s , e x c e p t f o r F r e i b u r g ( s e e Tab. 1). F i g u r e s 1 and 2 g i v e t h e s p a t i a l d i s t r i b u t i o n s o f t h e t o t a l d e p o s i t i o n f a c t o r f o r t h e sources a t Hannover and S t u t t g a r t . The d i s t r i b u t i o n s a r e dominated by t h e frequency d i s t r i b u t i o n s o f t h e wind d i r e c t i o n w i t h h i g h e s t v a l u e s o f t h e t o t a l d e p o s i t i o n f a c t o r near S t u t t g a r t .
Fig. 1
Fig. 2
Annual mean o f t o t a l d e p o s i t i o n f a c t o r s (sum o f d r y and wet d e p o s i t i o n ) i n t h e s u r r o u n d i n g s o f s t a c k s o f a h e i g h t o f 200 m a t Hannover ( F i g . 1) and S t u t t g a r t (Fig. 2). However, a t a d i s t a n c e o f 100 km from t h e sources about 90 % o f t h e e m i t t e d mat e r i a l i s s t i l l a i r b o r n e . T h e r e f o r e , c a l c u l a t i o n s o f long-range t r a n s p o r t ( u p t o a b o u t 800 km away f r o m t h e sources) were performed f o r a n o r t h e r n and a southern German s i t e , r e s p e c t i v e l y ( s e e F i g . 3 and F i g . 4 ) . D i f f e r e n c e s i n t h e s p a t i a l d i s t r i b u t i o n o f d e p o s i t i o n f a c t o r s a r e expected because o f t h e l a r g e - s c a l e f l o w f i e l d o v e r t h e Federal R e p u b l i c o f Germany. While l o w p r e s s u r e systems pass o v e r t h e n o r t h w e s t e r n p a r t o f Germany t o t h e e a s t , t h e i n f l u e n c e o f h i g h p r e s s u r e c o n d i t i o n s -
+
The d e p o s i t j o n f a c t o r i s d e f i n e d as t h e i n t e g r a t e d amount of p o l l u t a n t s depos i t e d p e r m n o r m a l i z e d b y t h e source s t r e n g t h .
94
i s i n c r e a s i n g l y f e l t i n t h e s o u t h e r n p a r t o f t h e c o u n t r y . Regarding t h e annual mean v a l u e s o f d e p o s i t i o n f a c t o r s i n t h e y e a r 1973, t h e s e v a l u e s a r e h i g h e s t e a s t , south-east,
and s o u t h o f t h e sources a t Hannover and S t u t t g a r t . Areas w i t h h i g h
d e p o s i t i o n f a c t o r s a r e a p p r o x i m a t e l y t h e same s i z e f o r b o t h s i t e s . The b l o c k i n g o f t h e f l o w f i e l d i n f r o n t o f t h e A l p s i s shown by t h e i s o l i n e s o f t h e d e p o s i t i o n f a c t o r s approaching each o t h e r i n s o u t h e a s t e r l y and south-southe a s t e r l y d i r e c t i o n from t h e sources a t Hannover and S t u t t g a r t , r e s p e c t i v e l y .
Fig. 4
Fig. 3
A n p a l vean of t 8 t a l d e g o s i t i o n f a c t o r s (sum o f d r y and wet d e p o s i t i o n ) between 44 - 62 N and 10 W 2 0 E r e s u l t i n g from e m i s s i o n s a t Hannover ( F i g . 3 ) and S t u t t g a r t (Fig. 4).
-
S i g n i f i c a n t d i f f e r e n c e s a r e found between t h e r a t i o o f loss by wet d e p o s i t i o n t o l o s s b y d r y d e p o s i t i o n a t d i f f e r e n t d i s t a n c e s from t h e sources. While t h i s r a t i o i s i n c r e a s i n g w i t h i n c r e a s i n g d i s t a n c e from t h e s o u r c e a t Hannover, i t dec r e a s e s a t S t u t t g a r t ( s e e Tab. 2 ) . TABLE 2 R a t i o o f loss by wet d e p o s i t i o n t o loss by d r y d e p o s i t i o n Distance from source
100 km 200 km 400 km 750 km
Hannover summer 1.4 1.4 1.7 1.9
Hannover winter
Stuttgart summer
Stuttgart winter
2.1 2.1 2.3 2.6
2.5 2.5 2.4
2.9 2.8 2.4
-
-
95
SEASON-SPECIFIC VARIATIONS I n v e s t i g a t i o n s o f seasonal d i f f e r e n c e s i n atmospheric t r a n s p o r t and d e p o s i t i o n were c a r r i e d o u t f o r t h e s o u t h e r n s i t e a t S t u t t g a r t . D i f f e r e n t from t h e annual mean, t h e f r e q u e n c y o f s t a b l e and u n s t a b l e s i t u a t i o n s i n c r e a s e s by about 6 % and t h e w i n d speed i s reduced by 0.5 m s-'
i n summer. Also, 36 % o f t h e annual amount
o f p r e c i p i t a t i o n i s measured d u r i n g t h e 3 months i n summer. C a l c u l a t i o n s o f t h e a r e a mean v a l u e s g i v e a maximum f o r t h e t o t a l , and e s p e c i a l l y f o r t h e wet depos i t i o n f a c t o r d u r i n g summer (134 o r 179
X
o f t h e annual mean v a l u e s , r e s p . ) .
T h e r e f o r e , annual mean v a l u e s do n o t always l e a d t o a c o n s e r v a t i v e e s t i m a t e o f t h e p o l l u t a n t exposure leewards from a source.
Fig. 5
Fig. 6
Mean t o t a l d e p o s i t i o n f a c t o r s i n summer t i m e ( F i g . 5 ) and w i n t e r t i m e ( F i g . 6 ) o v e r Europe f r o m e m i s s i o n s a t S t u t t g a r t . Seasonal d i f f e r e n c e s between t h e 6 summer and t h e 6 w i n t e r months i n t h e y e a r 1973/74 were analysed w i t h r e g a r d t o l o n g - r a n g e t r a n s p o r t and d e p o s i t i o n (see F i g . 5 and F i g . 6 ) . The comparison o f f i g u r e s 5 and 6 shows t h a t t h e area o f dep o s i t i o n factors g r e a t e r than
m-'
i s s i g n i f i c a n t l y l a r g e r i n summer, reach-
i n g f a r t o t h e west, t h a n i n w i n t e r . The s p a t i a l d i s t r i b u t i o n o f annual means r e sembles t h a t o b t a i n e d f o r t h e summer p e r i o d ( s e e F i g . 4 and F i g . 5 ) . W h i l e i n summer t h e r a t i o o f l o s s by wet d e p o s i t i o n t o l o s s by d r y d e p o s i t i o n i s about 2 . 5 a t a d i s t a n c e o f 100 km from t h e source, t h i s r a t i o i n c r e a s e s i n w i n t e r t i m e (see Tab. Z ) , a l t h o u g h most o f t h e p r e c i p i t a t i o n i s measured i n summer t i m e .
96
CONCLUSIONS
In order t o a s s e s s and evaluate the environmental impacts of an expanded use of coal i n the Federal Republic of Gennany s i t e and season-specific v a r i a t i o n s of the atmospheric p o l l u t a n t t r a n s p o r t and deposition were investigated with a view t o estimating their influence on the t o t a l c o l l e c t i v e p o l l u t a n t exposure over Europe. As a r e s u l t i t should be kept in mind t h a t s i t e - s p e c i f i c d i f f e r e n c e s among selected s i t e s lead t o v a r i a t i o n s in t h e long-term area mean value of deposited a e r o s o l s of u p t o a f a c t o r of 2 on the local s c a l e with l a r g e r d i f f e r e n c e s on the regional s c a l e . The i n v e s t i g a t i o n s of season-specific v a r i a t i o n s showed t h a t the highest values of t o t a l deposition f a c t o r s around S t u t t g a r t a r e found during summer, i . e . during the growing period, t h i s being mainly due to wet deposition both on the local and regional s c a l e . However, the r a t i o of l o s s by wet deposition t o l o s s by dry depos i t i o n a t d i s t a n c e s between 100 and 400 km i s highest i n winter time, and always g r e a t e r than 1 . 0 .
ACKNOWLEDGEMENTS MESOS c a l c u l a t i o n s f o r the long-range p o l l u t a n t t r a n s p o r t were c a r r i e d out by Imperial College, London, and a r e published in agreement with Imperial College. REFERENCES H . M . ApSimon, J . Wrigley and A.J.H. Goddard, Estimating the Possible Transfront i e r Consequences of Accidental Releases; the MESOS Model f o r Long-Range Atmospheric Dispersal, Proc. C.E.C. Seminar - Radioactive Releases and Their Dispersion in the Atmosphere Following a Hypothetical Reactor Accident, Risb (Denmark), April 22 - 25, 1980. C . C . Wallen (Ed.). Climates of Central and Southern EuroDe, . - Vol. 6 , World Survey of C1 imatology, Eisevier, Amsterdam, 1977. H.M. ApSimon, J . Wrigley and A.J.H. Goddard, Research Contract Report, 1981, u n pu bl i shed. BMI (Bundesministerium des Innern) , A1 lgemeine Berechnungsgrundlage Fur d i e Strahlenexposition bei radioaktiven Ableitungen mit der Abluft oder in Oberflachengewlsser, Gemeinsames Ministerial b l a t t , 21 (1979). 6. H a l b r i t t e r , K . - R . Bri;utigam, F.-W. Fluck, E . LeRmann, G . Neumann-Hauf, Beitrag zu e i n e r vergleichenden llmwel tbelastungsanalyse am Beispiel der Strahlenexposition beim Einsatz von Kohle u n d Kernenergie zur Stromerzeugung, Kernforschungszentrum Karlsruhe, KfK 3266, 1982.
97
D A I L Y FORECASTING O F A I R POLLUTION POTENTIAL
A.
JOUKOFF and L.M.
MALET
Royal M e t e o r o l o g i c a l I n s t i t u t e . Uccle (Belgium)
ABSTRACT E x p e r i m e n t a l f o r e c a s t s p e r f o r m e d a t t h e Royal M e t e o r o l o g i c a l I n s t i t u t e o f B e l gium d u r i n g t h e w i n t e r s 1979-1980 and 1980-1981 a r e d e s c r i b e d and a n a l y s e d .
These
f o r e c a s t s are b a s e d on t h e e v a l u a t i o n o f an a i r p o l l u t i o n p o t e n t i a l i n d e x which u s e s t h r e e i m p o r t a n t m e t e o r o l o g i c a l p a r a m e t e r s : wind s p e e d , v e r t i c a l s t a b i l i t y and t e m p e r a t u r e . These m e t e o r o l o g i c a l f o r e c a s t s combine n u m e r i c a l f o r e c a s t s a t t h e 850 mbar lev e l with a semi-climatological air mass characteristics.
scheme g i v i n g a i r t e m p e r a t u r e s a s s o c i a t e d w i t h t h e
The m e t e o r o l o g i c a l i n d e x i s c o n v e r t e d i n t o p o t e n t i a l
a i r p o l l u t i o n l e v e l s by means o f a r e l a t i o n deduced from a l i n e a r r e g r e s s i o n u s i n g SO
measurements from t h e p r e v i o u s w i n t e r . The r e s u l t s o f t h e two s e a s o n s of 2 experimental f o r e c a s t s a r e very encouraging.
INTRODUCTION
The f i v e l a r g e s t urban a g g l o m e r a t i o n s o f Belgium (Antwerp, B r u s s e l s , C h a r l e r o i , Ghent and L i e g e ) are c o v e r e d by a m o n i t o r i n g network measuring a s w e l l a i r q u a l i t y a s meteorological parameters.
Every minute t h i s t e l e m e t e r e d network i s s u e s v a l u e s
o f t h e d i f f e r e n t p a r a m e t e r s measured by a l l s a m p l i n g s t a t i o n s t o a r e g i o n a l d a t a reduction c e n t r e (R.D.R.C.) R.D.R.C.'s
where h a l f - h o u r l y a v e r a g e s a r e computed.
send these half-hourly
(N.D.P.C.).
The N.D.P.C.
The f i v e
averages t o a n a t i o n a l dat a processing cent r e
i s d i v i d e d i n t o two p a r t s
:
t h e f i r s t one i s p l a c e d
a t the I n s t i t u t e o f Hygiene and Epidemiology o f t h e M i n i s t e r y of P u b l i c H e a l t h and t h e s e c o n d a t t h e Royal M e t e o r o l o g i c a l I n s t i t u t e .
One o f t h e p r i n c i p a l t a s k s
of the l a t t e r c o n s i s t s i n i s s u i n g d a i l y fo reca st s of t he a i r q u a l i t y p o t e n t i a l f o r the f i v e r e g i o n s and f o r the n e x t 24 h o u r s . and a n a l y s e d i n t h e p r e s e n t paper.
These f o r e c a s t s are d e s c r i b e d
They have been t r a n s m i t t e d t o the p u b l i c
h e a l t h a u t h o r i t i e s d u r i n g t h e w i n t e r p e r i o d s 1979-1980 and 1980-1981, b e r t o march.
They s t i l l must b e c o n s i d e r e d as e x p e r i m e n t a l .
from novem-
A i r quality potential
i s e v a l u a t e d b y a n a i r p o l l u t i o n p o t e n t i a l i n d e x b a s e d on m e t e o r o l o g i c a l p a r a meters o n l y .
98 THE METEOROLOGICAL A I R POLLUTION POTENTIAL I N D E X I n o r d e r t o a p p r e c i a t e t h e d i f f u s i v e c a p a c i t y o f t h e atmosphere and to e s t i mate t h e a i r p o l l u t i o n l e v e l , a m e t e o r o l o g i c a l a i r p o l l u t i o n p o t e n t i a l i n d e x (MPI) h a s been developped on t h e b a s i s o f a c e r t a i n number o f s t u d i e s ( r e f s . 1 - 5 ) .
It
combines t h r e e o f t h e most s i g n i f i c a n t m e t e o r o l o g i c a l p a r a m e t e r s which can b e f o r e c a s t e d on a r o u t i n e b a s i s w i t h a s u f f i c i e n t r e l i a b i l i t y .
The t h r e e p a r a m e t e r s
s e l e c t e d are :
2 4 h o u r s a v e r a g e t e m p e r a t u r e , T , which d e t e r m i n e s t h e s t r e n g t h o f d o m e s t i c heat i n g s o u r c e s , dominant i n urban a r e a s
;
2 4 h o u r s a v e r a g e wind s p e e d , v , which d e t e r m i n e s t h e h o r i z o n t a l t r a n s p o r t o f the a t m o s p h e r i c p o l l u t a n t s
:
v e r t i c a l s t a b i l i t y o f l o w a t m o s p h e r i c l a y e r s , which d e t e r m i n e s t h e h o r i z o n t a l and v e r t i c a l d i s p e r s i o n of the p o l l u t a n t s .
T h i s s t a b i l i t y i s c h a r a c t e r i z e d by
an i n d e x s i n p l a c e o f t h e p r e v i o u s l y u s e d mixjng h e i g h t ( r e f . 5 ) which i s rather d i f f i c u l t to predict.
T h i s i n d e x i s a f u n c t i o n o f t h e r a t i o between t h e
700-1000 mbar l a y e r t h i c k n e s s , H , and t h e t h i c k n e s s Hd f o r t h i s l a y e r c a l c u l a t e d according t o a dry a d i a b a t i c lapse rate f o r the s a m e sur f ace conditions.
The
index s used i n p r a c t i c e i s : H s =
d
lo--
9
n
The MPI h a s t h e f o l l o w i n g form
MPI
:
25 - T 1/2
Such a p u r e l y m e t e o r o l o g i c a l i n d e x does t a k e i n t o a c c o u n t t h e p o s s i b l e p o l l u t a n t a c c u m u l a t i o n and the p o s s i b l e a d v e c t i o n o f p o l l u t a n t s from one r e g i o n t o a n o t h e r . Thus i t r e p r e s e n t s t h e l o c a l p o t e n t i a l o f a i r p o l l u t i o n .
METEOROLOGICAL FORECASTING
M e t e o r o l o g i c a l f o r e c a s t i n g h a s been p e r f o r m e d on t h e b a s i s of m e t e o r o l o g i c a l maps as p r e d i c t e d u s i n g a m a t h e m a t i c a l model.
The use of one model o n l y may b e
dangerous due t o the f a c t t h a t no model i s p e r f e c t ; however i t g a r a n t e e s homogen e i t y as r e g a r d s t h e d e t e r m i n a t i o n of t h e i n i t i a l c o n d i t i o n s l e a d i n g t o t h e 2 4 , 48 and 72 h o u r s forecasts.
Our e x p e r i e n c e shows t h a t maps a t t h e 850 mbar l e v e l
are the most a d e q u a t e t o d e s c r i b e a i r p o l l u t i o n p o t e n t i a l e v o l u t i o n (more r e p r e s e n t a t i v e t h a n t h e 500 mbar l e v e l e . g . )
.
From t h e s e maps, one can r e a d 700-1000 mbar
l a y e r mean t e m p e r a t u r e and f u r t h e r d e r i v e s u r f a c e l e v e l maps g i v i n g p r e s s u r e g r a d i e n t s and wind d i r e c t i o n s o v e r Belgium. wind s p e e d s .
P r e s s u r e g r a d i e n t s are c o n v e r t e d i n t o
99 Wind d i r e c t i o n s are used t o e s t i m a t e extreme temperature by means o f a semic l i m a t o l o g i c a l method (based on r e f . 6) giving d a i l y extremes from the c a r a c t e r i s From these extremes, i t i s p o s s i b l e t o e v a l u a t e 24-hours
t i c s of the a i r mass. mean temperature. about 1 m . s - '
Due t o t h e s c a l e of t h e maps, reading accuracy i s l i m i t e d t o
f o r t h e wind speed and t o 5 degrees f o r t h e wind d i r e c t i o n i n most
This accuracy i s a s s o c i a t e d w i t h the reading only and does n o t take i n t o
cases.
account t h e f o r e c a s t f i t n e s s .
V e r t i c a l s t a b i l i t y index s i s evaluated from d i r e c t
reading of H (700-1000 mbar t h i c k n e s s ) and the f o r e c a s t e d values of s u r f a c e temper a t u r e and p r e s s u r e ( g i v i n g Hd)
.
During the second experimental f o r e c a s t i n g season, some improvements have been brought t o t h e method
:
r e v i s e d c l i m a t o l o g i c a l d a t a and a c o r r e c t i o n f o r cloudi-
ness in e v a l u a t i n g t h e temperature.
i n the N.D.P.C.
The f o r e c a s t i n g procedure has been implemented
computer t o f a c i l i t a t e the f o r e c a s t e r s work.
The o u t p u t gives i n t e r p o l a t e d values each 6 hours and an i n t e r a c t i v e procedure allows the f o r e c a s t e r s t o introduce c o r r e c t i o n s i n t h e temperature.
A f i r s t correc-
t i o n i s provided by t h e program from t h e comparison o f observed and c o e u t e d val u e s f o r 0 , 6 and 1 2 hours U . T . Forecasting r e s u l t s a r e summarized i n t a b l e 1, giving the number of successes ( t a k i n g a t o l e r a n c e i n t o a c c o u n t ) , underestimates and overestimates f o r each meteor o l o g i c a l parameters and t h e i r combination MPI
TABLE 1
Forecastina r e s u l t s ( % ) Parameter T V
S
MPI
:
meteorolocw
Tolerance
20
2 m.s
-1
0.1
5 (+)
Good a b a b a b a b
66 78 73 76 75 87 71 79
Over
LJuier
11 6 19 21 7 10 19 6
22 15 7 3 18 4 10 15
b : 1980-1981. a : 1979-1980 ; (+) 5 u n i t s MPI correspond t o about 2 ~ / i g . m - SO ~ /24h i n B r u s s e l s . 2 Except f o r the cases when t h e numerical f o r e c a s t i n g f a i l e d , t h e f o r e c a s t e d values followed r a t h e r w e l l t h e observed ones.
Fig.
1 gives t h e s c a t t e r p l o t of
t h e observed and f o r e c a s t e d values f o r t h e MPI d u r i n g t h e two considered w i n t e r s respectively.
100
WINTER 1979 - 1980
WINTER 1980- 1981
50
40
30
20
10 PMI 0
Fig.
1. S c a t t e r p l o t s o f o b s e r v e d (MF'I) vs f o r e c a s t e d (MPI (F)) v a l u e s of MPI
POTENTIAL A I R POLLUTION FORECASTING MPI v a l u e s c a n be c o n v e r t e d t o e x p e c t e d p o t e n t i a l a i r p o l l u t i o n l e v e l s i n -3 o f SO2 (24h mean) i n o r d e r t o g i v e a more e x p l i c i t p i c t u r e o f the s i t u a P9.m t i o n ; t h i s c a n e a s i l y b e used by p u b l i c h e a l t h a u t h o r i t i e s . During t h e f i r s t e x p e r i m e n t a l w i n t e r , this c o n v e r s i o n h a s been done s i m p l y by m u l t i p l y i n g t h e MPI by a f a c t o r d e t e r m i n e d f o r e a c h urban area from p r e v i o u s winter observations. During t h e s e c o n d w i n t e r , l i n e a r r e g r e s s i o n s b a s e d on o b s e r v a t i o n s performed d u r i n g t h e f i r s t w i n t e r have been u s e d .
Comparison between t h e f o r e c a s t e d p o t e n -
t i a l a i r p o l l u t i o n and o b s e r v e d SO2 c o n c e n t r a t i o n s i s summarized i n t a b l e 2 .
High p o l l u t i o n p e r i o d s have been f o r e c a s t e d w i t h s u c c e s s , however c o n c e n t r a t i o n s c a n n o t b e f o r e c a s t e d a c c u r a t e l y due t o t h e c o n c e p t i o n of t h e MF'I i t s e l f , as n e i t h e r a c c u m u l a t i o n n o r t r a n s p o r t a r e i n c l u d e d i n t h e method.
The p u r p o s e
o f t h i s method i s t o c h a r a c t e r i z e t h e d i f f u s i o n c o n d i t i o n s and o n l y those s o u r c e e f f e c t s which are due t o d o m e s t i c h e a t i n g .
101
TABLE 2
Forecasting r e s u l t s Urban area
(%)
concentrations Good ( + 2 0 % )
a b a b a b a b a b
Brussels Antwerp Liege Ghen t Charler o i
33 37 41 39 37 55 45 49 38 51
Over
( 4 2 ) (+) (46) (53) (43) (61) (70) (57) (46) (41) (54)
13 51 24 48 5 10 20 26 26 21
(28) (23) (21) (23) (18) (18) (16) (23) (33) (24)
Under
54 12 35 13 58 35 35 25 37 28
(31) (31) (26) (34) (20)
(12) (27) (31) (27) (33)
a : 1979-1980 , b : 1980-1981 ( + ) F i g u r e s between b r a c k e t s r e p o r t a p o s t e r i o r i f o r e c a s t i n g u s i n g f o r e c a s t e d MPI b u t a l i n e a r r e g r e s s i o n between o b s e r v a t i o n s f o r t h e same w i n t e r .
CONCLUSIONS The s i m p l e e s t i m a t i o n o f t h e p o t e n t i a l a i r p o l l u t i o n t h a t h a s been e x p e r i m e n t e d i n Belgium f o r two y e a r s p r o v e d t o be o p e r a t i o n a l f o r d a i l y f o r e c a s t i n g i n o r d e r
t o warn p u b l i c h e a l t h a u t h o r i t i e s a b o u t t h e p o s s i b l e d e t e r i o r a t i o n o f t h e a i r quality
2 4 o r 48 h o u r s i n advance.
The method of f o r e c a s t i n g t h e p o t e n t i a l a i r
p o l l u t i o n d e v e l o p p e d a t t h e Royal M e t e o r o l o g i c a l I n s t i t u t e o f Belgium and d a i l y u s e d d u r i n g two w i n t e r s h a s g i v e n e n c o u r a g i n g r e s u l t s .
When n u m e r i c a l f o r e c a s -
t i n g s w e r e correct, i . e . i n most o f t h e cases, MPI w a s g e n e r a l l y w e l l e s t i m a t e d . I t appears thus p o s s ib le
t o f o r e c a s t t h e d i f f u s i v e c a p a c i t y o f t h e atmosphere
and t o e s t i m a t e p o t e n t i a l a i r p o l l u t i o n from r o u t i n e s y n o p t i c f o r e c a s t i n g s a v a i l a b l e a t a weather o f f i c e .
SO
an i n d i c a t i o n o f t h e a i r q u a l i t y .
2
c o n c e n t r a t i o n s computed from t h e MPI g i v e I t i s t o b e n o t e d t h a t t h e MPI t a k e s only i n t o
a c c o u n t t h e d i s p e r s i o n c o n d i t i o n s and p o l l u t a n t p r o d u c t i o n due t o d o m e s t i c heat i n g sources.
Background p o l l u t i o n and i n d u s t r i a l s o u r c e s are i m p l i c i t e l y t a k e n
i n t o a c c o u n t by t h e c o n v e r s i o n method ; however t r a n s p o r t and a c c u m u l a t i o n o f p o l l u t a n t s are n o t i n c l u d e d i n t h i s scheme, p r i m a r i l y d e s i g n e d f o r urban areas. Even when p a r t i c u l a r y u n f a v o u r a b l e m e t e o r o l o g i c a l c o n d i t i o n s e x i s t , an a i r p o l l u t i o n e p i s o d e only occurs i f s o u r c e s t r e n g t h i s s u f f i c i e n t .
The MPI must be
c o n s i d e r e d as an i n d i c a t o r o f the a t m o s p h e r i c d i f f u s i o n c a p a b i l i t y and o f p o l l u t a n t p r o d u c t i o n due t o m e t e o r o l o g i c a l c o n d i t i o n s ( h e a t i n g d u r i n g very c o l d p e r i o d s ) . I t c o n s t i t u t e s a simple b u t e f f e c t i v e t o o l f o r d a i l y f o r e c a s t i n g o f t h e p o t e n -
t i a l air pollution.
102 REFERENCES 1 . B, B r i n g f e l t , Atmosph. E n v i r o n . , 5 (1971) 949-972. 2. D.M. Elsom a n d T . J . C h a n d l e r , Atmosph. E n v i r o n . , 12 (1978) 1543-1554. 3 . H . van Dop, A.P. van Ulden a n d W.R. R a a f f , S c i e n t i f i c r e p o r t , W.R. 75-4, K.N.M.I. (1975) D e B i l t . 4. M.E. B e r l y a n d , P r e s e n t T o p i c s i n a t m o s p h e r i c d i f f u s i o n a n d a i r p o l l u t i o n ( i n r u s s i a n ) , chap.12 (1975) L e n i n g r a d . 5. L.M. Malet a n d A. J o u k o f f , W.M.O. Symposium on boundary l a y e r p h y s i c s a p p l i e d n 0 5 1 0 ( 1 9 7 8 ) , 135-141. t o s p e c i f i c p r o b l e m s o f a i r p o l l u t i o n W.M.O. 6 . A . Bodeux, Approche d ' u n e esquisse c l i m a t o l o g i q u e d e s t y p e s d e temps e n B e l g i q u e , I.R.M., Publ. s e r i e A n o 2 ( 1 9 7 2 ) .
103
THE FORECASTING METHOD
OF A I R
POLLUTION PEAKS DEVELOPED AND USED I N THE NORD -
PAS-DE-CALAIS AREA
P. ALLENDER and J.M. D E J A R D I N Armines - Cen r e de D O U A I ( F r a n c e )
ABSTRACT An o r i g i n a
s t a t i s t i c a l method, based o n t h e use o f t h e d i s c r i m i n a t ng a n a l y -
s i s , has been d e v e l o p e d t o make p o s s i b l e t h e m u l t i v a r i a t e f o r e c a s t o f a i r p o l l u t i o n peaks i n t h e Nord - P a s - d e - C a l a i s a r e a . T h i s p a p e r p r e s e n t s t h e m a i n mathem a t i c a l c h a r a c t e r i s t i c s o f t h e method, and d e s c r i b e s how i t i s used i n t h e p r a c t i c e i n t h e a u t o m a t i c a i r p o l l u t i o n c o n t r o l n e t w o r k s o f t h e Nord
-
Pas-de-Calais
area.
INTRODUCTION The f o r e c a s t i n g o f p o l l u t i o n peaks r e q u i r e s t h e use o f a m u l t i v a r i a t e f o r e c a s t i n g method. I t i s now w e l l known t h a t mono v a r i a t e methods l i k e A R I M A schemes d o n ' t g i v e good r e s u l t s . The m u l t i v a r a t e method chosen h e r e i s based o n a p a r t i c u l a r use o f the discriminating analysis
THE METHOD L e t us c o n s i d e r a group o f o b j e c t s i n which a p a r t i a l c l a s s i f i c a t i o n a l r e a d y e x i s t s and l e t us suppose t h a t s e v e r a l p a r a m e t e r s have been measured on a l l o b j e c t s . The d i s c r i m i n a t i n g a n a l y s i s e n a b l e s t o a p p r e c i a t e i f t h e p a r t i a l c l a s s i f i c a t i o n i s w e l l r e p r e s e n t e d b y t h e knowledge o f t h e measures. I f i t i s so, t h e d i s c r i m i n a t i n g a n a l y s i s shows how t h e u n c l a s s i f i e d o b j e c t s may be c l a s s i f i e d by t h e u s e o f t h e i r measures. I n t h e c a s e o f a t w o g r o u p s c l a s s i f i c a t i o n ,
t h e method e n a b l e s t o o b t a i n
a l i n e a r f u n c t i o n o f parameters ( c a l l e d Fisher f u n c t i o n ) w i t h which t h e unclassif i e d o b j e c t s w i l l be a f f e c t e d t o one o r a n o t h e r g r o u p , d e p e n d i n g on t h e s i g n o f t h e function. The i d e a i s t o c o n s i d e r t i m e p e r i o d s ( 6 h o u r s f o r example) as o b j e c t s and t o assoc i a t e t o e a c h t i m e p e r i o d t h e v a l u e s o f m e t e o r o l o g i c a l p a r a m e t e r s w h i c h have been measured on t h e p r e v i o u s p e r i o d . The knowledge o f p o l l u t i o n v a l u e s e n a b l e s t o c l a s s i f y t h e p e r i o d s i n t w o g r o u p s : peak o f p o l l u t i o n " o r n o t " . I n t h e s e c o n d i t i o n s t h e d i s c r i m i n a t i n g a n a l y s i s d e s c r i b e d above becomes a s h o r t t e r m f o r e c a s t i n g t o o l .
104
The knowledge o f t h e F i s h e r f u n c t i o n and o f t h e m e t e o r o l o g i c a l p a r a m e t e r s a t t h e p e r i o d t n w i l l show wether t h e p e r i o d t n + 1 w i l l be p o l l u t e d o r n o t .
EVALUATION The method has been t e s t e d w i t h p e r i o d s o f twenty f o u r hours on t h e b a s i s o f o l d d a t a . AF and c l a s s i c a l meteorology o f t h e L I L L E network. A d i s c r i m i n a t i n g a n a l y s i s o f t h e y e a r 1977 gave t h e f o l l o w i n g F i s h e r f u n c t i o n ( p o l l u t i o n i f n e g a t i v e ) f ( j ) = 0,0010 T, + 0,351 v18 - 0,857 CD12 + 0,378 MM - 3,226 + K ( j + l )
Tm, V18, C012 a r e t h e maximum t e m p e r a t u r e , t h e wind speed a t 6 p.m. and the c o s i n e o f t h e wind d i r e c t i o n 0 p.m. measured f o r t h e day j-1 Y M M i s the "modified month" d e f i n i d a s f o l l o w s MM 1 2 3 4 5 6 7
o f which :
X
JAN
FEB
MAR
APR
DEC
NOV
JUN SEP
MAY OCT
JUL AUG
% K(j+l) = 0 , 8 i f j + l i s Saturday K ( j + l ) = 1 , 4 i f j + l i s sunday K(jt1) = 0 i n t h e o t h e r c a s e s
The s e l e c t i o n o f t h e d i f f e r e n t p a r a m e t e r s c a n n o t be j u s t i f i e d here ; a s r e s u l t s from v a r i o u s e x p e r i m e n t a t i o n s . T h i s f u n c t i o n , t e s t e d on t h e y e a r 1978, gave t h e f o lowing r e s u l t s : 24 hours average pol 1 u t i o n measured number o f days concerned
40
134
74
100
80
60
62
43
110
13
I
150
130
16
9
14
2
2
0
1
2
3
I
forecasting errors
1
error i m po r t a nce
2
4
4
13
4 I
2
1
1
0
The l i m i t o f t h e c l a s s i f i c a t i o n " p o l l u t e d " o r " n o t p o l l u t e d " has been chosen at 110~~glm3
-
t h e r e i s an e r r o r when a non p o l l u t e d day has been f o r e c a s t e d " p o l l u t e d "
( " f a l s e peak") o r r e v e r s l y ( " m i s s e d peak") - t h e e r r o r importance index o f f e r s a f o u r l e v e l s e x p r e s s i o n o f t h e importance
o f each f o r e c a s t i n g e r r o r .
As a c o n c l u s i o n , t h e o b t a i n e d r e s u l t s a r e a l r e a d y e x c e l l e n t , and w i l l be improved by t h e u s e o f a s m a l l e r p e r i o d ( t h e measurement p e r i o d i s 15 mn i n t h e automat i c new n e t w o r k ) , and o f new t y p e s o f p a r a m e t e r s ( l i k e micro m e t e o r o l o g i c a l d a t a f o r example) .
105
PRACTICAL USE
A t p r e s e n t , t h e Dunkerque n e t w o r k i s o p e r a t i n g as an " a l a r m " .
D u r i n g 1981,
22 a l a r m s e n a b l e d , by t h e u s e o f a p a r t i c u l a r f u e l i n t h e f o u r m o s t i m p o r t a n t i n d u s t r i e s d u r i n g a s h o r t w h i l e , t o r e d u c e g r e a t l y t h e peak l e v e l o f a i r p o l l u t i o n . The " t r i g g e r i n g " o f t h e a l a r m s i s g e n e r a l l y done i n t h r e e t i m e s :
1) a m e t e o r o l o g i c a l s t u d y has shown t h a t t h e knowledge o f s y n o p t i c a l w e a t h e r r e p o r t s p e r m i t s t o e l i m i n a t e a r o u n d 250 days a y e a r d u r i n g w h i c h t h e r e i s a b s o l u t e l y no peak p o l l u t i o n d a n g e r . 2) Regarding t h e o t h e r days, t h e F i s h e r f u n c t i o n proper t o t h e network i s i m p l a n t e d o n a m i c r o c o m p u t e r w h i c h i s t i e d t o t h e a u t o m a t i c n e t w o r k o n one s i d e and t o an a u t o m a t i c phone c a l l s y s t e m o n t h e o t h e r s i d e . As a r e s u l t , t e c h n i c i a n s may be c a l l e d d u r i n g t h e n i g h t and t h e d a y i f t h e F i s h e r f u n c t i o n becomes n e g a t i v e . 3) The t e c h n i c i a n s may t h e n use q u i c k l y a n i n t e r a c t i v e d i f f u s i o n model, a v a i l a b l e on another microcomputer, o r analyse t h e e v o l u t i o n o f t h e m e t e o r o l o g i c a l data before t r i g g e r i n g t h e alarm. F o r t h e y e a r 1981, t h e e f f i c i e n c y o f t h e w h o l e method has been e v a l u a t e d t o 85 %. I t seems t o be an e x c e l l e n t a p p r o a c h o f t h e o p t i m i s a t i o n o f r u n n i n g c o s t s ,
industrial
e n e r g e t i c c o s t s and a i r qua i t y .
CONCLUSION
A l a s t p o i n t has t o be u d e r l i n e d : i t r e f e r s t o t h e f a s c i n a t i n g d u a l i t y b e t ween t h e huge i n f o r m a t i c a l s y s t e m r e q u i r e d f o r t h e d e t e r m i n a t i o n o f t h e F i s h e r f u n c t i o n , and t h e u t m o s t s i m p l i c i t y o f i t s p r a c t i c a l u s e on a s m a l l m i c r o c o m p u t e r . T h i s i s an i m p o r t a n t a s p e c t o f t h e power o f t h e p r o p o s e d method. REFERENCES
1 P. A l l e n d e r , A p p o r t de 1 ' a n a l y s e d i s c r i m i n a n t e aux p r o b l e m e s de p r e v i s i o n a c o u r t t e r m e - A p p l i c a t i o n a l ' e l a b o r a t i o n d ' u n e p r o c e d u r e de p r e - a l e r t e s u r l e r e s e a u de c o n t r 6 l e de l a p o l l u t i o n a t m o s p h e r i q u e dans l a zone de Lille-Roubaix-Tourcoing, Armines, D o u a i , 1980. 2 P. A l l e n d e r , I m p l a n t a t i o n de 1 ' I n d e x d i s c r i m i n a n t d ' a l e r t e s u r m i c r o - o r d i n a t e u r , Armines, Douai 1981. 3 J.M. D e j a r d i n , J. Mahieu, J.P. Dondeyne, A p p o r t des p r e v i s i o n s m e t e o r o l o g i q u e s synoptiques 2 l a d e t e r m i n a t i o n d ' u n e a l e r t e en p o l l u t i o n atmospherique - A p p l i c a t i o n 2 l a zone d e Dunkerque, A r m i n e s , Douai 1981. 4 P. A l l e n d e r , J.M. D e j a r d i n , A p p l i c a t i o n du m o d s l e GCTSP a 1 ' e t u d e de l a d i f f u s i o n de p o l l u a n t s emis ti p a r t i r de s o u r c e s p o n c t u e l l e s , Armines, D o u a i , 1981.
This Page Intentionally Left Blank
107
TURBULENT DIFFUSIVITIES AND DISPERSION COEFFICIENTS: APPLICATION TO CALM WIND CONDITIONS P.J.H. BUILTJES Netherlands Organization for Applied Scientific Research TNO, Fluid Dynamics Department. Apeldoorn, the Netherlands
ABSTRACT Based on theoretical considerations and experimental data some remarks have been made about the relationship between dispersion coefficients, u-parameters, and turbulent diffusivities, K-parameters. Special attention has been paid to the behaviour of these parameters at calm wind conditions and their use in existing calm wind dispersion models.
INTRODUCTION Dispersion processes in the atmosphere can be described by the diffusion equation or the gaussian plume model. For the dispersion from point sources the gaussian plume model is often used This model contains two dispersion coefficients, describing the width of the and vertical direction, uzIn gridmodels the diffusion equation is used. The terms of this equation
concentration distribution in the horizontal,.U
Y
describing the turbulent transport contain two turbulent diffusivities in the horizontal, K and vertical direction, KZ. Both sets of parameters give a
Y
representation of the turbulent transport. This leads to the question of the relationship between U- and K-parameters, from a theoretical as well as from a practical point of view. This relationship is of special importance in the case of calm wind conditions. The existing calm wind dispersion models are gaussian plume models and diffusion equation models. Consequently it is of importance to know the behaviour of U- and K-parameters at low windspeeds.
108
SOME THEORETICAL CONSIDERATIONS The diffusion equation describing the transport of a pollutant c can be given by
with the mean concentration of a pollutant c
U K
Y
KZ
the mean velocity in the x-direction the turbulent diffusivity of mass in the lateral direction y the turbulent diffusivity of mass in the vertical direction z
In eq. (1) it is assumed that the mean velocities in the y- and z-direction are small and the turbulent transport in the x-direction is small relative to the mean velocity transport. Furthermore it is assumed that the turbulent transport can be described by the gradient type transport, which leads to the use of the turbulent diffusivities. The gradient type transport model can only be viewed as a first approximation. By writing in analogy with the concept of molecular diffusivity Ky, KZ
CI
V L
(2)
with V an appropriate velocity scale and L an appropriate length scale it is clear that eq. (1) can in principle only describe the dispersion of a cloud with dimensions larger than L. However, in practice, as is also known from the theory of turbulent diffusion of momentum, this restriction will not be so severe.
In recent years attempts have been made to improve the gradient type transport concept. The second order closure modelling (ref. 1) and the use of the telegraph equation (ref. 2 , 3 , 4 ) tan be mentioned. These methods try to improve the strictly local character of the gradient type transport by incorporating the influence of a larger space and time domain on the turbulent transport. The different influences of different length scales is also incorporated in the spectral turbulent diffusivity concept (ref. 5 ) . In this paper, however, the discussion will be restricted to the gradient type transport. The gaussian plume model is an analytical solution of eq. (1) under the following conditions:
-
All parameters in eq. (1) are stationary The windfield is homogeneous
109
-
The turbulent diffusivities are only a function of the distance from the source
-
There is complete reflexion from the pollutant against the ground
The gaussian plume model can be written as
with Q
The emission from a source
H
the effective height of the source
u ,a the dispersion coefficients Y
Z
Under the above mentioned restrictions the relation between a- and K-parameters can be given by: U d
KY = -2 -d x
ay2 , K = -U -d ' a 2 z 2dx z
(4)
These relations show directly that it is impossible that both u- and K-parameters are independent of the mean velocity U. In the further discussion a distinction will be made between the horizontal and vertical direction.
THE HORIZONTAL TURBULENT TRANSPORT Because the turbulent transport in the horizontal direction can be viewed as transport in a homogeneous turbulent field, the statistical theory of Taylor can be applied:
2 d a
-
-& = 2 v2
oJt RL (t') dt'
(5)
sth: v2 the turbulent fluctuation in the y-direction
RL (t) the lagrangian auto-correlation for lateral turbulence. In general it is assumed that RL(t)
can be given by
wiCh IL the lagrangian integral time scale.
110
Integration of eq. (5) with eq. (6) leads to
which gives:
-
u = 2v2 Y
-
t = 2v2 I x/u for t >> L
This is the well-known result from Taylor's theory. For small travel times the spread of a plume is determined by the turbulent fluctuations and is proportional to t. For large travel times the larger eddies, represented by IL, play a major role and the spread is proportional to 't
(see for example ref. 6 , pg. 477).
A remark has to be made about travel time and travel distance. The values for 13 as given for example by Pasquill-Gifford, are given as a function of Y' x, the travel distance. However, from a theoretical point of view it is often desirable to use travel time. These two approaches can lead to some confu-
sion, as will be shown later. Because in the horizontal direction there is a homogeneous field eq. (4) can be applied which leads to
-
-
K = v2 t = v2 x/U Y
for t << IL
-
K = v2 IL Y
for t >> IL
This result shows that plume dispersion close to a source can only be described by the diffusion equation with a distanceltime-dependent K -value. Only for Y larger distancesltimes, in the so-called diffusion limit, a constant K -value Y is applicable. (For an unstable atmosphere with a value for IL of about 150 sec, K will only be constant after travel times of the order of 500 sec
Y
and more. This leads to a minimum gridsize which must be used in gridmodels with a constant K -valve.) Y In most Relatively few numerical values are given in the literature for K Y' gridmodels the value for K is set to zero, which leads to the neglection of
Y
turbulent transport across gridcell boundaries. In large scale models 4 (horizontal resolution 30-100 km) a value of K = 10 m2/s is used (ref. 7, 8 j , Y
111 in smaller-scale models (horizontal resolution 1-10 km) a value of K = 50 mZ/s
S
Y
is used (ref. 9 ) . Gifford (ref. 4) mentioned a value of about 10 m2/s for
'large-scale' diffusion. These different values indicate that K is a function Y of scale. No remark is made about a possible influence of the mean velocity on K Y'
This dependency on scale, that is to say on travel distanceltime and averaging time is also clear for the values for u In case of a fixed mean Y' wind direction, the horizontal spread will be determined by length scales from about to 103 meters which can be called boundary-layer turbulence (ref.
lo). This is the turbulence which on scale is generated in an atmospheric boundary layer windtunnel. Larger length scales will cause the so-called meandering of a plume. This meandering is often called relative diffusion, the spread due to boundary-layer turbulence absolute diffusion (ref. 11, 12). This phenomenon leads to the fact that the value of
(7 will be a function of Y the averaging time and will increase with increasing averaging time. The rate
of increase is determined by the turbulent spectrum (ref. 11, 13). Hanna (ref. 14) gives the following correction for the averaging tire, starting from the Pasquill-Gifford values with an averaging time of 3 minutes: a
u
(t)
Y
= u (t = 3 min) (t/3) Y
(11)
with: t
averaging time in minutes
a a
0 . 2 for t < 60 min
0.25-0.3 for t > 60 min
The discrepancy at t = 60 min indicates the accuracy of the methode. A l s o higher values for a can be found, up to 0.5 (ref. 15). The u -values given by Pasquill-Gifford can be written as:
Y
(7
Y
= A x
B
(12)
with B = 0.9 for all stability classes and A a function of the stability class, the surface roughness, and the averaging time, which is 3 min for the original values. In case information about turbulence levels is available, the
112 following expression can be used (ref. 14, 3):
u = u x s Y
with u
O
O
Y
(X/U IL)
the standard deviation of the horizontal winddirection fluctuations,
which is a function of the averaging time, the surface roughness, the height above the ground and the stability class. Several proposals for the function S have been made (ref. 14, 16, 171, which all show a weak dependence on x for small values of x, with a transition to a dependence on x-’ for large values of x. This dependency is in agreement with the expressions (8) and ( 9 ) . Gifford (ref. 4, see also ref. 3) gives the following expression for a point source
with values for K and IL related to large scales. Y Note that this equation is identical to eq. (7). Eq. (14) with the appropriate values for K and IL is claimed to give good Y results for traveltimes from 10 sec to 1 year. Also eq. (14) is in agreement with the limits for small and large values of t. A very simple expression is given by Heffter (18)
u
Y
(m) = 0 . 5 t (sec)
This expression cannot be valid for large traveltimes. For the determination of the values of u and K at low wind speeds it is Y Y necessary to know their dependency on the mean velocity. It can be assumed that the function S of eq. (13) is independent of the mean
velocity. Pasquill (ref. 19, pg. 82) gives a graph from observations at Porton which show for unstable conditions that u is constant down to 0 U = 2 m / s , with a linear increase with decreasing velocity to U = 1 m/s. For stable conditions u Consequently:
u Y
O(
F(x)/U
u a F(x) Y
@
decreases linearly with U from U = 8 m/s to 2 m / s .
for U < U+ for
u
> U+
113 with U+ about 2 m/s for unstable and 8 m/s for stable conditions. F(x) = x for small values of x and xh for large values of x. This result is also in agreement with measurements by Kristensen (ref. 121, which show that u is proportional to U-o'8 for U Y
5
10 m/s at stable conditions.
However, eq. (14) and (15) which are given in travel time indicate that 0 Y is proportional to U-l also at higher velocities, which especially for unstable conditions is incorrect. Consequently, it will be assumed that eq. (13), in combination with the above mentioned dependency on U, gives the correct behaviour of u Assuming that eq. ( 4 ) is still correct for low windY' speeds leads to the following behaviour of K . Y'
with G(x) = 1 €or large values of x , and G(x)
= x for small values of x.
This result shows that there is a distinct dependency on the mean velocity of K Y' THE VERTICAL TURBULENT TRANSPORT
In the case of vertical transport the statistical theory of Taylor can no longer be applied because of the inhomogeneity of the turbulent field. Consequently, also eq. ( 4 ) will be of limited value. Using the so-called similarity theory the following expression for a source close to the ground can be given (see for example ref. 2 0 ) .
with:
k
the von Karman constant
u
9
the wall shear stress velocity the stability function, $I = 1 for neutral conditions
L
the monin-obukov length
*
For a stationairy condition eq. (18) can be rewritten to:
* u = k
x 4 (z/L)
This equation shows a linear dependency on x .
114 A n analogous expression as eq. ( 1 3 ) can be given for uZ (ref. 3 ) :
with u the standard deviation of the vertical winddirection fluctuations, which will be a function of the surface roughness, the height above the ground and the stability class. It is important to note that above a certain averaging time u and consequently u will be independent of the averaging time. This upper averaging time is generally assumed to be 3-10 minutes. In ref. (16) an expression for Sz is given which is identical to S This Y' leads to a dependency of uz on x for small distances, and of 'x for large distances, in accordance with u Y' The original Pasquill-Gifford values can be represented by:
u = c x D with D = 0.9 for unstable and 0.7 for stable conditions. With the aid of the similarity theory also expressions can be given for KZ. Based on the experiments by Deardorff, Reynolds (ref. 9) gives the following algoritm for Kz. for neutral conditions
-
*
*)
*2
U
z < 0.45 f
F (z, u
KZ =
*
KZ = 0.01 m2/s
-
z > 0.45
U
with f the Coriolis parameter for stable conditions
*
K = k u z G
* , L, vg)
(z, u
with V the geostrophic wind
-
g
for unstable conditions
*
K = w zi H (z/zi)
(24)
*
*
with z i the inversion height, and w = u
(-
1
c)113
i'
115
In eq. (22)-(24) KZ is independent of x, which indicates that eq. (22)-(24) can only be used for not too small values of x. It should be noted that in this case eq. (4), which gives the relation between K and aZ is only of limited value, due to the inhomogeneity in the z-direction. The dependency of KZ and u on the mean velocity can be determined in the following way. In eq. (20) the function Sz is independent of U. From measurements quoted by Pasquill (ref. 14) it can be seen that at values of z < 100 m, 0 tends to be independent of U, also for low windspeeds. Consequently it can be concluded from eq. (20) that a is independent of U for all * values of U. The same result can be obtained from eq. (19) because u /U will be independent of U as long as the flow is aerodynamically rough. From eq. (22)-(24) it can be concluded that, assuming u /U is independent of
*
U and using the full expressions for the functions F, G and H (see ref. 9), as
a first-order approximation, K
is proportional to U for all conditions. Consequently, the following result is obtained for all values of U:
u independent of U
This dependency is in agreement with eq. (4).
MODELS FOR CALM WIND CONDITIONS Finally some remarks will be made concerning calm wind conditions. The amount of calm wind conditions will vary from place to place, and is of course highly dependent on the definition for calm wind condition. Often the lower detection limit of the anemometer used is taken as the determining factor, which of course again is highly dependent on the type of windmeter, maintenance, etc. For the Netherlands and Belgium it can be stated that conditions with
U < 0.5 m/s will occur at 1-3% of the total time (ref. 21, 22). About 50% of the calm wind situations takes place during stable conditions. This condition, in relation with low-level sources is most relevant in view of high concentration levels. The dispersion during calm wind conditions is a complicated phenomenon. The principal difficulty is whether (modifications of) the diffusion equation and the gaussian plume model give still valid descriptions of the dispersion process at low windspeed. The following discussion, however, will be restricted to the use of K- and a-parameters in existing models. There are
116
relatively few models that claim to be able to describe the dispersion of a pollutant during calm wind conditions. Berlyand (ref. 23) and Demuth (ref. 21) use the diffusion equation for this situation and obtain analytical solutions for the concentration field. The following expressions for the K-parameters are used:
K = K1 f l K
(2)
= K2 x f2 Y K = K zn 2
ref. (23)
(2)
1
ref. (21)
K r = K 2 rY zm
The description in ref. (21) is given in cylindrical coordinates. K linearly dependent on the travel distance (in case y = l ) , and K
is Y is independent
of the travel distance. This result is in agreement with eq. (17) and eq. (22)(24). However, no dependency on U is mentioned which is in contradiction with the results obtained in this paper. Yamartino (ref. 24) and Okamoto (ref. 25) use the gaussian puff model to describe the dispersion. The following expressions for the o-parameters are used, written in travel distance for comparison: b
u = ah (x/U) Y b u = av (x/U)
ref. (24)
with b = 0.9, and ah and a
V
to U0”
are constant f o r U < 6.2 m/s and are proportional
for higher windspeeds.
u = c1 x/u Y U“ = p x/u
ref. (25)
L.
In both applications u
Y
is about proportional to U
-1
at low windspeeds, which
is in agreement with eq. (16). However, in contradiction with the results obtained in this paper, also oz is proportional to U-’. The result that a
Y
(J
increases with decreasing windspeed at low values and
remains constant is supported by some dispersion measurements at low
windspeeds carried out by Sagendorf (ref. 26) and van der Hoven (ref. 27). Both mention the fact that a comparison between measurements and calculated concentrations with the use of the Pasquill-Gifford values of u
Y
and u
gives too
high calculated results. The agreement between measurements and calculations i s much improved in case u
Y
is increased proportionally to U
-1
and u2 remains
constant. CONCLUSIONS Clear relationships exist between
U-
and K-parameters, which should be kept
in mind when using the diffusion equation and the gaussian plume model for the same situation.
117
-
Below a critical velocity u and K are proportional to U-I. Y Y At higher velocities u is independent of U and K is proportional to U. Y Y For all velocities uZ is independent of U and K is proportional to U.
-
For practical applications the gaussian plume/puff model with the appropriate values for u and u2 seems the best model to describe the dispersion during Y calm wind conditions.
References: 1. W.S. Lewellen and M.E. Teske 'Second order closure modeling of diffusion in the atmospheric boundary layer' Bound. Lay. Met. 10, 69 (1976) 2.
3.
B.E.A. Fisher 'Physical theories of turbulent diffusion' Atm. Pollution, 71, Elsevier (1980) S.R. Hanna 'Application in Air Pollution Modelling' A short course on Atm. Turb. and Air Poll. Modelling, The Hague, (Sept. 1981)
4.
F.A. Gifford 'Horizontal diffusion in the atmosphere- A Lagrangian Dynamical Model' LA-8667-MS, Los Alamos Sc. Lab. (1981)
5.
R. Berkowicz and L.P. Prahm 'Generalization of K-theory for Turbulent
6.
Diffusion' J. of Appl. Met. 18, 3, 266 (1979) J.O. Hinze 'Turbulence' Mc.Graw Hill (1975)
7.
W.B. Johnson e.a. 'Long term regional pattern and transfrontier exchanges of airborne sulfur pollution in Europe' Atm. Env. 12, 511 (1978)
8.
M.K. Liu and D.R. Durran 'The development of a regional air pollution model and its application to the Northern Great Plains' EPA-908/1-77-001 (1977)
9.
S.D. Reynolds e.a. 'An introduction to the SAI-airshed model and its usage' EF 78-53R4 EF79-31 SAI-San Rafael, Cal. U.S.A. (1979)
10. F.B. Smith 'The character and importance of plume lateral spread
affecting the concentration downwind of isolated sourcesof hazardeous 11.
airborne material. Bound. Lay. Res. Branch, Met.-Off. Ref XI (1980?) C.M. Sheih 'On lateral dispersion coefficients as function of averaging
time' J. of Appl. Met. 19, 5, 557, (1980) 12. L. Kristensen e.a. 'Lateral dispersion of pollutants in a very stable atmosphere - the effect of meandering' Atm. Env. 15, 5, 837 (1981) 13. F.A. Gifford, R.D. Rowe, T. Mikkelsen 'Comments on lateral dispersion
coefficients as function of averaging time' J. of Appl. Met. 20, 213, 728, 731 (1981) 14.
S.D. Hanna 'AMS Workshop on stability classification schemes and sigma curves' Bull. Am. Met. SOC. vol 58, 12 (Dec. 1977) 15. D.J. Moore 'Calculation of groundlevel concentration for different sampling periodes and source locations' Atm. Poll. 51-60, Elsevier A'dam (1976)
118 16. R.R. Draxler 'Determination of atmospheric diffusion parameters' Atm. Env. 17.
10, 99 (1976) J.S. Irwin 'Estimating plume dispersion
-
a recommended generalized
scheme'. Fourth Sym. on Turb. Diff. and Air Poll. Am. Met. SOC. 62-69 (1979) 18. J.L. Heffter 'A regional-continental scale transport diffusion and
deposition model' NOAA Tech. Memo ERL-ARL-50 (1975) 19. F. Pasquill 'Atmospheric Diffusion', 2nd Ed. Ellis-Horwood (1974) 20.
21
F.T.M. Nieuwstadt and A.P. v.Ulden 'A numerical study on the vertical dispersion of passive contaminents from a continuous source in the atmospheric surface layer' Atm. Env. 12, 2119 (1978) C1. Demuth e.a. 'Analytical modelling of pollutant dispersion during calm wind conditions' Atm. Poll. 167-173, Elsevier A'dam (1978)
22
P.E.J. Vermeulen 'Persistency and calm wind conditions' (in Dutch) MT-TNO Ref.nr. 81-010569 (Sept. 1981)
23
M.G. Berlyand and G.I. Kurenbin 'Atmospheric Diffusion of impurities during a calm' Am. Inst. of Crop Ecology Survey of USSR. Air Poll. Lit.
Vol IV (1970) 24. R.J. Yamartino 'An air quality dispersion model applicable to calm wind conditions' 7th Int. Tech. Meeting on Air Poll. Modelling and its 25.
Applications, Airlie Virginia, 537, (Sept. 1976) S. Okamoto and K. Shiozawa 'Validation of an air pollution model for the Keihin Area' Atm. Env. 12, 2139 (1978)
26. J.F. Sagendorf and C.R. Dickson 'Diffusion under low windspeed inversion
conditions' NOAA Tech. Memo. ERL-ARL-52 (1974) 27. I. v.d.Hoven 'A survey of field measurements of atmospheric diffusion under low windspeed inversion conditions' Nucl. Safety, 17, 2, 223 (March 1976)
119
MEASUREMENT OF TURBULENCE PROFILES I N THE BOUNDARY LAYER AND OBSERVATIONS OF ATMOSPHERIC DIFFUSION BY SMOKE PLUMES EMITTED NEAR THE GROUND AND I N ALTITUDE D. S c h n e i t e r
Swiss M e t e o r o l o g i c a l I n s t i t u t e , A i r P o l l u t i o n S e c t i o n , CH 1530 Payerne A French v e r s i o n o f t h i s a r t i c l e i s a v a i l a b l e (Rapport de t r a v a i l de 1 ' I n s t i t u t S u i s s e de M 6 t @ o r o l o g i e , No. 108, Z u r i c h 1982).
ABSTRACT S t u d i e s o f t h e atmospheric d i s p e r s i o n o v e r complex t e r r a i n , w i t h t h e a i d o f smoke plumes, e n a b l e t h e d i r e c t o b s e r v a t i o n o f t h e m a r g i n a l d e n s i t y p r o b a b i l i t y o f t h e e m i t t e d p a r t i c l e s . Experiments n e a r t h e ground c o r r e l a t e t h e t u r b u l e n c e measurements a t 10 rn h e i g h t and plume p i c t u r e s ( p r o f i l e , e l e v a t i o n and p l a n ) t a k e n b y a network o f cine-cameras. Experiments i n a l t i t u d e c o r r e l a t e t h e t u r b u l e n c e p r o f i l e , measured b y a m i c r o a e r o l o g i c a l equipment and t h e development o f f i v e smoke plumes o f d i f f e r e n t c o l o r s , d i s t r i b u t e d e v e r y 25 m a l o n g t h e c a b l e o f a t e t h e r e d b a l l o o n . The g r a p h i c a l d a t a t r e a t m e n t and v i d e o e d i t i n g o f t h e f i l m s e n a b l e easy access t o t h e r e s u l t s . These measurements w i l l be used t o check t h e v a l i d i t y o f d i f f e r e n t assumptions proposed i n t h e s t o c h a s t i c modell i n g s (Gaussian o r non Gaussian) o f atmospheric d i s p e r s i o n .
INTRODUCTION The mean c o n c e n t r a t i o n a t p o i n t
?,
a t t i m e t, o f a p a s s i v e p o l l u t a n t , e m i t t e d
b y a c o n t i n u o u s p o i n t source o f i n t e n s i t y Q (number o f p a r t i c l e s p e r u n i t t i m e ) +
a t p o i n t rs, i s g i v e n b y t h e g e n e r a l e q u a t i o n ( r e f s . 10, 1 1 ) t p (F, t ;s, t ' ) d t ' c (?, t ) = Q
+ where p ( r , t i
1 +rs, t ' )
0 i s the p r o b a b i l i t y d e n s i t y t h a t a p a r t i c l e released a t
r s a t t i m e t ' w i l l be f o u n d a t
a t t i m e t. We assume t h a t v e r t i c a l a c c e l e r a t i o n s
due t o t e m p e r a t u r e d i f f e r e n c e s between plume and ambient a i r (buoyancy) a r e negl i g i b l e . I n t h i s case, t h e mean c o n c e n t r a t i o n
c(?, t )
i s only f u n c t i o n o f the
n a t u r a l d i s p e r s i o n c o n d i t i o n s o f t h e a i r . The p i c t u r e s o f t h e plumes, f o r i n s t a n c e
120
i n t h e v e r t i c a l d i r e c t i o n z, r e p r e s e n t t h e m a r g i n a l c o n c e n t r a t i o n f i e l d ( r e f . 17) -
c Z ( x, Y, t )
=
I c (x,
Y, z, t ) dz
0 The d i s t a n c e f r o m t h e camera t o t h e plume must b e s u f f i c i e n t t o m i n i m i z e p e r s p e c t i v e e f f e c t s . Outputs o f n u m e r i c a l models a b l e t o c a l c u l a t e t h e f i e l d
cz (x,
y, t )
can b e d i r e c t l y compared t o these p i c t u r e s . The d a t a o b t a i n e d w i t h smoke plumes experiments performed n e a r t h e ground and i n a l t i t u d e on t h e h i l l y s i t e o f Payerne (100 km f r o m Geneva) w i l l b e used t o v e r i f y s t o c h a s t i c models o f atmospheric d i s p e r s i o n o v e r complex t e r r a i n and by weak t o moderate winds.
SMOKE PLUME EXPERIMENTS NEAR THE GROUND
The t h r e e w i n d components, measured b y a t h r e e p r o p e l l e r s anemometer X Y Z ( F i g . l ) , mounted on a mast 10 m o v e r ground, a r e memorized e v e r y 5 s, d u r i n g 1 h o u r . Three smoke plumes a r e f i r e d s u c c e s s i v e l y , n e a r t o t h e anemometer. For e v e r y e x p e r i m e n t ( T a b l e 1 ) t h e camera l o c a t i o n s were d e t e r m i n e d t a k i n g i n acc o u n t t h e mean w i n d d i r e c t i o n and t h e sun p o s i t i o n . A p l a n view i s o b t a i n e d b y an a i r l i f t e d camera, p o i n t e d down, a t t a c h e d under a t e t h e r e d b a l l o o n , s t a b i l i z e d between 200 and 500 m above t h e ground. White markers on t h e ground a r e used t o s c a l e plume dimensions.
Fig. 1
X Y Z anemometer and smoke c a r t r i d g e 10 m above t h e ground
Fig. 2
Plume blown down showing a l o g a r i t h m i c wind p r o f i l e n e a r t h e ground
Clocks i n t h e f i e l d o f view o f t h e cine-cameras p r o v i d e s y n c h r o n i z a t i o n between t u r b u l e n c e measurements and p i c t u r e s . M i c r o a e r o l o g i c a l soundings ( r e f . 19) f o l l o w t h e v a r i a t i o n s i n temperature, h u m i d i t y , w i n d speed and d i r e c t i o n p r o f i l e s d u r i n g d i s p e r s i on o f smoke.
121
TABLE 1 Smoke experiments near the ground Smoke c a r t r i d g e
Cine cameras l o c a t i o n s
No
Date
Time
Duration
8 mm
1 2 3 4 5 6 7 8
3.3.78 3.3.78 3.3.78 8.3.78 8.3.78 9.3.78 9.3.78 9.3.73
14h59 '30" 15h 16 ' 30" 15h31'30" 9h26 '50" 10 h04 ' 50 " 16h42 ' 20" 16h52' 10" 17 hO 2 ' 30 "
1 ' 50" 3'30" 3 ' 10" 3'10" 3'10" 3'10" 3'10" 2 ' 30 "
LlOO LlOO LlOO F 75 F 75 F 75 L 75 L 75
9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26
11.3.80 11.3.80 11.3.80 12.3.80 12.3.80 12.3.80 12.3.80 12.3.80 12.3.80 17.3.80 17.3.80 17.3.80 18.3.80 18.3.80 18.3.80 18.3.80 18.3.80 18.3.80
15h20' 50" 15h38'25" 15h48' 30" 9 h 12 ' 25" 9 h 25 ' 30" 9 h 38 ' 2 7" 15h 10 ' 15" 15h26'17" 15 h 34 ' 35 " 14hl3'25" 14h24'05" 14h 3 5 ' 15 " 11h 10 ' 02" 11 h24'50" 1 1h40 ' 20" 14h25 ' 22" 14h34'12" 14h 43 ' 55 "
2 ' 50" 3'05" 3'18" 2 ' 50" 2 ' 50" 2 ' 5 8" 3'10" 3 ' 43" 2 ' 45" 2'55" 3'08" 3'00" 2'58" 2 ' 48" 3 ' 10" 3 ' 00"
2'21)"
G 50 G 50 G 50 G 50 G 50 GlOO KlOO KlOD K100 L 75 L 75 L 75 T 85 T 85 T 85 H150 H150 H150
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
3.4.81 3.4.81 6.4.81 6.4.81 6.4.81 7.4.81 7.4.81 7.4.81 7.4.81 7.4.81 7.4.81 8.4.81 8.4.81 8.4.81 8.4.81 8.4.81 8.4.81
14H17 ' 17" 14h42'53" 15h15 '00" 15h 30 ' 00" 15h45 ' 00" 14h15 '00" 14h26'00" 14h44'00" 16hl5 ' 00" 16h33 ' 45" 16h49 ' 20" 14h 15 ' 00" 14h30'00" 14h45 ' 00" 1 5 h l 4 ' 58" 15h25 ' 00'' 15h 39 ' 22"
2 ' 53" 8'03" 3'15" 9'15" 2 ' 50" 2 ' 45" 9 ' 36" 2 ' 45 " 2 ' 42" 1 0 ' 15" 2 ' 50" 3 ' 00" 9 ' 45" 3 ' 20" 2 ' 42" 9 ' 30" 2 ' 28"
S150 S150 ClOO ClOO c100 ClOO ClOO ClOD -ClOO c100 c100 ClOO ClOO ClOO ClOO ClOO
22
3 ' 23"
Weight
8 mm
8 mm
-300m 500m 500m 500m 500m 500m 500m 500m
---
-_ 500m 500m 500m 300m 500m 500m H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150 H150
L L L L F F L
50 50 50 75 75 75 75
--
L 75 T 85 T 85 T 85 P100 PlOO PlOO FlOO FlOO
--
B150 B150 -- BlOO -- B l O O -- B1OD -- B l O O - - B700 -- B l O O 200m B l O O 200111 B l O O zoom B l O O 200m B l O O -200m 200m B l O O -- B l O O -- B l O O -- B l O O
500m
500m
Measurements
Top o f 16mm X Y Z sounding
XYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XY2 XYZ
_405111 399m 677m
--
709111 49 7m
--
435m 49 7m _508m 499m
--
505m 499m
__
508m 306m 290m 287m 31 4m 241111 495m 49 4m 49 7m 402111 246m 462111 802111 49 8m 501m 523111 507m 51 4m
i
\\
0
El
s
I I
=4
E
p
i Ln ,f
-i
v
-
ma, o m
m-
L
.r
L Q -
0
C
v)
m--
m
m
LL
.r
123 RESULTS A f t e r p a r t i a l c o r r e c t i o n o f n o n - l i n e a r i t i e s ( r e f s . 8 and 18), the 5 s wind components are f i l e d and analysed on graphs, traced b y computer. The curve obtained by a d d i t i o n o f h o r i z o n t a l components, i n a reverse chronological order (Fig. 4), can be compared w i t h the actual plume t r a j e c t o r y (Fig. 3 ) . The s e t of h o r i z o n t a l wind vectors (Fig. 5 ) c o l l e c t e d d u r i n g one hour i s presented i n chronological order, from l e f t t o r i g h t and up t o down. They reveal the organizat i o n o f small eddies ( l i f e time, some tens o f s ) and l a r g e eddies ( l i f e time, about f i f t e e n minutes). The same wind vector set, drawn from a comnon o r i g i n (Fig. 6 ) represents the s e c t o r i a l d i s t r i b u t i o n o f wind speeds and d i r e c t i o n s t h a t extend over n e a r l y a l l azimuts i n t h i s case.
SMOKE PLUME EXPERIMENTS I N ALTITUDE
Sensors o f the microaerologi c a l sounding system HOBILAB (pressure, temperature, humidity, wind d i r e c t i o n ) are supplemented by two p r o p e l l e r s having oblique axes (Fig. 7). These two c o v a r i a n t wind components a r e used t o c a l c u l a t e h o r i z o n t a l and v e r t i c a l speed a t every measurement l e v e l . Ascents and descents are performed successively. Measurements a r e made every 5 m, t o g i v e the f i n e s t r u c t u r e (Figs. 9 and 11) o f the boundary layer. F i v e smoke plumes o f d i f f e r e n t colors are d i s t r i b u t e d every 25 m along the cable o f a tethered balloon. They are f i r e d by r a d i o remote c o n t r o l . Two super 8 cine-cameras f i l m the plumes along v e r t i c a l (Fig. 8) and o b l i q u e axes. A 16 mm cine-camera, placed on a nearby h i l l , a t 800 m distance, gives a view along a h o r i z o n t a l a x i s (Figs. 10 and 12). An automatic camera equipped w i t h a fish-eye o b j e c t i v e , p o i n t e d up, takes s l i d e s every 3 s . These p i c t u r e s being i n p o l a r coordinates g i v e azimuts and e l e v a t i o n s o f the plumes o u t l i n e .
Fig. 7
MOBILAB sonde w i t h two p r o p e l l e r s f 300
Fig. B
F i v e airborne smoke fumes and two tethered balloons viewed from the ground, l o o k i n g v e r t i c a l l y up
124
TABLE 2 Smoke experiments i n a l t i t u d e No
Date
1 9.4.81 2 9.4.81 3 9.4.81 4 9.4.81 5 10.4.81 6 10.4.81 7 10.4.81 8 10.4.81 9 10.4.81
Time
10 h 39 00 " 1 l h40 ' 00" 1 4h5 3 ' 15" 15h41'30" 8h 46 ' 1 4" 9h 2 3 ' 00 " 9h 58 ' 42 " 1 1 h 1 4 ' 1 7" 1 1 h 35 ' 1 5 "
Duration
Number o f fumes
1'30" 1'25" 1'05" 1 ' 30"
Heights 50m t o 117111t o 43m t o 53m t o 113m to 56m t o 53m t o 35m t o 38m t o
1'21" 1'25" 1'18" 1 ' 28" 1'25"
150111 217111 118m 153m 188m 156111 153m 135m 138m
Top sounding aboveoftheground
--
-80 4m 992m 49 4m 496m 505m 505m 49 4m
RESULTS
These experiments revealed a c l e a r l y noticeable s t r a t i f i c a t i o n of the dispersion conditions i n the lower atmospheric boundary l a y e r ( 0 t o 200 m ) . A f i r s t case ( F i g s . 9 and 10) shows an important r o t a t i o n of the wind d i r e c t i o n between 20 m and 80 m. The nearly windless s h e e t (horizontal as well as v e r t i c a l components) between 80 rn and 100 m appears t o be an impassable obstacle t o passive p o l l u t a n t s . The second case (Fig. 11 and 1 2 ) , observed 2 hours l a t e r , i s more i n s t a b l e (-1,ZOC per 100 m between 36 m and 136
in).
The strong ascending and descending wind com-
ponents produce the mixing of the plumes, a t a s h o r t distance of the source p o i n t .
FINAL REMARKS The smoke f h e experiments c a r r i e d out during t h e l a s t few years c o n s t i t u t e a s u i t a b l e data base f o r the d i f f i c u l t study of the atmospheric dispersion over complex t e r r a i n . The c o l l e c t i o n of d a t a , photographs and films describes in d e t a i l t h e behaviour of passive plumes, by weak o r moderate winds. The a v a i l a b l e technological progress (automatic meteorological s t a t i o n , minicomputer, automatic cine cameras and video e d i t i n g of the f i l m s ) gives new p o s s i b i l i t i e s t o experiments previously c a r r i e d out ( r e f s . 2 , 4 , 5 , 12, 13, 15 and 16) t h a t proved the merits of the method. The numerical s t o c h a s t i c models simulate the Lagrangian dispersion o f the plumes, based on the Eulerian turbulence measurements near the ground and
i n a l t i t u d e . The experiments made in Payerne w i l l be used t o check the v a l i d i t y of the d i v e r s e hypotheses associated with the c a l c u l a t i o n of s t o c h a s t i c p a r t i c l e t r a j e c t o r i e s i nvol ved i n these models.
125
I
C"G1 Fig. 9
T360"J
[ms-']
[ms -'I
MOBILAB soundings, A p r i l 1 0 t h 1981, 9h13' t o 9h27'
trns -'I F i g . 11
MOBILAB soundings, A p r i l 1 0 t h 1981, l l h 1 4 ' t o l l h 2 5 '
t
April 10L-h81 F i g . 10
Smoke plumes observation
April 10 tb 81 Fig. 12
0924h
1115h
Smoke plumes observation
ACKNOWLEDGEMENTS T h i s work c o u l d n o t have been achieved w i t h o u t t h e e f f e c t i v e s u p p o r t o f D r . A. Junod, deputy d i r e c t o r o f t h e Swiss M e t e o r o l o g i c a l I n s t i t u t e , P. Jeannet,
c h i e f o f t h e A i r P o l l u t i o n S e c t i o n and h i s c o l l a b o r a t o r s . Flrs: A . B u r g d o r f e r ,
A. J u n o d - R i e t v e l d , F. Pahud, D. Spielmann; Messrs: A . A e p l i , H. Berger, Ph. T e r c i e r , A. Vernez, P. V i a t t e and P. W a s s e r f a l l e n . Graphs were drawn by Mrs. M. S c h n e i t e r . D r . P. Du P a s q u i e r h e l p e d e f f i c i e n t l y w i t h t h e E n g l i s h v e r s i o n .
126
REFERENCES F. Baatard e t S. Magnin - La mecanique a l e a t o i r e de Dedebant e t Philippe Wehrle B u l l e t i n technique de l a Suisse Romande No 4, 9 e t 12, Lausanne 1972 N . L . Byzova and E . K . Garger - Experimental study of d i f f u s i o n parameters with the a i d of smoke plumes - Izv. Atmos. and Ocean. Phys. 6(1970) 996-1006 R . R . Draxler - Some observations of the along-wind dispersion parameter - AMS, Fourth symposium on turbulence, d i f f u s i o n and a i r p o l l u t i o n , Reno, Nevada, Jan. 1979, 5-8 E . K . Garger and Lemann - Measurement of v e r t i c a l d i f f u s i o n parameter according t o smoke plume data - Izv. Atmos. and Ocean. Phys. 14(1978) 101-107 F.A. Gifford - Smoke as a q u a n t i t a t i v e atmospheric diffusion t r a c e r - J . Atmos. Env. 14(1980) 1119-1122 S.R. Hanna - Diurnal v a r i a t i o n of horizontal wind d i r e c t i o n f l u c t u a t i o n s i n complex t e r r a i n a t Geysers, California - Boundary-Layer Met. 21(1981) 207-213 S.R. Hanna - Lagrangian and Eulerian time-scale r e l a t i o n s i n t h e daytime boundary layer - J . Appl. Net. 20(1981) 242-249 T.W. Horst - Correction f o r response e r r o r s i n a three-component p r o p e l l e r anemometer - J . Appl. Met. 12(1973) 716-725 S.K. Kao, H . N . Lee and K.I. Smidy - Analysis of the topographical e f f e c t on turbulence and d i f f u s i o n i n the atmosphere's boundary layer - Boundary-Layer Met. 8(1975) 323-334 10 R . G . Lamb - ' A numerical simulation of dispersion from an elevated p o i n t source i n the convective planetary boundary layer - J . Atmos. Env. lZ(1978) 1297-1304 11 R.G. Lamb - Mathematical Drincioles of turbulence d i f f u s i o n modellinq A. Longhetto: Atmospheric' planetary boundary l a y e r physics, Elsevier; Amsterdam 1980. 173-210 12 T. Mikkelsen - Simulation of obscuration smoke d i f f u s i o n - Riso National Laboratory, Denmark, Jan. 1979, 73 p . 13 T. Mikkelsen, S.E. Larsen and I . Troen - Some puff modelling principles r e l e v a n t f o r dispersion c a l c u l a t i o n i n the atmosphere - Riso National Laboratory, Denmark, Sept. 1980, 29 p . 14 P.K. Misra - Determination of boundary-layer parameters using a v e r t i c a l Gill anemometer - Boundary-Layer Met. 17(1979) 93-100 15 C.J. Nappo - Atmospheric turbulence and d i f f u s i o n estimate derived from observation of a smoke plume - J . Atmos. Env. 15(1981) 541-547 16 C.J. Nappo - Relative and s i n g l e p a r t i c l e diffusion estimates determined from smoke plume photographs - AMS, Fourth symposium on turbulence, d i f f u s i o n and a i r p o l l u t i o n , Reno, Nevada, Jan. 1979, 46-47 1 7 A. Papoulis - P r o b a b i l i t y , random v a r i a b l e s , and s t o c h a s t i c processes McGraw-Hill, New-York, 1965, 583 p . 18 P.E. Ravussin and R.J. Hopkirk - A gust and turbulence sensor - Ecole polytechnique f e d e r a l e , Chaire de l a mecanique de l a turbulence, Groupe EPFL-ISM No 102, Lausanne 1979, 27p. 19 P. Wasserfallen and P . Du Pasquier - Systsme de sondage dans l a basse troposphere de 1 ' Ins t i t u t s u i s s e de meteorologic - OMM, No. 480, Proceedings (1977) 165-167 20 R.B. Wilson, G.E. S t a r t , C . R . Dickson and N . R . Ricks - Diffusion under low windspeed conditions near Oak Ridge, Tennessee - AMS, Third symposium on atmospheric turbulence, d i f f u s i o n , and a i r q u a l i t y , Raleigh, 1976, 269-276 21 0. Yokoyama - Measurements of wind f l u c t u a t i o n by a vane mounted on the captive balloon cable - J . Met. SOC. of Japan, 47(1969) 159-166
-
127
A COMPARISON bk NUMERICAL MODELS FOR CALCULATING DISPERSION FROM ACCIDENTAL RELEASES OF POLLUTANTS D. W. E.
PEPPER and R.
E. COOPER
I. du Pant de Nemours & Co.,
Savannah R i v e r L a b o r a t o r y , Aiken, SC, USA
A. J. BAKER U n i v e r s i t y o f Tennessee, K n o x v i l l e , TN, USA
ABSTRACT
A modular, data-based system approach has been developed t o f a c i l i t a t e comput a t i o n a l s i m u l a t i o n o f m u l t i - d i m e n s i o n a l p o l l u t a n t d i s p e r s i o n i n atmospheric, stream, e s t u a r y , and groundwater a p p l i c a t i o n s .
T h i s system i s used t o assess
e f f e c t s o f a c c i d e n t a l r e l e a s e s o f p o l l u t a n t s t o t h e environment.
Model s o p h i s t i -
c a t i o n ranges from s i m p l e s t a t i s t i c a l t o complex t h r e e - d i m e n s i o n a l numerical methods.
The system used s p e c i f i e s d e s i r e d degree o f model s o p h i s t i c a t i o n f r o m a
terminal.
The model used depends on t h e p a r t i c u l a r t y p e o f problem b e i n g solved,
and on a b a s i s o f m e r i t r e l a t e d t o computer c o s t .
The r e s u l t s o f p r e d i c t i o n f o r
s e v e r a l model problems a r e presented.
INTRODUCTION A c o n c e r t e d e f f o r t i s under way a t t h e Savannah R i v e r L a b o r a t o r y t o d e v e l o p and assess s t a t e - o f - t h e - a r t
d i s p e r s i o n models t o p r e d i c t p o l l u t a n t t r a n s p o r t .
P r i m a r y i n t e r e s t has focused on r e l e a s e s t o t h e atmosphere, w i t h a d d i t i o n a l e f f o r t a p p l i e d t o d e v e l o p i n g s o p h i s t i c a t e d stream and groundwater models.
Both
a n a l y t i c a l and m u l t i - d i m e n s i o n a l numerical models have been developed and e v a l u ated.
D i s p e r s i o n models c o n s i s t o f s e v e r a l Gaussian procedures, (puff/segmented
plume [ r e f .
l ] ) , s t a t i s t i c a l methods, and a s e t o f m u l t i - d i m e n s i o n a l codes which
n u m e r i c a l l y s o l v e t h e a d v e c t i o n - d i f f u s i o n s p e c i e s t r a n s p o r t equation. The p r i n c i p a l t o p i c o f t h i s paper i s t h e comparison o f performances o f t h e s e v e r a l mu1 t i - d i m e n s i o n a l
codes f o r s e v e r a l example problems.
The computer code
system i s based upon u s e r s e l e c t i o n o f one o f s i x d i f f e r e n t and t h e o r e t i c a l l y d i s t i n c t algorithms, i n c l u d i n g : element),
(1) chapeau f u n c t i o n ( i d e n t i c a l t o l i n e a r f i n i t e
( 2 ) method o f second moments, (3) p a r t i c l e - i n - c e l l
(PIC), (4) c u b i c
s p l i n e , ( 5 ) p s e u d o s p e c t r a l , and ( 6 ) q u a d r a t i c f i n i t e element, c o n v e n t i o n a l (2D)
128 and t i m e - s p l i t (1-3D).
Topography i s accounted f o r u s i n g elementary sheared
c o o r d i n a t e t r a n s f o r i n a t i o n s t o map t h e s o l u t i o n domain t o t h e u n i t cube, except i n t h e c o n v e n t i o n a l f i n i t e element method. The essence o f t h e c o m p u t a t i o n a l d a t a base management system (JEREMIAH) i s i l l u s t r a t e d i n Fig. 1.
The r e a l - t i m e wind f i e l d r e q u i r e d f o r t h e atmospheric
s i m u l a t i o n s i s c o m p u t a t i o n a l l y determined u s i n g d a t a measurements f r o m a system o f i n s t r u m e n t e d t o w e r s l o c a t e d a t t h e Savannah R i v e r P l a n t , f r o m t h e N a t i o n a l Weather S e r v i c e , and f r o m a c o u s t i c sounder data.
Mass c o n s i s t e n c y o f t h e
r e s u l t a n t t h r e e - d i m e n s i o n a l v e l o c i t y f i e l d i s ensured u s i n g v a r i a t i o n a l t e c h n i q u e s ( r e f . 2) t o t e m p o r a l l y a d j u s t t h e nodal d i s t r i b u t i o n s f o r t h e m u l t i - d i m e n s i o n a l codes.
Turbulence d i f f u s i o n parameters a r e o b t a i n e d f r o m
s t a n d a r d d e v i a t i o n o f t h e measured wind d i r e c t i o n f r o m t h e meteorology towers, o r are estimated w i t h s t a t i s t i c a l / e m p i r i c a l
methods.
The stream and e s t u a r y
c o m p u t a t i o n a l a l g o r i t h m s use t h e JEREMIAH system, and a r e based on c o n v e n t i o n a l f i n i t e element, a n a l y t i c a l , and s i m p l e f i n i t e d i f f e r e n c e methods.
Specific
i n p u t parameters t o t h e stream models a r e o b t a i n e d f r o m f i e l d experiments a t t h e Savannah R i v e r P l a n t .
A s e r i e s o f w e l l s have been d r i l l e d o v e r t h e
300-square-mile p l a n t s i t e t o measure w a t e r t a b l e head and h y d r a u l i c c o n d u c t i v i t y , f o r use i n t h e groundwater f l o w s i m u l a t i o n s u s i n g a second-moment code.
PRINTER COM AND OTHER GRAPHICS M V I C E S JOB DATA SET
F i g . 1. The JEREMIAH c o m p u t a t i o n a l system.
129
THEORETICAL MODELS A b r i e f d e s c r i p t i o n o f t h e v a r i o u s numerical a l g o r i t h m s serves t o h i g h l i g h t t h e i r d i s t i n c t i o n s . Gaussian p u f f / p l u m e models, a l s o r e s i d e n t i n JEREMIAH, a r e w e l l known, and w i l l n o t be d i s c u s s e d h e r e (see r e f . 1).
I n a l l instances, the
models a r e a p p l i e d t o t h e s o l u t i o n o f t h e e q u a t i o n g o v e r n i n g m u l t i - d i m e n s i o n a l t r a n s p o r t o f s p e c i e s Q ("x,t)
+ I n eq. ( l ) , Q i s t h e c o n c e n t r a t i o n (g/m3), U i s t h e v e c t o r a d v e c t i o n v e l o c i t y f i e l d , K i s t h e d i r e c t i o n a l l y dependent eddy d i f f u s i v i t y (m2/sec), s i n c l u d e s a l l source and/or s i n k terms ( d e p o s i t i o n , chemical r e a c t i o n s , e t c . ) , and t i s time.
"x
The s o l u t i o n domain i s t h e t h r e e - d i m e n s i o n a l space spanned by
and bounded by t h e topography, t h e m i x i n g h e i g h t , and a s u i t a b l e box
surrounding t h e release point.
z
=
x,y
0,H: =
The boundary c o n d i t i o n s f o r eq. (1) a r e
t ( Q ) = -kVQ.n = 0
0,N:
t(Q) =
-kVQ.n = 0 , f.n>O
DQ -
kVQ.n = UnQ, l.n
where n i s t h e u n i t v e c t o r normal t o t h e boundary,
H i s t h e l i d h e i g h t , and N i
t h e l a t e r a l domain e x t e n t .
A l l models except t h e pseudospectral and c o n v e n t i o n a l f i n i t e element employ f a c t i o n a l steps and t i m e s p l i t t i n g t o e c o n o m i c a l l y s o l v e eq. (1).
Hence, each
procedure c o n s i s t s o f a m u l t i p l i c a t i v e sequence o f a l g o r i t h m steps, each based upon t h e s o l u t i o n o f t h e one-dimensional
advection-diffusion equation,
The m u l t i - d i m e n s i o n a l c a p a b i l i t y i s produced by r e p e a t e d o p e r a t i o n s i n t h e other directions. The chapeau f u n c t i o n r e c u r s i o n r e l a t i o n ( r e f . 3) can be e s t a b l i s h e d u s i n g l i n e a r f i n i t e elements w i t h i n t h e G a l e r k i n weighted r e s i d u a l method ( r e f . 4). The chapeau f u n c t i o n r e c u r s i o n f o r m u l a f o r c o n s t a n t v e l o c i t y and d i f f u s i v i t y is
130
kX
- 2 [Qi+l AX
-
2Qi + Q i - l
1
+ si
= 0
In eq. (4), t h e superscript dot denotes the time d e r i v a t i v e , and U and AX are uniform constants. The generalized r e l a t i o n f o r v a r i a b l e velocity and d i s c r e t i z a t i o n i s given in r e f . 4. Cubic s p l i n e r e l a t i o n s , although derived d i f f e r e n t l y , look s i m i l a r t o the chapeau function r e l a t i o n s . Results in t h i s study a r e b a s i c a l l y i d e n t i c a l t o t h e chapeau function r e s u l t s . A more d e t a i l e d analysis i s discussed in ref. 5. The method of second moments i s a quasi-Lagrangian e x p l i c i t scheme which c a l c u l a t e s t h e zeroth, f i r s t , and second moments of t h e d i s t r i b u t i o n of Q within a c e l l volume ( r e f . 6 ) . By conserving t h e moments, t h e d i s t r i b u t i o n can be advected without numerical dispersion. The moments a r e defined by the r e l a t i o n s
Inclusion of t h e d i f f u s i o n part of eq. ( 3 ) i s handled using centered differencing (ref. 7). The P I C numerical method, used t o c a l c u l a t e multi-dimensional transport problems ( r e f . 8 ) , b a s i c a l l y divides t h e c a l c u l a t i o n a l sequence into Eulerian and Lagrangian steps. Following c a l c u l a t i o n of a pseudo-transport v e l o c i t y , a simple averaging technique i s used t o convert the concentration gradients a t four c e l l c e n t e r s t o match t h e pseudo-velocity a t a c e l l corner. P a r t i c l e s within each individual c e l l a r e then advected by t h e pseudo-velocity t o t h e new position, viz.
131 The f i n a l c o n c e n t r a t i o n a t t h e end o f t h e t i m e s t e p i s c a l c u l a t e d by c o u n t i n g t h e number o f p a r t i c l e s w i t h i n each c e l l volume. The c o n v e n t i o n a l f i n i t e element method u t i l i z e s b o t h l i n e a r and q u a d r a t i c i s o p a r a m e t r i c elements.
The model employed here i s based on t h e two-dimensional
model developed i n r e f . 9.
C o n v e n t i o n a l f i n i t e element methodology i s w e l l
r e c o g n i z e d and r e f e r e n c e d .
Because c o n v e n t i o n a l f i n i t e elements become cumber-
some i n three-dimensions,
o n l y two-dimensional t r a n s p o r t problems ( i .e.,
shallow
w a t e r e q u a t i o n s ) a r e analyzed. The t i m e - s p l i t q u a d r a t i c t e n s o r p r o d u c t f i n i t e element method i s a d i r e c t e x t e n s i o n o f t h e model developed i n r e f . 10.
When embodied u s i n g l i n e a r i n t e r p o -
l a t i o n on u n i f o r m g r i d s and c o n s t a n t v e l o c i t y , t h e chapeau r e c u r s i o n r e l a t i o n i s obtained. tion.
A s i m p l e r e c u r s i o n r e l a t i o n does n o t r e s u l t u s i n g q u a d r a t i c i n t e r p o l a -
Eq. (1) i s r e c a s t as t h e m a t r i x problem
R a t h e r t h a n e v a l u a t i n g t h e banded sparse m a t r i x [J],
the time-split algorithm
f a c t o r s [J] on t h r e e - d i m e n s i o n a l space as
where
x
s i g n i f i e s t h e t e n s o r m a t r i x product.
S i m i l a r l y , F i s e v a l u a t e d as t h e
a l g e b r a i c p r o d u c t o f t h e elementary one-dimensional
i n t e r p o l a t i o n s , i.e.,
The m u l t i - d i m e n s i o n a l problem s o l u t i o n i s t h e n completed by t h e elementary sequence
where
{O}
and
{o}
a r e intermediate solutions.
132
I n t h e pseudospectral procedure, t h e space d e r i v a t i v e s o f t h e a d v e c t i o n d i f f u s i o n e q u a t i o n a r e computed u s i n g t h e f i n i t e F o u r i e r t r a n s f o r m ( r e f . 11). The d e r i v a t i v e a t a g i v e n g r i d p o i n t i s g l o b a l s i n c e i t s v a l u e i s determined f r o m f u n c t i o n values o v e r t h e e n t i r e domain. components A ( k , t ) ,
The time-dependent F o u r i e r
i n two-dimensional s p e c t r a l space, a r e determined from
t h e g i v e n d i s t r i b u t i o n Q ( x , t ) as
N, and N, a r e t h e number o f mesh p o i n t s spanning t h e x and y c o o r d i n a t e d i r e c t i o n s , i = fl,and k i s t h e wave number. The d e r i v a t i v e s a r e e v a l u where
a t e d d i r e c t l y f r o m t h e F o u r i e r components, i.e.,
aQ(-k,t) = a xj
1ik,
k
v2C(-k,t) =
A(t(,t)
exp ( t k t x ) , j = 1, 2
J
1 -k2A(k,t)
exp ( i k . 9 )
k
u s i n g a F a s t F o u r i e r Transform a l g o r i t h m ( r e f . 12). a r e solved using t h e three-level
The t i m e d e r i v a t i v e terms
leap-frog algorithm.
USE CRITERIA AND RESULTS
A p r i m a r y r e q u i r e m e n t i s t o assess t h e f e a t u r e s and t h e l i m i t a t i o n s o f t h e v a r i o u s a l g o r i t h m s f o r s o l u t i o n o f eq. (l), such t h a t t h e u s e r can make a c o s t e f f e c t i v e choice.
The d i s t i n g u i s h i n g f e a t u r e o f t h r e e - d i m e n s i o n a l t r a n s p o r t
p r e d i c t i o n on t h e mesoscale i s t h e domain s i z e , t y p i c a l l y 80 km square by 10 km e l e v a t i o n ( o r l e s s ) .
I n JEREMIAH, t h e s t a n d a r d 3-D d i s c r e t i z a t i o n i s
33 x 33 x 10 km, p r o d u c i n g on t h e o r d e r o f l o 4 nodal dependent v a r i a b l e s , and 3 x Id, v e l o c i t i e s and nodal c o o r d i n a t e s .
The s t o r a g e r e q u i r e m e n t s f o r d i f f u s i o n
c o e f f i c i e n t s a r e t y p i c a l l y n o t c o n s e q u e n t i a l on t h i s scale.
I n most cases, t h e
source o f an a c c i d e n t a l r e l e a s e w i l l appear n o m i n a l l y as a p o i n t source on t h e mesoscale g r i d .
The r e q u i r e m e n t f o r coarse g r i d accuracy i s s e l f - a p p a r e n t .
B a s i c a l l y , some o f t h e methods more a c c u r a t e l y r e s o l v e t h e source d e s c r i p t i o n c l o s e i n , w h i l e o t h e r s a r e more s u i t a b l e f o r f a r f i e l d accuracy.
F o r example,
F i g . 2 summarizes t h e p r e d i c t i o n o f a p o i n t s o u r c e under p u r e one-dimensional c o n v e c t i o n , t h e c o r r e c t s o l u t i o n f o r which t r a n s p o r t o f t h e i n i t i a l d i s t r i b u t i o n downstream i s u n a l t e r e d .
The P I C , second moment, and pseudospectral a l g o r i t h m s
produce e x c e l l e n t r e s u l t s , w h i l e t h e chapeau and f i n i t e element a l g o r i t h m s a r e
133
100
a) Chapeau/ Cubic Spline
100
b) Finite Element
lo0li.*loo 100
d) Pseudospectral
100
100
i.
i.
I .
F i g . 2. One-dimensional a d v e c t i o n o f a s i n g l e c e l l .
l o 0 !
134 A l t e r n a t i v e l y ( r e f . 1 3 ) , i f t h e p o i n t r e l e a s e can be i n i e r p o -
very inaccurate.
l a t e d o v e r a few node p o i n t s , a l l b u t t h e second-moment method produce a c c e p t a b l e accuracy (Fig. 3). These t r e n d s e x t e n d t o m u l t i - d i m e n s i o n a l problems.
F o r example, Fig. 4
summarizes a l g o r i t h m s t e a d y - s t a t e p r e d i c t i o n s f o r a p l a n e area source ( c o n s t i t u t e d o f f o u r c e l l s e m i t t i n g a c o n s t a n t s t r e n g t h ) w i t h one-dimensional The a n a l y t i c a l l y e x a c t s o l u t i o n is
wind f i e l d and two-dimensional d i f f u s i o n . o b t a i n e d from t h e Gaussian plume model.
A l l b u t t h e P I C a l g o r i t h m , which g r o s s l y
u n d e r p r e d i c t s l a t e r a l spread (due t o use o f t o o few p a r t i c l e s ) , produce accepta b l e accuracy.
T a b l e 1 summarizes t h e computer c o s t aspects f o r t h i s t e s t case
e x e c u t i o n on a p e r - s t e p b a s i s .
The pseudospectral method is t h e l e a s t c o m p e t i t i v e
i n t h i s comparison t o t h e o t h e r methods.
The c o n v e n t i o n a l f i n i t e - e l e m e n t method
g e n e r a l l y r e q u i r e s n e a r l y an o r d e r o f magnitude more t i m e t h a n t h e t i m e - s p l i t method t o produce comparable accuracy. TABLE 1 Compari son o f CPU/time-step I B M 360/195 CPU seconds/step
Method Second moment Chapeau/cubic s p l i ne F i n i t e element (time s p l i t ) Pseudospect r a l Particle-in-cell
0.10 0.20 0.23 0.44 2.56
The t h r e e - d i m e n s i o n a l problem d e s c r i p t i o n s f o l l o w t h e s e same general c r i t e r i a . The Gaussian plume and moments a l g o r i t h m s a r e b e s t s u i t e d f o r n e a r - f i e l d p r e d i c tion.
The chapeau and q u a d r a t i c t i m e - s p l i t f i n i t e element a l g o r i t h m s appear
comparable i n c o s t e f f e c t i v e n e s s .
Fig. 5 summarizes t h e s o l u t i o n comparison i n
t h e h o r i z o n t a l p l a n e o f a t h r e e - d i m e n s i o n a l source, w i t h one-dimensional convect i o n and t h r e e - d i m e n s i o n a l d i f f u s i o n ( r e f .
14).
Fig. 6 is t h e t i m e - s p l i t f i n i t e
element s t e a d y - s t a t e s o l u t i o n f o r t h e c o n t i n u o u s p l a n e source e m i s s i o n encounteri n g an i s o l a t e d h i l l .
The added accuracy o f t h e q u a d r a t i c element a l g o r i t h m comes
a t t h e c o s t o f about 15% a d d i t i o n a l CPU i n t h e s e cases. CONCLUSIONS The JEREMIAH d a t a base management system i s a comprehensive computer s o f t w a r e system t o f a c i l i t a t e a c c u r a t e , r e a l - t i m e m u l t i - d i m e n s i o n a l p r e d i c t i o n o f a c c i d e n t a l r e l e a s e s i n t o t h e environment.
User s e l e c t i o n o f a l g o r i t h m s p e r m i t s
135
b) Finite Element
In-Cell
100
d) Pseudospectral
100
A
100
F i g . 3. One-dimensional a d v e c t i o n o f a Gaussian d i s t r i b u t i o n .
18
--_-
99
52
12
19
128
366
366
154
30
18
315
j15
15 4
30
27
130
339
339
130
145
338
JJ8
145
18
116
363
363
116
27
24
19
143
331
331
14
12
128
24
143
129
356
356
97
392
392
97
14
129
34
41
16 0
296
296
1 60
41
35
140
319
319
140
35
34
151
311
311
151
43
50
163
281
2 81
16 3
50
43
147
302
302
147
43
43
156
294
294
156
164
165
164
70
17
65 13
164
165
246
246
58
256
256
70
17
17
61
156
262
262
156
61
17
164
267
267
65
13
14
11
58
56
154
273
273
154
56
14
49
151
287
287
151
49
11
16
162
12
161
160
256 256
64
267
280
88
39
383
383
94
413
413
372
126
372
380 47
128
16
10
22
31
403
403
31
22
376 49 33
41 28
49 376
41
371 371
33
28
Values less t h a n 10 s u p p r e s s e d .
22
11
*
416
444
412 107
22 416
12 444
412
107
16
10
36
311
329
26
311
329
16
153
144
I53
36
26
39
161
299
299
144
357
88
19
161
133
377 115
429
134
16
28
*
155
319
319
15
357
115
28 155
144
342
342
377
88 429
P a r t i c l e - i n - C e 11*
380
128
47
Pseudospect r a l ( F o u r i e r )
88
15 126
144
94
64 3Y
tinitr ~~emrnt*
162
16
58
267
280
51
58 161
51 160
12
Fig. 4. Advection and d i f f u s i o n o f an area source.
404
395
135
99
404
395
135
52
Chapeau*
70
34
426
426
340
340
111
70
111
34
107
388
444
65
388
444
Second Moment
Are a S o u r c e
----I
107
65
u
U
*
Analytical Solution*
48
38
56
345
345
56
38
44
156
294
294
156
44
48
163
283
283
163
58
64
66
44
66
339
339
15
11
79 47
44
302
71
302
79
47
20
16
64
161
253
253
161
64
16
69
164
247
247
164
69
15
328
328
71
44
11
13
44
59 10
161
268
268
161
59
52
160
278
278
160
52
13
64
10
166
58
258
258
166
166
270
270
166
12
W 0)
w
137
t a i l o r i n g of a c o s t - e f f e c t i v e a n a l y s i s with t h e b a s i s of merit being the tradeoff between cost and accuracy. The system has been e f f e c t i v e l y used t o predict actual r e l e a s e s of p o l l u t a n t s in accident s i t u a t i o n s from t h e Savannah River P1 ant.
l
CHAPEAU
1
SOURCE
19
72
1131 111
79
65
55
47
I
40 31
30
15
14
3
4 1
FINITE ELEMENT
Fig. 5. Comparison of chapeau and f i n i t e element algorithm s o l u t i o n s f o r a threedimensional continuous s t e a d y - s t a t e source.
177
159
138
108
123
134
16
HILL
80
78
67
76
72
61
48
86
119
76
66
58
45
-3
4
30
59
81
80
71
58
46
38
28
-1
-1
4
10
21
29
28
24
20
17
13
1
3
4
4
4
4 1
Fig. 6 . Three-dimensional continuous s t e a d y - s t a t e r e l e a s e over i s o l a t e d h i l l (midplane view).
138
The a b i l i t y of t h e conventional f i n i t e element method t o model t r a n s p o r t within i r r e g u l a r domains i s well recognized, and i s p a r t i c u l a r l y e f f e c t i v e and easy t o implement in two dimensions. Fig. 7 shows a typical element mesh used in modeling dispersion in the Savannah River. Fig. 8 shows isotherms of heated e f f l u e n t from Four Mile Creek s p i l l i n g into t h e Savannah River.
The heated e f f l u e n t occurs from t h e discharge of heat from nuclear r e a c t o r s located within the Savannah River Plant s i t e . Diffusion c o e f f i c i e n t estimates and stream v e l o c i t i e s were obtained from in s i t u measurements. ACKNOWLEDGMENT
The information contained in t h i s a r t i c l e was developed during t h e course of work under Contract No. DE-AC09-76S0001 with t h e U.S. Department of Energy.
Fig. 7. Typical f i n i t e element representation o f a s e c t i o n o f t h e Savannah River (Savannah River Four Mile Creek Section).
139
I
FIG. 8. Isotherms downstream of Four Mile Creek.
140 REFERENCES
1 M.M. Pendergast, Model E v a l u a t i o n f o r T r a v e l D i s t a n c e s 30-140 km, American M e t e o r o l o g i c a l S o c i e t y F o u r t h Symposium on Turbulence, D i f f u s i o n , and A i r P o l l u t i o n , American M e t e o r o l o g i c a l S o c i e t y , Boston, MA, 1979. 2 Y. Sasaki, Some B a s i c Formalisms i n Numerical V a r i a t i o n a l A n a l y s i s , Mon. Weather Rev., 98( 1970)876. 3 P.E. Long and F.J. Hicks, Simple P r o p e r t i e s o f Chapeau F u n c t i o n s and T h e i r A p p l i c a t i o n t o t h e S o l u t i o n o f t h e A d v e c t i o n Equation, N a t i o n a l Oceanic and Atmospheric A d m i n i s t r a t i o n TDL O f f i c e Note No. 75-8, S i l v e r S p r i n g , MD, 1975, 23 PP. 4 D.W. Pepper and A.J. Baker, A Simple One-Dimensional F i n i t e Element A l g o r i t h m w i t h M u l t i - D i m e n s i o n a l C a p a b i l i t i e s , Num. Heat. Trans., 2(1979)81. 5 D.W. Pepper, C.D. Kern, and P.E. Long, M o d e l i n g t h e D i s p e r s i o n o f Atmospheric P o l l u t i o n Using Cubic S p l i n e s and Chapeau F u n c t i o n , Atmos. Environ., 13 (1979)223. 6 B.A. Egan and R. Mahoney, Jr., Numerical Modeling o f A d v e c t i o n and D i f f u s i o n o f Urban Area Source P o l l u t a n t s , J. Appl. Meteor., 2(1972)312. 7 D.W. Pepper and P.E. Long, A Comparison o f R e s u l t s Using Second-Order Moments W i t h and W i t h o u t Width C o r r e c t i o n t o Solve t h e A d v e c t i o n Equation, J. Appl. Meteor., 17(1978)228. 8 R.H. Sklarew, A.J. F a b r i c k , and J.E. Prager, A P a r t i c l e - I n - C e l l Method f o r Numerical S o l u t i o n o f t h e Atmospheric D i f f u s i o n Equation, and A p p l i c a t i o n t o A i r P o l l u t i o n Problems, Report No. 34R-844, Systems, Science, and Software, Inc., La J o l l a , CA, 1971. 9 F.L. Smith and C.A. B r e b b i a , F i n i t e Element S o l u t i o n o f Navier-Stokes E q u a t i o n f o r T r a n s i e n t Two-Dimensional I n c o m p r e s s i b l e Flow, J. Comp. Physics, 17(1975) 235. 10 A.J. Baker, M.O. Soliman, and D.W. Pepper, F i n i t e Elements i n Water Resources, 11, Pentech Press, London, 1978, p.4.53. 11 0. C h r i s t e n s e n , and L. P. Prahm, A Pseudospectral Model f o r D i s p e r s i o n o f Atmospheric P o l l u t a n t s , J. Appl. Meteor., 15(1976)1284. 12 J.W. Cooley and J.W. Tukey, An A l g o r i t h m f o r t h e Maching C a l c u l a t i o n o f Complex F o u r i e r S e r i e s , Math. Comp., 1 9 ( 1965)297. 13 R.E. Cooper, D.W. Pepper, and A.J. Baker, An I n v e s t i g a t i o n o f M u l t i Dimensional Computational Models f o r C a l c u l a t i n g P o l l u t a n t T r a n s p o r t , S o u t h e a s t e r n Conference f o r T h e o r e t i c a l and A p p l i e d Mechanics, Vol. 10, U n i v e r s i t y o f Tennessee, K n o x v i l l e , TN, 1980, p.397. 14 A.J. Baker, M.O. Soliman, and D.W. Pepper, Environmental Release P r e d i c t i o n w i t h a N o n c l a s s i c a l S p l i t F i n i t e Element A l g o r i t h m , American Meteorology S o c i e t y Second J o i n t Conference on A p p l i c a t i o n s o f A i r P o l l u t i o n Meteorology, 1980, p.438.
141
DETECTION AND IMPACT PREDICTION OF HAZARDOUS SUBSTANCES RELEASED TO THE ATMOSPHERE E.E.PICKETT,
R.G.
W H I T I N G and H . L .
KOCCHIU
F a c u l t y o f A p p l i e d S c i e n c e and E n g i n e e r i n g , U n i v e r s i t y o f T o r o n t o , T o r o n t o , Canada. M5S 1A4
ABSTRACT An emergency r e s u l t i n g from t h e e s c a p e o f a h a z a r d o u s s u b s t a n c e t o t h e atmosphere r e q u i r e s l o c a l a u t h o r i t i e s t o assess e x p o s u r e r i s k s t o s u r r o u n d i n g p o p u l a t i o n s . An i m p o r t a n t p a r t o f t h i s a s s e s s m e n t i n v o l v e s t h e a b i l i t y t o d e t e c t , t r a c k , and p r e d i c t t h e t r a j e c t o r y of t h e s u b s t a n c e a s i t moves s u b j e c t t o c h a n g i n g m e t e r o l o g i c a l conditions.
A s t r u c t u r e t o provide t h i s a b i l i t y i s developed i n t h i s paper.
An example s i m u l a t i n g t h e a p p l i c a t i o n o f t h e s e p r o c e d u r e s i s g i v e n .
INTRODUCTION
The o b j e c t i v e o f t h i s p a p e r i s t o d e s c r i b e a p r o c e d u r e f o r s e a r c h i n g f o r and 17redicting t h e t r a j e c t o r y of an a c c i d e n t l y r e l e a s e d hazardous Substance
that is
s u b j e c t t o atmospheric motions. With i n c r e a s i n g numbers of n u c l e a r power r e a c t o r s , c h e m i c a l p l a n t s t h a t m a n u f a c t u r e t o x i c and o t h e r w i s e h a z a r d o u s s u b s t a n c e s , and t h e t r a n s p o r t a t i o n and storage of these
s u b s t a n c e s o v e r w i d e r g e o g r a p h i c a l a r e a s , t h e p r o b a b i l i t y of
a c c i d e n t a l escape i n creas es .
Agencies r e s p o n s i b l e f o r emergency measures c o n c e r n i n g
t h e r e l e a s e o f h a z a r d o u s a i r b o r n e m a t e r i a l r e q u i r e c u r r e n t , a c c u r a t e , and w e l l i n t e g r a t e d i n f o r m a t i o n on which t o b a s e d e c i s i o n s r e g a r d i n g t h e p r o t e c t i o n o f t h e population.
It i s important,
therefore,
t o p r o v i d e a c t i v e d a t a a c q u i s i t i o n and
d e c i s i o n making a i d s t h a t o p e r a t e i n r e a l - t i m e and c a n c o n t r i b u t e t o r e d u c i n g t h e i m p a c t o f t h i s t y p e of emergency when i t a r i s e s . It i s assumed t h a t aovement o f a c l o u d o f t h e r e l e a s e d material o r t a r g e t , a s
i t w i l l b e r e f e r r e d t o , t a k e s p l a c e i n two d i m e n s i o n a l s p a c e . i n t h e i m p a c t o f t h e t a r g e t a t ground l e v e l .
W e are i n t e r e s t e d
A descripbion of the v e r t i c a l
t r a j e c t o r y c a n e a s i l y b e i n c o r p o r a t e d p r o v i d e d a n a d e q u a t e model e x i s t s t o do t h i s . The emphasis h e r e i s on how a model c a n b e i n t e g r a t e d w i t h a d a t a a c q u i s i t i o n and d e c i s i o n making s y s t e m r a t h e r t h a n i t s p a r t i c u l a r a d v a n t a g e s o r l i m i t a t i o n s w i t h r e s p e c t t o accuracy o f p red ict io n . A t r a j e c t o r y p r e d i c t i o n model i s u s e d t o d e s c r i b e t h e p o s i t i o n o f t h e t a r g e t
a s i t moves s u b j e c t t o a m b i e n t a t m o s p h e r i c m o t i o n s .
The model used h e r e , a l t h o u g h
s i m p l e i n c o n c e p t , i s e s p e c i a l l y c o n s t r u c t e d t o i n c o r p o r a t e d a t a from c u r r e n t
142 o b s e r v a t i o n s o f m e t e r o l o g i c a l v a r i a b l e s , p r e d i c t t h e e v o l u t i o n of targetposition o v e r t i m e and e v a l u a t e u n c . e r t a i n t i e s a s s o c i a t e d w i t h t a r g e t l o c a t i o n . I t i s assumed t h a t m o b i l e m o n i t o r i n g u n i t s a r e a v a i l a b l e and t h a t t h e y c a n
Since
be d i r e c t e d t o s p e c i f i c a r e a s f o r t h e purpose o f s e a r c h i n g f o r t h e t a r g e t .
t h e a r e a of p o s s i b l e t a r g e t l o c a t i o n w i l l b e l a r g e r e l a t i v e t o t h e a r e a t h a t c a n be e f f e c t i v e l y searched with a v a i l a b l e monitoring resources, an "optimal" search plan is specified f o r t h e current search i n t e r v a l .
The p l a n i s made o p t i m a l i n
t h e s e n s e o f a s s i g n i n g a v a i l a b l e s e a r c h e f f o r t i n t h e r e q u i r e d amount t o t h o s e a r e a s t h a t w i l l maximize t h e p r o b a b i l i t y o f t a r g e t d e t e c t i o n . The d e t e c t i o n f u n c t i o n u s e d r e l a t e s t h e p r o b a b i l i t y o f d e t e c t i n g t h e t a r g e t i n
a g i v e n a r e a o r c e l l t o t h e amount of s e a r c h e f f o r t expended i n t h e c e l l .
It
e x h i b i t s two i n t u i t i v e l y p l a u s i b l e f e a t u r e s ; f i r s t , t h e r e i s always a p o s i t i v e p r o b a b i l i t y t h a t t h e t a r g e t w i l l n o t b e found i n a c e l l even though i t was l o c a t e d t h e r e when t h e s e a r c h w a s p e r f o r m e d , and s e c o n d , t h e g r e a t e r t h e s e a r c h e f f o r t a s s i g n e d t o a c e l l , t h e s l o w e r t h e r a t e o f i n c r e a s e o f p r o b a b i l i t y of d e t e c t i o n . The p r o p e r t i e s o f t h e d e t e c t i o n f u n c t i o n r e v e a l t h a t p e r f o r m i n g a s e a r c h p l a n and n o t f i n d i n g t h e t a r g e t w i l l a l t e r t h e c o n d i t i o n a l p r o b a b i l i t i e s a s s o c i a t e d with the t a r g e t d i s t r i b u t i o n .
Thus, i n s e q u e n t i a l s e a r c h , t h e f a c t t h a t a s e a r c h
p l a n i n a g i v e n i n t e r v a l f a i l s t o d e t e c t t h e t a r g e t can p r o v i d e i m p o r t a n t t a r g e t l o c a t i o n information f o r search i n a subsequent i n t e r v a l .
This updating of t h e
t a r g e t d i s t r i b u t i o n a f t e r a n e g a t i v e s e a r c h p l a n h a s b e e n e x e c u t e d i s performed by means o f B a y e ' s f o r m u l a .
I t h a s b e e n shown i n Ref. 1 t h a t i n a l l cases o f
s e a r c h where p a s s i v e o b s e r v a t i o n s o f a t a r g e t a r e made t h a t B a y e ' s f o r m u l a p r o v i d e s a c o m p l e t e s o l u t i o n t o t h e u p d a t i n g problem. The a v a i l a b i l i t y of t h e p o s t e r i o r t a r g e t d i s t r i b u t i o n c o n d i t i o n e d by t h e most r e c e n t s e a r c h (assuming n e g a t i v e s e a r c h r e s u l t s ) p e r m i t s t h e " o p t i m a l " a s s i g n m e n t of s e a r c h e f f o r t i n t h e s u b s e q u e n t p e r i o d t o b e b a s e d on o u r " b e s t knowledge" o f target localization.
T h i s p o s t e r i o r t a r g e t d i s t r i b u t i o n when combined w i t h t h e
most r e c e n t o b s e r v a t i o n s o f m e t e r o l o g i c a l v a r i a b l e s p e r m i t t h e e s t i m a t i o n o f t a r g e t i m p a c t p r o b a b i l i t i e s on s u r r o u n d i n g areas of c o n c e r n .
DESCRIPTION OF TARGET POSITION The e v o l u t i o n o f t h e t a r g e t p o s i t i o n i s d e s c r i b e d by a s p a t i a l Markov p r o c e s s X(i,j,t)
such t h a t :
X(i,j,t)
=
"
...,MI
1 ' i f t a r g e t i s i n g r i d l o c a t i o n i , j a t t i m e t , where i , j ~ { l ,
0
otherwise
A t any t i m e t E { O ,
...,N}
that: pr[x(i,j,t)=ll = a(i,j,t)
a probability d i s t r i b u t i o n is assigned t o X ( i , ] , t )
such
143 Hence A
MxM
(t) = [a(i,j,t)lMxM is an MxM matrix which completely characterizes the
distribution of X at time t. MxM The initial distribution of X at time t=O is A (0). All elements of A(0) will be zero except for some element a(i*,j*,O)=l, which corresponds to the release point of the target. If X(i,j,t)=l is subject to position and associated uncertainty change, then for each location k,R define the function f as: Pr{X(k,R,t+l)=llX(i,j,t)=l}
3
f(i,j;k,k).
f is also a function of the wind vector w(t) at time t. in a subsequent section.
This dependence is explained
Hence,
Pr{X(k,R , t+l)=1} = a (k,Q,t+l) S f(i,j;k,R)a(i,j,t)
=
1 1
MxM MxM Let F (k,k) = Cf(i,j;k,Q)] be an MxM ma rix of
ransition probabilities then:
MxM a(k,Q,t+l) = tr(F (k,R) AT (t)) MxM
If A(t) is known and the F
(k,R) matrices (ML of them) are known then A(t+l)
can easily be produced. It remains to specify a suitable parametrization of the conditional transition probabilities, F(k,R), in terms of the observable meterological variables. It is assumed that the target is subject to advection over time.
There is
inherent uncertainty in relating observable wind patterns to advective motion.
Our
approach to the parameterization problem is to represent F(k,R) as the composite of two mappings:
Fl(k',Q'), a translation mapping representing advection, and
F2(k,R), a mapping which representes uncertainty in advective transport.
If we
define:
then the composite mapping is: a(k,R,t+l)
=
Z
Z f (k',k';k,R) al (k',R',t+l)
k' R '
The advection and advection uncertainty mappings F
1
and F
2
are discussed separately
in the next two sections.
THE ADVECTION MODEL Advection transport of the target due to wind is represented here via a simple translation mapping on the X-Y grid. we have, for fixed k',R'
E
{l, ...,MI.
Using the notation of the previous section,
144
1 if k'=i+Ax,!L'=j+Ay
fl(i,j;k',!L')=
where i,j E
0 otherwise {l, . . .,MI.
The displacements Ax,Ay are determined for each time period (t,t+l) as the integer parts of x(t+l), y(t+l) respectively, where:
for
t=O,l,..,N, where u(t+l) and v(t+l) are the mean observed East-West and
North-South wind velocity components over (t,t+l) and At is the interval length. The predicted values of the velocity components u(t+l), v(t+l) are assumed to be adequately described by a time varying lagged model of the form: u(t+l)
=
bll(t)u(t)
+
b13(t)u(t-l) + b15(t)u(t-2) + eu(t+l)
v(t+l) = bZ2(t)v(t) + bZ4(t)v(t-l) where e
and e
+
b
26
(t)v(t-2) + ev(t+l)
are normally distributed with zero mean and covariance matrix Q.
An autoregressive, but time invariant, model of this form has been used to predict local wind velocity components in Venice (Ref.2). A prediction of velocity components at time t+l is obtained from previously
observed values
r
I
means of the product:
r
0
u(t)
0
b2
v(t)
0
0
0
u(t-1)
0
0
0
0
v(t-1)
0
1
0
0
0
u(t-2)
0
0
1
0
0
11
O
b13
0
b22
0
1
0
0
0
1
0 0
O b
24
b15
-
v(t-2)
(3)
t
where i(t+l), and G(t+l) are the forecast values of u(t+l) and v(t+l) made at To obtain predictions for time t+2 at time t the previously predicted
time t.
values (at time t+l) must be substituted in the right-side of ( 3 ) .
Thus we can
write in matrix form the following recursion for obtaining wind velocity predictions i time periods beyond the observations obtained at time t: w(t+i)
=
B(t)w(t+i-l)
The variance of w(t+l)
=
B(t) P(t) BT(t) + Q(t) (4)
E P(t+l)
where P(t) is the covariance matrix of y(t).
Thus a measure of the uncertainty
associated with the w(t+i) can easily be calculated by means of P(t+i).
145 A recursive least squares algorithm is used to obtain the time varying parameters of the model (2). The advantages of this approach are that very little prior data are necessary, there is a small amount of computational burden at each step, and, of course, it permits tracking of time varying parameters.
Descriptions of
recursive least squares algorithms may be found in Ref. 3.
ADVECTION UNCERTAINTY AS the model (2) only approximates the behaviour of the wind vector over the
interval (t,t+l), there is inherent uncertainty in the values used for the displacements Ax,Ay in the advection model. If we assume that unbiased estimates of u(t) and v(t), with variances pll(t), (t) respectively, are available at time t, then the one step predictions f22 u(t+l) , v(t+l) have variances pll(t+l), ~ ~ ~ ( t as + lgiven ) by From (1), A
(4).
2 the estimates of Ax,Ay (assumed unbiased) have variances (At) pll(t+l) and 2 (At) ~ ~ ~ ( t respectively. + l ) By using these predictions we are incorporating
, E ) in the advection model. X Y errors are uncorrelated and normally distributed, then: additive error terms (say, E
f (k',i?';k,i?)2 Pr{X(k,R,t+l) 2 =
Pr{k-k'-i$'c
=
Assuming that these
llX(k',i?',t)=l}
X
which are easily computed normal probabilities.
Y
Si?-i?'+%)
These values, determined for
all k,i? and k',i?' provide the mapping F (k,i?)which represents the advection 2 uncertainty in the composite model, F ( k , i?) -
THE SEARCH PLAN Search is considered for a target which moves among a finite set of cells in discrete space.
A limited amount of search effort is available and is assigned
to fixed time intervals which correspond to the basic prediction period.
The
search is made optimal in the sense that effort is allocated to maximize the probability of target detection subject to the given constraint on effort. The search starts with the knowledge of the function a(i,j,t) which is the probability that the target occupies the cell i,j at time t.
During the search
interval there are available R(t)>O units of search effort that may be allocated to cells in arbitrary proportions. Let the number of units of effort allocated to cell i,j at the beginning of the interval be @(i,j,t).
If the search has the properties that characterize
a random search (Ref. l), thenthe probability of detection given that the target is in the cell during the interval can be expressed by the exponential detection function : d($ (i,j,t)1
=
1-exp (-a(i,j)$ (i,j ,t))
.
146 The v a l u e of a ( i , j ) r e f l e c t s t h e c o n d i t i o n s o f s < ? a r c h i n t h e c e l l .
The
p r o b a b i l i t y of t a r g e t d e t e c t i o n d u r i n g t h e t i m e i n t e r v a l u n d e r s e a r c h p l a n E (1,...,M} i s D ( ( $ ( i , j , t ) ) = a ( i , j , t ) (l-exp(-cx(i,j)$(i,j,t)). 1 J The o p t i m a l s e a r c h p l a n i s t o o b t a i n t h e $ ( i , j , t ) t h a t maximizes D ( $ ( i , j , t ) )
$ ( i , j , t ) for i , j
subject t o the constraints: $ ( i , j , t ) 2 0 and
C
$(i,j,t)
5R(t).
1 1 O p t i m i z a t i o n t e c h n i q u e s , b a s e d on Lagrange m u l t i p l i e r s t h a t do n o t r e q u i r e d i f f e r e n t i a b i l i t y a s s u m p t i o n s a r e g i v e n i n Ref. 4 .
I t i s shown t h e r e t h a t t h e
d e t e c t i o n f u n c t i o n must b e concave ( s u c h a s t h e e x p o n e n t i a l ) t o g u a r a n t e e t h a t maximizing a p o i n t w i s e
Lagrangian i s necessary f o r c o n s t r a i n e d o p t i m a l i t y .
BAYESIAN UPDATING Assume a s e a r c h h a s been p e r f o r m e d , w i t h t h e p r i o r t a r g e t d i s t r i b u t i o n g i v e n by a ( i , j , t ) , and t h e r e s u l t o f t h e s e a r c h i s n e g a t i v e .
Then f o r c e l l i , j , t h e
p r o b a b i l i t y t h a t t h e t a r g e t i s a c t u a l l y i n t h a t c e l l , c o n d i t i o n e d on t h e e v e n t t h a t t h e t a r g e t was n o t found i n t h e c e l l s s e a r c h e d i s : P r I t a r g e t i n c e l l i,j and n o t found t h e r e } = a'(i,j,t) P r I t a r g e t n o t found by s e a r c h } ~
The numerator i s o b t a i n e d from t h e p r o b a b i l i t y p r o d u c t : PrItarget i n cell i,jj.Pr{target
n o t found i n c e l l i , j l t a r g e t i n c e l l i , j } .
The second t e r m i n t h i s p r o d u c t i s s i m p l y 1 - P r I t a r g e t d e t e c t e d i n c e l l i,jltarget in cell i,j}.
This r a t i o i s j u s t B a y e ' s f o r m u l a and c a n be e x p r e s s e d
i n t e r m s of t h e d e t e c t i o n fu n cti o n as :
s used i n place of A ( t ) t o o b t a i n t h e p r i o r t a r g e t The m a t r i x [ a ' ( i , j , t j M XiM d i s t r i b u t i o n f o r t h e subsequent period ( A ( t t - 1 ) ) .
AN ILLUSTRATIVE EXAMPLE A s an i l l u s t r a t i o n o f t h es e procedures,
t h e r e l e a s e o f a t a r g e t i n t o a 10x10
g r i d w a s simulated f o r a period of four t i m e units.
The c h o i c e o f p a r a r r s t e r s
u s e d i n t h e a d v e c t i o n p o r t i o n o f t h e model r e s u l t e d i n t h e t a r g e t b e i n g t r a n s p o r t e d t h r o u g h t h e ( x , y ) l o c a t i o n s (l,l), ( 2 , 2 ) ,
(4,3),
( 3 , 5 ) and (5,5).
A symmetric p a t t e r n o f l o c a t i o n u n c e r t a i n t y w a s o b t a i n e d by i n c o r p o r a t i n g t h e
v a l u e o f 0 . 4 f o r t h e s t a n d a r d d e v i a t i o n of b o t h t h e x and y a d v e c t i v e d i s p l a c e m e n t disturbances.
Note t h a t t h i s c h o i c e r e s u l t s i n a v e r y s m a l l l i k e l i h o o d of
r e a l i z i n g d i s t u r b a n c e s o f more t h a n one g r i d e l e m e n t i n any d i r e c t i o n o v e r a single t i m e period. The t o t a l s e a r c h e f f o r t f o r e a c h t i m e p e r i o d w a s l i m i t e d t o 100 u n i t s .
TWO
147 s e a r c h s t r a t e g i e s w e r e employed; t h e f i r s t p e r m i t s any number o f c e l l s t o be s e a r c h e d , t h e second o n l y t w o . The r e s u l t s f o r t h e f o u r p e r i o d s a r e p r e s e n t e d i n F i g s . 1 (a-d) and 2 ( a - d ) , c o r r e s p o n d i n g t o t h e f i r s t and second s t r a t e g i e s , r e s p e c t i v e l y .
Each d i s p l a y
r e p r e s e n t s a s u b s e c t i o n o f t h e e n t i r e s p a t i a l g r i d , w i t h t h e x , y components d i s p l a y e d on t h e h o r i z o n t a l and v e r t i c a l a x e s , r e s p e c t i v e l y .
The u p p e r number
appearing i n a c e l l r e p r e s e n t s t h e p r o b a b i l i t y of t h e t a r g e t being i n t h a t c e l l , c o n d i t i o n e d on t h e n e g a t i v e s e a r c h o f t h e p r e c e e d i n g t i m e p e r i o d . d e n o t e d by
*,
The lower number,
gives t h e optimal search e f f o r t a l l o c a t e d t o t h a t c e l l during t h e
current t i m e period. The p a t t e r n o f c o n d i t i q n a l p r o b a b i l i t i e s r e v e a l s t h e combined e f f e c t o f t h e p r e v i o u s s e a r c h and a d v e c t i o n u n c e r t a i n t y o v e r t h e p a s t t i m e i n t e r v a l .
Search
e f f o r t i s a l l o c a t e d so a s t o e n s u r e as many c e l l s as p o s s i b l e a r e s e a r c h e d , w i t h t h e r e s t r i c t i o n t h a t i n t h e e v e n t o f a n e g a t i v e outcome, a l l c e l l s s e a r c h e d w i l l have e q u a l c o n d i t i o n a l l o c a t i o n p r o b a b i l i t i e s . Advection u n c e r t a i n t y a c t s t o ' s p r e a d ' t h e l o c a t i o n p r o b a b i l i t y mass from any one c e l l t o a d j a c e n t c e l l s . North-South
I n t h i s example, t h e s p r e a d o c c u r s e q u a l l y i n t h e
and E a s t - W e s t d i r e c t i o n s .
T h i s e x p l a i n s t h e symmetry i n t h e s e a r c h
patterns f o r the f i r s t search strategy (Fig. 1). The r e s t r i c t i o n t o two c e l l s i n t h e second s e a r c h s t r a t e g y r e s u l t s i n t h e asymmetric p a t t e r n s o f F i g . 2 .
Comparing F i g u r e s l ( d ) and 2 ( d ) , w e s e e t h a t t h e
f i r s t s t r a t e g y h a s r e d u c e d u n c e r t a i n t y i n t a r g e t l o c a t i o n so t h a t n o c e l l remains d i s t i n c t l y more p r o b a b l e . the monitoring u n i t s .
Note t h a t t h i s s t r a t e g y assumes u n r e s t r i c t e d m o b i l i t y of
The second s t r a g e g y , which a s s u m e d l i m i t e d m o n i t o r m o b i l i t y ,
h a s n o t been a b l e t o r e d u c e t h e number of
' m o r e p r o b a b l e ' c e l l s as e f f e c t i v e l y .
The c o n d i t i o n a l l o c a t i o n p r o b a b i l i t i e s , when combined w i t h t h e p r e d i c t i v e
a d v e c t i o n model, y i e l d t h e i m p a c t p r o b a b i l i t i e s f o r any c e l l s c o r r e s p o n d i n g t o a r e a s o f c o n c e r n o v e r th e f o r e c a s t horizon.
To i l l u s t r a t e t h i s , a n area o f c o n c e r n
was assumed t o b e l o c a t e d i n c e l l s ( 6 , 6 ) , (6,7), (7,151,
and (7,7). Using wind
v e l o c i t y p r e d i c t i o n s up t o f o u r h o u r s i n advance from t h e c u r r e n t s e a r c h p e r i o d , i m p a c t p r o b a b i l i t i e s were o b t a i n e d o v e r t h e s i m u l a t i o n h o r i z o n . i n T a b l e 1. TABLE 1 P r o b a b i l i t i e s o f t a r g e t i m p a c t on area o f c o n c e r n Search Period
P r o b a b i l i t y o f Impact Two C e l l S e a r c h U n r e s t r i c t e d Search
.018 .095
.lo8 .211
.018 -068 .071 -187
These are shown
mi
148
1 2
.04
3
4 5
2
3
4
.01
1 1
1
1.04 1.16
2
3
5
6
I1 1 1 I .04 I
*18
4 5
3 4
5 6
7
3
4
5
6
7
3 4 5 6
7
.02
.06
.07
.06
.02
.05
.07
.07
.07
.05
.02
.06
.07
.07
.02
-02
-05
-02
Fig. 1. Unrestricted Number of Cells Search
Fig.
2.
Two Cell Search
149 SUMMARY AND CONCLUSIONS A b a s i c systems s t r u c t u r e h a s been developed t o a i d i n t h e d e t e c t i o n , t r a c k i n g ,
and t r a j e c t o r y p r e d i c t i o n o f a h a z a r d o u s s u b s t a n c e s u b j e c t t o a t m o s p h e r i c t r a n s p o r t . A c t u a l a p p l i c a t i o n r e q u i r e s t h e a b i l i t y t o a c q u i r e and p r o c e s s o b s e r v a t i o n s i n r e a l
time.
To p r o v i d e t h i s c a p a b i l i t y would i n v o l v e t h e u s e o f a computer g r a p h i c s
d i s p l a y , d a t a e n t r y f a c i l i t i e s , and m o b i l e m o n i t o r i n g u n i t s w i t h two-way communications.
Although n o t s p e c i f i c a l l y d e a l t w i t h h e r e , t h e a b i l i t y t o p r e d i c t
t h e t r a j e c t o r i e s o f m u l t i p l e t a r g e t s would b e i m p o r t a n t i n an a p p l i c a t i o n . An example w a s p r e s e n t e d t o i l l u s t r a t e t h e u s e o f d a t a a c q u i s i t i o n , s e a r c h and p r e d i c t i o n components assuming two d i f f e r e n t t y p e s o f s e a r c h e f f o r t c o n s t r a i n t s on t h e m o n i t o r i n g equipment.
The example i l l u s t r a t e s t h e tendancy f o r s e a r c h e s
made w i t h no r e s t r i c t i o n s on m o n i t o r m o b i l i t y t o b e most e f f e c t i v e where e f f e c t i v e n e s s i s measured by t h e p r o b a b i l i t y o f t a r g e t d e t e c t i o n .
The p r o b a b i l i t i e s
a s s o c i a t e d w i t h t h e hazardous s u b s t a n c e c o n t a c t i n g populated a r e a s or o t h e r a r e a s o f c o n c e r n a r e o b t a i n e d by combining t h e p r e d i c t i v e a d v e c t i o n model w i t h t h e conditional target location probabilities.
REFERENCES 1 B.O.
Koopman, S e a r c h and S c r e e n i n g , Pergamon P r e s s , N e w York, 1980.
B o n i v e n t o , G. F r o n z a and A . T o n i e l l i , i n M. B e n a r i e ( E d . ) , S t u d i e s i n Environmental S c i e n c e , V o l u m e 8 , E l s e v i e r , Amsterdam, 1980, p p . 105-108.
2
C.
3
P.
4
L.D.
Eykhoff, System I d e n t i f i c a t i o n , Wiley, N e w York, 1974. S t o n e , Theory o f Optimal S e a r c h , Academic P r e s s , N e w York, 1975.
This Page Intentionally Left Blank
151
MODELING POLLUTANT D I S P E R S I O N WITHIN A TORNADIC THUNDERSTORM D . W.
PEPPER
E. I. du Pont de Nemours & Co.,
Savannah R i v e r L a b o r a t o r y , Aiken, SC
29808
ABSTRACT A t h r e e - d i m e n s i o n a l n u m e r i c a l model has been developed t o c a l c u l a t e g r o u n d - l e v e l a i r c o n c e n t r a t i o n and d e p o s i t i o n o f p a r t i c l e s e n t r a i n e d i n a t o r n a d i c thunderstorm. The r o t a t i o n a l c h a r a c t e r i s t i c s o f t h e t o r n a d i c storm a r e w i t h i n t h e l a r g e r mesoscale f l o w o f t h e storm system and t r a n s p o r t e d w i t h t h e v o r t e x . c i e n t s a r e based on e m p i r i c a l v a l u e s .
Turbulence exchange c o e f f i -
The quasi-Lagrangian method o f moments i s used
t o model t h e t r a n s p o r t o f c o n c e n t r a t i o n w i t h i n a g r i d c e l l volume.
Results i n d i c a t e
t h a t u p d r a f t s and downdrafts, coupled w i t h scavenging o f p a r t i c l e s by p r e c i p i t a t i o n , account f o r most o f t h e m a t e r i a l b e i n g d e p o s i t e d c l o s e r t o t h e s i t e t h a n a n t i c i p a t e d . A p p r o x i m a t e l y 5% o f t h e p o l l u t a n t i s d i s p e r s e d i n t o t h e s t r a t o s p h e r e .
INTRODUCTION E x t e n s i v e r e s e a r c h has been undertaken a t t h e r e q u e s t o f t h e U.S.
Nuclear
R e g u l a t o r y Commission t o assess t h e r a d i o l o g i c a l consequences f r o m n a t u r a l phenomena occurring a t plutonium f a b r i c a t i o n f a c i l i t i e s .
T h i s r e p o r t d e s c r i b e s t h e s t u d y con-
cerned w i t h t h e m e t e o r o l o g i c a l d i s p e r s i o n o f p l u t o n i u m p a r t i c l e s i n a t o r n a d i c storm once t h e f a c i l i t y i s breached b y a t o r n a d o . The r i s k assessment and s i t e c h a r a c t e r i z a t i o n o f an e x i s t i n g n u c l e a r f a c i l i t y i n Pennsylvania, USA,
i s used as an example i n t h i s s t u d y .
Records o f extreme windstorms
and tornadoes f o r t h e P e n n s y l v a n i a area, along w i t h t h e storm c h a r a c t e r i s t i c s f o r a d e s i g n - b a s i s tornado, were o b t a i n e d f r o m F u j i t a ( r e f . 1). Three windspeeds a r e used t o r e p r e s e n t tornadoes t y p i c a l o f t h e area, as shown i n T a b l e 1: TABLE 1 Windspeed v a l u e s (m/sec) P r o b a b i l i t y per year Maxi mum t o t a l Trans1 a t io n a l Tangent ia1
125 25 100
96.5 19.2 77.3
7.2 x 67.0 13.4 53.6
152
The radius of the tornado i s assumed t o be 150 m with t h e vortex extending t o an a l t i tude of 1000 m.+
F u j i t a r e p o r t s t h a t numerous tornadoes with windspeeds corresponding t o these p r o b a b i l i t i e s have occurred in t h e Pennsylvania area ( r e f . I ) . Most smalland medium-sized tornadoes tend t o move in an east-northeast d i r e c t i o n , while large-sized tornadoes move in an east-southeast d i r e c t i o n . The model can be used f o r any location i f windspeed and d i r e c t i o n of t h e tornadic storm a r e available.
G O V E R N I N G EQUATIONS The model i s based on t h e solution of the three-dimensional time-dependent equation
f o r pollutant t r a n s p o r t :
where C i s the concentration, g/m3,
i s t h e vector velocity f i e l d , m/sec, K i s
the d i r e c t i o n a l l y dependent eddy di f f u s i vi t y (exchange c o e f f i c i e n t of diffusion , & / s e c ) , and S represents the sink term associated with p r e c i p i t a t i o n scavenging, The complexity of t h e flow f i e l d s associated with tornadic storms and t h e numerous s c a l e s of turbulence involved (which c h a r a c t e r i z e the diffusion processes)
g/d-sec.
do not permit simple solutions t o eq. (1). To accommodate t h e temporal and s p a t i a l v a r i a t i o n s of numerous meteorological parameters, including the e f f e c t s of wind shear and wet deposition, a numerical method i s used t o solve eq. (1). associated with eq. (1) a r e given as follows:
Boundary conditions
where H i s t h e height of the thunderstorm c e l l and a c t s a s a p a r t i a l l i d t o the concentration. The horizontal and l a t e r a l boundaries are incremented over a predetermined maximum distance. The i n i t i a l dispersion conditions a r e crucial t o the downwind dispersal p a t t e r n s following breach of the f a c i l i t y .
A u n i t source ( p u f f ) consisting of p a r t i c l e s with
diameters of < l o um i s assumed t o be picked u p by t h e tornado and l i f t e d i n t o t h e t;iunderstorm c e l l .
The puff i s subsequently dispersed by t h e dynamics of the
+T. T. F u j i t a , Personal Communication (1977).
153
t h u n d e r s t o r m c e l l (Jessup [ r e f . 21, Pasquill')
w i t h i n about 20 m i n u t e s .
The i n i t i a l
c o n c e n t r a t i o n p a t t e r n i s l i m i t e d t o t h e s i z e o f t h e t h u n d e r s t o r m c l o u d and i s skewed i n a log-normal d i s t r i b u t i o n w i t h maximum v a l u e s c e n t e r e d on t h e a x i s o f t h e tornado.
d
i s r e q u i r e d a t each t i m e - s t e p o f i n t e g r a t i o n .
U n f o r t u n a t e l y , t h e mesoscale
wind f i e l d o f a t o r n a d i c storm i s a d i f f i c u l t problem t o a c c u r a t e l y model.
Correct
c a l c u l a t i o n o f t h e t r a j e c t o r y o f t h e s t o r m and p o l l u t a n t d i s p e r s i o n p a t t e r n i s d i r e c t l y dependent upon t h e wind f i e l d s t r u c t u r e . To c r e a t e a p l a u s i b l e mesoscale wind f i e l d , a s u b j e c t i v e a n a l y s i s and i n t e r p o l a t i o n scheme was used t o generate a m a s s - c o n s i s t e n t t h r e e - d i m e n s i o n a l wind f i e l d ( r e f . 3 ) . The h o r i z o n t a l winds o u t s i d e t h e storm c e l l were assumed t o v a r y as f o l l o w s : u ( z , t ) = 2.2 zO.18 (m/sec);
u(z,t)
=
25.0 (m/sec) 19.2 (m/sec) 13.4 (m/sec)
u ( z , t ) = 1.25
i
z
1000
G
z
(3)
25.0 (m/sec) 19.2 (m/sec) 13.4 (m/sec)
The d i s t r i b u t i o n o f v e r t i c a l winds w i t h i n t h e t o r n a d i c storm c e l l i s shown i n F i g . 1.
The u p d r a f t and downdraft v e l o c i t i e s a r e a l l o w e d t o i n c r e a s e l o g a r i t h m i c a l l y
t o s p e c i f i c h e i g h t s w i t h i n t h e t h u n d e r s t o r m c e l l and t h e n decrease t o zero a t t h e t o p
o f t h e a n v i l , H.
The magnitude o f t h e v e r t i c a l windspeeds i s comparable t o observa-
t i o n s and measurements o f v e r t i c a l v e l o c i t i e s w i t h i n severe storms ( r e f s . 4, 5 ) .
A
more d e t a i l e d d e s c r i p t i o n o f t h e t o r n a d i c storm wind f i e l d i s g i v e n by Pepper ( r e f . 6 ) . A d v e c t i o n and d i f f u s i o n o f t h e h o r i z o n t a l d i s t r i b u t i o n o f t h e v e r t i c a l v e l o c i t y f i e l d enable t h e u p d r a f t and downdraft r e g i o n s o f t h e storm t o be propagated w i t h t h e t r a j e c t o r y o f t h e storm.
The r o t a t i o n a l c h a r a c t e r i s t i c s o f t h e h o r i z o n t a l wind f i e l d
w i t h i n t h e storm c e l l a r e s i m i l a r l y propagated w i t h t h e t r a j e c t o r y o f t h e storm.
The
r o l e o f t h e v e r t i c a l wind d i s t r i b u t i o n tends t o keep t h e p o l l u t a n t w e l l mixed througho u t t h e storm c e l l . To c a l c u l a t e eddy d i f f u s i v i t i e s under t h e s i m p l e s t o f c o n d i t i o n s i s a c l a s s i c a l problem.
Knowledge o f eddy d i f f u s i v i t y v a l u e s a s s o c i a t e d w i t h tornadoes and thunder-
storms i s e s s e n t i a l l y n o n e x i s t e n t .
W h i l e some experiments have been conducted on t h e
d i s t r i b u t i o n o f c h a f f i n thunderstorms, t h e d a t a a r e sparse, and t h e c h a f f are much l a r g e r i n s i z e than t h e plutonium p a r t i c l e s considered i n t h i s study.
Since p r e c i s e
f o r m u l a t i o n o f t h e d i f f u s i o n c o e f f i c i e n t s i s i n t r a c t a b l e , an e m p i r i c a l e q u a t i o n i s used.
The t u r b u l e n t d i f f u s i o n c o e f f i c i e n t s ( r e f s . 6-10) can be d e f i n e d by t h e general
equ a t i on 'F.
Pasqui 11, Personal Communication (1976)
154
t I
-
I I
1.000 m
+
lOOm
I I
-14 -12 -10 -8 -6
-4 -2
0
2
4
6
8
10 12 14
16
18
20
Vertical Velocity (m/sec)
FIG. 1. D i s t r i b u t i o n o f u p d r a f t and d o w n d r a f t v e l o c i t i e s w i t h h e i g h t i n t h e thunders torm.
where u i s t h e s t a n d a r d d e v i a t i o n o f t h e wind due t o t u r b u l e n c e (ux, uy, uZ) and has dimensions o f m2; K = K,,
Ky,
KZ; t i s t i m e .
eq. ( 4 ) i s a l t e r e d t o t h e e m p i r i c a l r e l a t i o n
K = - Azn u2 t
To s i m p l i f y t h e s o l u t i o n ,
155 where n :0.2, and A i s equal t o 0.10 (Kx, KY) and 0.6 ( K z ) .
TO account f o r t h e
v e r t i c a l v a r i a t i o n i n t u r b u l e n c e i n t e n s i t y , eq. ( 5 ) i s assumed t o be v a l i d f o r t <20 minutes.
To account f o r t h e decrease o f t u r b u l e n t i n t e n s i t y f o l l o w i n g decay o f t h e
t h u n d e r s t o r m ( t >20 minutes),
i
eq. ( 6 ) i s used i n l i e u o f eq. ( 5 )
Kx = D ( i t ) a / ( 2 t ) Ky = E ( z t ) a / ( 2 t ) K,
K
=
zo (Z/Z,)~
= F u*
where il i s t h e t r a n s l a t i o n a l v e l o c i t y o f t h e storm, t i s time, D = 0.004
(1-0.075 loq,,z),
E = 0.0075 (1-0.075
logl0z),
a = 7/4,
F = 0.41,
zo i s
6 = 0.45,
t h e s u r f a c e roughness, u* i s t h e f r i c t i o n v e l o c i t y d e f i n e d by u* = 1.2CgUg
-
(log,,Ro
1.8), w i t h Cg b e i n g t h e g e o s t r o p h i c drag c o e f f i c i e n t , Ug t h e geoand Ro = Ug/zof, where f i s t h e c o r i o l i s parameter.
s t r o p h i c wind,
The e m p i r i c a l
c o n s t a n t s appearing i n eq. ( 6 ) were o b t a i n e d f r o m Ragland and Dennis ( r e f . 7), and L e t t a u ( r e f . 11).
The e f f e c t o f topography i s n o t i n c l u d e d i n t h e a d v e c t i v e wind b u t i s i n t r o d u c e d t h r o u g h t h e d i f f u s i o n c o e f f i c i e n t s by t h e s u r f a c e
f i e l d analysis,'
roughness parameter, zo. To account f o r d e p o s i t i o n , t h e f l u x a t t h e ground i s expressed i n terms o f a d e p o s i t i o n v e l o c i t y , p ( C a l d e r [ r e f . 13]),
such t h a t
l i m [-F(z)] = p l i m [C(z)]
z+o
(7)
z-to
and
where vg i s t h e a c t u a l s e t t l i n g v e l o c i t y . t h e form
-
F =
(1-r) K
where 0 t o give Pc
a
<
r
<
~
az
~
By e x p r e s s i n g t h e f l u x a t t h e s u r f a c e i n
C
1 i s t h e r e f l e c t i o n c o e f f i c i e n t , eqs. ( 7 ) t h r o u g h ( 9 ) can be combined
ac
VgC + (Kz -)a z z = o
V a r y i n g t h e v a l u e o f r f r o m 0 t o 1 s i m u l a t e s t h e e f f e c t o f l o s s e s a t t h e s u r f a c e by deposition ( r e f . 14). Scavenging o f t h e p l u t o n i u m p a r t i c l e s o c c u r s b y r a i n o u t .
Based on t h e work o f
S l i n n ( r e f . 15), t h e s i n k t e r m i n eq. (1) i s w r i t t e n as 'Topographic e f f e c t s on p o l l u t a n t d i s p e r s i o n a r e d i s c u s s e d i n Pepper and Baker ( r e f . 3), and Reynolds e t a l . ( r e f . 12).
156
The removal r a t e ,
(J,
i s o b t a i n e d f r o m t h e r e l a t i o n ( f o r i n - c l o u d and below-cloud
scavenging)
where B i s an e m p i r i c a l c o n s t a n t , Jo i s t h e r a i n f a l l r a t e , R,
i s t h e mean d r o p l e t
s i z e , E i s t h e c o l l i s i o n e f f i c i e n c y ( 3 ) ,and a i s t h e r a d i u s o f t h e p a r t i c u l a t e . Eq. ( 1 2 ) approximates t h e removal r a t e o f c o n c e n t r a t i o n due t o r a i n d r o p s f a l l i n g t h r o u g h t h e t h u n d e r s t o r m c e l l . A water d r o p l e t - p a r t i c u l a t e c o l l i s i o n e f f i c i e n c y o f
100% i s used. mm/hr;
R a i n f a l l r a t e s near t h e c e n t e r o f a severe storm can v a r y above 100
however, such h i g h r a i n f a l l r a t e s a r e n o t c o n s t a n t and f l u c t u a t e i n l o c a t i o n .
A v a l u e of 20 mm/hr i s used as an ensemble average c h a r a c t e r i s t i c o f severe storms ( r e f . 2).
Since u p d r a f t s markedly reduce t h e d e p o s i t i o n due t o r a i n o u t , t h e removal
r a t e i s z e r o i n t h o s e r e g i o n s o f t h e storm where v e r t i c a l v e l o c i t i e s a r e p o s i t i v e . T h i s a l l o w s t h e r a i n f a l l t o o c c u r i n t h o s e r e g i o n s o f t h e storm c o r r e s p o n d i n g t o t h e r a i n s h a f t and d o w n d r a f t r e g i o n s observed i n a c t u a l storms. NUMERICAL MODEL The problems o f d i s p e r s i o n e r r o r and mesh r e f i n e m e n t a s s o c i a t e d w it h n u m e r i c a l methods a r e reduced by u s i n g a quasi-Lagrangian scheme w i t h an E u l e r i a n f i n i t e d i f f e r ence method.
The method o f f r a c t i o n a l s t e p s ( r e f . 16) i s used t o s p l i t t h e t h r e e -
d i m e n s i o n a l e q u a t i o n i n t o a Lagrangian a d v e c t i o n p a r t p l u s an E u l e r i a n d i f f u s i o n p a r t . The method o f second moments i s used t o m a i n t a i n s u b g r i d s c a l e r e s o l u t i o n o f t h e c o n c e n t r a t i o n (Egan and Mahoney [ r e f . 171, Pedersen and Prahm [ r e f . 181). The c o m p u t a t i o n a l domain c o n s i s t s o f 2640 c e l l s , 30 c e l l s i n t h e l o n g i t u d i n a l d i r e c t i o n , 11 c e l l s i n t h e l a t e r a l d i r e c t i o n , and 8 l e v e l s i n t h e v e r t i c a l d i r e c t i o n . Equal mesh spacing i s used i n t h e h o r i z o n t a l p l a n e w i t h Ax = Ay = 2000 m. v e r t i c a l mesh begins w i t h z,=O, Zk = Zk-l
f o l l o w e d by
z2
=
The
2 m, z 3 = 350 m, z,, = 1000 m, and
= ( H - z k ) / 4 where k = 5-8.
The h e i g h t o f t h e a n v i l , H, t h e ground i s s e t t o 1000 m.
i s s e t t o 15,000 m; t h e h e i g h t o f t h e c l o u d base above The t i m e s t e p increment, A t ,
ensures t h e s t a b i l i t y c r i t e r i a , X c OAt/As,
when
8
i s equal t o 30 sec.
This
and As correspond t o
components o f t h e v e l o c i t y v e c t o r and g r i d i n t e r v a l s .
The t r a n s l a t i o n a l v e l o c i t y o f
t h e c l o u d c e n t e r i s p r e s c r i b e d a c c o r d i n g t o t h e t r a n s l a t i o n a l speeds o f t h e tornado, g i v e n i n T a b l e 1.
A second-moment t e c h n i q u e i s a l s o used t o advect t h e u p d r a f t and
downdraft v e l o c i t y d i s t r i b u t i o n w i t h i n t h e storm c e l l .
The t e r m i n a l v e l o c i t y o f
p a r t i c l e s (10 p i s n e g l i g i b l e compared t o t h e u p d r a f t and d o w n d r a f t v e l o c i t i e s .
157 RESULTS Output f r o m t h e model c o n s i s t s o f c o n c e n t r a t i o n v a l u e s s p e c i f i e d w i t h i n i n d i v i d u a l c e l l volumes ( F i g s . 2 and 3 ) .
These v a l u e s a r e a p p r o p r i a t e l y a d j u s t e d w i t h i n each c e l l
volume t o correspond t o t h e s p a t i a l dimensions of t h e c e l l . Ground-level c e n t e r l i n e C / Q values a r e shown i n F i g . 4 f o r each s p e c i f i c t r a n s l a tional velocity.
The displacement o f c o n c e n t r a t i o n as a f u n c t i o n o f t r a n s l a t i o n a l
v e l o c i t y i s evident.
In a l l t h r e e cases, 90% o f t h e peak a i r c o n c e n t r a t i o n has
reached ground l e v e l w i t h i n one hour a f t e r i n i t i a l d i s p e r s i o n w i t h i n t h e c l o u d (20 minutes a f t e r u p t a k e o f t h e p o l l u t a n t ) .
The decrease o f C/Q values i s due t o t h e
d e p l e t i o n o f concentration from t h e cloud (excepting t h a t p a r t transported t o t h e a n v i l r e g i o n ) and t o n e a r l y complete d i f F u s i o n o f t h e c o n c e n t r a t i o n below c l o u d base.
I
X
a. Initial skewed log-normal distribution
158
3A '
Fig. 3 . Ground level a i r concentration in t h e x-y plane ( t = 40 minutes) ( r o t a t i o n a l ) winds [ v e l o c i t y vectors] represent tornadic storm).
3
Longitudinol Distance (X), km
Fig. 4. Maximum ground level c e n t e r l i n e a i r concentration from plant s i t e .
159 I s o p l e t h s o f a i r c o n c e n t r a t i o n a t ground l e v e l f o r t = 60 m i n u t e s a r e shown i n F i g . 5.
The i r r e g u l a r i t y i n t h e i s o p l e t h c o n t o u r i s due t o t h e a d v e c t i o n and d i f f u -
s i o n o f t h e u p d r a f t / d o w n d r a f t r e g i o n s o f t h e storm.
F i g . 5 shows t h a t as t h e t r a n s l a -
t i o n a l v e l o c i t y o f t h e storm increases, t h e l a t e r a l spread o f a i r c o n c e n t r a t i o n i s s t r e t c h e d downwind.
H i g h e r peak c o n c e n t r a t i o n v a l u e s appear l e s s d i s p l a c e d t o t h e
r i g h t f o r t h e t o r n a d i c s t o r m w i t h a t r a n s l a t i o n a l v e l o c i t y o f 13.4 m/sec t h a n w i t h t h e succeeding two v e l o c i t i e s .
However, once beyond t h e i n i t i a l peak c o n c e n t r a t i o n area,
downwind values o f g r o u n d - l e v e l a i r c o n c e n t r a t i o n a r e l e s s t h a n values o b t a i n e d f o r
U
= 19.2
and 25.0 mlsec.
T h i s i s t o be expected because t h e i n c r e a s e i n a d v e c t i o n
causes t h e peak c o n c e n t r a t i o n values t o be more d i s p l a c e d (and d i s t r i b u t e d ) i n t h e longitudinal direction.
I n t e s t cases r u n w i t h o u t t h e i n f l u e n c e o f u p d r a f t s and
d o w n d r a f t s (and scavenging), t h e a i r c o n c e n t r a t i o n e v e n t u a l l y reached ground a f t e r 6 h o u r s b u t was s e v e r a l o r d e r s o f magnitude l e s s i n value. t i r o u n d - l e v e l d e p o s i t i o n ( r 2 ) i s shown i n F i g . 6.
The d e p o s i t i o n p a t t e r n s c o n s i s t
o f r a i n d r o p s t h a t have scavenged p o l l u t a n t f r o m t h e storm c e l l .
As shown i n F i g . 2,
t h e e f f e c t o f a d v e c t i o n on a i r c o n c e n t r a t i o n i s a l s o e v i d e n t on g r o u n d - l e v e l deposition:
t h e h i g h e s t peak v a l u e s a r e o b t a i n e d when U = 13.4 m/sec w i t h t h e peak r e g i o n
being nearest t o t h e i n i t i a l dispersion p o i n t i n t h e cloud. CONCLUSIONS Based on t h e t e s t cases analyzed i n t h i s study, d e p o s i t i o n o f t h e p o l l u t a n t b e g i n s t o occur i m m e d i a t e l y a f t e r t h e i n i t i a l d i s p e r s i o n w i t h i n t h e storm c e l l .
The p r i m a r y
mechanisms f o r c o n c e n t r a t i o n r e a c h i n g t h e s u r f a c e comes f r o m t h e e f f e c t o f t h e d o w n d r a f t v e r t i c a l v e l o c i t y d i s t r i b u t i o n and wet d e p o s i t i o n .
I n a l l cases, 50% o f t h e
i n i t i a l concentration, excepting t h a t p o r t i o n l i f t e d i n t o t h e a n v i l region o f the cloud,
i s removed f r o m t h e c l o u d w i t h i n 15 m i n u t e s from t h e t i m e o f i n i t i a l d i s p e r s i o n
w i t h i n t h e storm.
The maximum g r o u n d - l e v e l c o n c e n t r a t i o n i n a l l cases occurs w i t h i n
35 m i n u t e s o f w o u n d - l e v e l i n j e c t i o n . Maximum c e n t e r l i n e a i r c o n c e n t r a t i o n values r e v e a l t h a t peak c o n c e n t r a t i o n a t t h e s u r f a c e occurs w i t h i n 15 km f r o m t h e p o i n t where t h e i n i t i a l d i s p e r s i o n w i t h i n t h e storm i s established.
The c o n c e n t r a t i o n i s e s s e n t i a l l y d e p l e t e d f r o m t h e lower and
m i d d l e l a y e r s o f t h e c l o u d w i t h i n 50 km o f t h e peak g r o u n d - l e v e l value. ACKNOWLEDGEMENT The i n f o r m a t i o n c o n t a i n e d i n t h i s a r t i c l e was developed d u r i n g t h e course o f work under C o n t r a c t No. DE-AC09-SR00001 w i t h t h e U.S.
Department o f Energy.
160
Y
t a. Translational velocity tornadic storm).
=
13.4 m/sec (rotational winds [velocity vectors] represent
................... ..........-......... .............. . . . . . . . . . . . ........................................ .......................... ..... -. . . . ......................... '15' .................................................................. ...........
r
.... -14 ..................... ................. - . .
.....
Y
t+'
.......... ............
............................................. X
b. Translational velocity = 19.2 m/sec.
.... -12
......
.....11 ....
.............. ..............
........... ................
Y
t
L
X
c. Translational velocity
=
25.0 m/sec.
Fig. 5. Ground level air concentration isolog plots (m-3) in the x-y plane (t minutes).
=
60
161
X'
a. Translational velocity = 13.4 rn/sec.
I
'
x
b. Translational velocity = 19.2 m/sec.
Fig. 6. Ground level deposition isolog p l o t s
( N - ~ )in
t h e x-y plane ( t = 60 minutes) :es).
162
REF E K E NC E S
1 T.T. F u j i t a , Review of Severe Weather Meteorology a t Babcock & Wilcox Company, Leechburg, Pennsylvania, Department of Geophysical Sciences, University of Chicago, January 31, 1977, 24 pp. 2 E.A. Jessup, Mon. Weather Rev., 100(1972)653. 3 D.W. Pepper and A.J. Baker, Computers and Fluids, 8(1980)371. 4 T.T. F u j i t a , Workbook of Tornadoes and High Winds f o r Engineering Applications, SMRP Research Paper 165, Department of Geophysical Sciences, University of Chicago, 1978, 142 pp. 5 K.A. Browning and R.J. Donaldson, J r . , J. Atmos. Sci., 20(1963)533. 6 D.W. Pepper, USDOE Report DP-1556, E. I. du Pont de Nemours & Co., Savannah River Laboratory, May 1981. 7 K.W. Ragland and R.L. Dennis, Atmos. Environ., 9(1974)175. 8 E.M. Agee, J. Atmos. Sci., 32(1975)642. 9 A.S. Frisch and R.G. Strauch, J. Appl. Meteorol., 15(1976). 10 P.H. Hildebrand, J. Appl. Meteor., 16(1977)493. 11 H.H. Lettau, Advances i n Geophysics, Vol. 6, Atmospheric Diffusion and Air Pollution, Academic Press, New York, 1959, p.241. 1 2 S.D. Reynolds, P.M. Roth, and J.H. Seinfeld, Atmos. Environ., 7(1973)1033. 13 K.L. Calder, The Numerical Solution of Atmospheric Diffusion Equation by F i n i t e Difference Methods, Dept. of Army Tech. Memo, 1968, p.130. 14 S.K. Kao, J. Atmos. Sci., 33(1976)157. 15 W.G. Slinn, USAEC Report BNWL-1950 ( P t . 3 ) , B a t t e l l e Northwest Laboratories, Richland, WA, 1975. 16 T.T. F u j i t a , Tornado Structure f o r Engineering Application with Design Basis Tornado Model (DBT-77), Department of Geophysical Sciences, University of Chicago, 1977, 111 pp. 1 7 B.A. Egan and J.R. Mahoney, J. Appl. Meteor., 11(1972)312. 18 0. Christensen and L.P. Prahm, J. Appl. Meteor., 15(1976)1284.
163
THE INFLUENCE OF THE EMISSION H E I G H T ON THE MESO-SCALE AND LONG-RANGE
TRANSPORT
OF REACTIVE POLLUTANTS
M.
BENARIE
12, rue de l ' y v e l i n e , 91220 Bretigny (France)
ABSTRACT A s e a r l y i n t h e second day a f t e r t h e emission t h e p o l l u t a n t
i s well mixed
r e g a r d l e s s of t h e emission h e i g h t , i t s mass balance i s independent of t h e emission h e i g h t . A l l d i f f e r e n t i a l , height-dependent d e p o s i t i o n occurs during t h e period immediately subsequent t o t h e emission and can be computed a s shown i n w i t h i n t h e paper.
INTRODUCTION The purpose of t h e p r e s e n t paper i s t o examine t h e i n f l u e n c e of t h e e f f e c t i v e emission h e i g h t ( = s t a c k h e i g h t
+
plume r i s e ) on t h e mesoscale and long-range
t r a n s p o r t of a c t i v e (chemically r e a c t i v e o r scavenged) p o l l u t a n t s . The s t a r t i n g p o i n t i s t h e m a t e r i a l balance of an a i r p a r c e l containing t h e plume. The same p r i n c i p l e of
" s u l f u r budgets" has been a p p l i e d t o SO2 ( r e f s . 1 and 2) t h i s work
a p p l i e s t h e budget i d e a t o i n v e s t i g a t e t h e e f f e c t of t h e emission h e i g h t on mesoscale t r a n s p o r t i n g e n e r a l and t h e consequences of t h e p e n e t r a t i o n of inversion l a y e r s i n p a r t i c u l a r . The p r i n c i p l e of any budget c a l c u l a t i o n i s t o i n v e s t i g a t e t h e f r a c t i o n
of t h e p o l l u t a n t e x t r a c t e d by t h e various mechanisms from t h e a i r p a r c e l during e a r l y s t e p s of t h e t r a n s p o r t p r o c e s s , and t o compute by d i f f e r e n c e t h e amount which remains a i r b o r n e a f t e r some given p e r i o d .
THE BUDGET FROM EMISSION TO FULL M I X I N G .
Two b a s i c s i t u a t i o n s must be d i s t i n g u i s h e d : t h e absence of an e l e v a t e d inversion when a well-mixed convective s i t u a t i o n dominates, and i n s t a n c e s when v e r t i c a l exchange i s hindered, slowed down o r even comes t o a s t o p . Well-mixed,
convective s i t u a t i o n s
S i t u a t i o n s i n which t h e mixed l a y e r r e a l l y deserves i t s name and becomes uniform, occur mainly during t h e d a y l i g h t hours with well-developed thermal turbulences. The time r e q u i r e d f o r uniform mixing t o be achieved, can be computed e i t h e r
164 in a rigorous way following ref. 3, or estimated in much simpler way fully adequate for our purpose, after ref. 4, as the distance, respectively wind velocity dependent time, when the value of the vertical dispersion coefficient for the prevailing stability conditions equals the height L of the mixed layer (or a conventional fraction, as L/1.25 thereof). As
an example
with L = 1000 m, moderate insolation and 4 m sec-' wind
:
velocity (Pasquill B stability class)
;
Uz
=
1000 m at 2.5 km from the source
which corresponds to a travel time of 625 sec
=
1 / 6 hour. Therefore, during the
day, a thorough mixing throughout the mixed layer may be assumed within less than the half-hour. Deposition losses from an emission at any height within the mixed layer occurring from sunrise until about one hour before sunset, can be-approximated in the following way
:
The rather complex process of "dry deposition", depending on surface resistance, surface roughness, wind velocity and turbulence, is described by a single quantity, the pollutant deposition velocity vd. Two very complete reviews of deposition velocities appeared recently
:
refs. 5 , 6 .
Designing by L the height of the mixed layer, the rate constant for dry deposition will be bl = vd/L. In presence of other simultaneous decay mechanism ( s ) , as e.g., rain scavenging with b2, we have to consider the sum of all decay constants
:
c
bi and at the end of the time t, the decaying air parcel will contain
mt = mo exp ( -tCbi)
(1)
of the initial pollutant mass mo. The deposition flux F cm-2sec-1 per unit area and unit time is F = vdc and g M = Fxy = xyvdc represents the total mass deposited in unit time within the area xy. Neglecting for the time being deposition losses, the mass within the box xyh is constant when x
+
Xk and y
+
yk through the effect of longitudinal (lateral)
dispersion. The concentration varies according to ckxkykh = const. Therefore, in first approximation, i.e., as far h may be considered constant, and Xk and yk are large enough to include all the diffusing material, the mass deposited per unit time is independent of the extent of the box. This way of reasoning allows to disregard lateral (or longitudinal) diffusion coefficients, plume meandering and the introduction of more or less arbitrary constants that take into account these phenomena. Therefore, the horizontal limits of the box will always be defined as boundaries of vanishing concentration. It is very important to stress that emission height did not enter into these considerations. An elevated plume satisfies the condition of uniform distribution within the mixed layer even earlier in convective situations than is the case with a ground level source.
165 So f a r f o r p a r t i c u l a t e s s u b j e c t only t o d e p o s i t i o n and dry ( = no r a i n ) s i t u a -
t i o n s . When r a i n ( o r snow) occurs, a washout c o e f f i c i e n t should be considered coupled with t h e average d u r a t i o n of t h e p r e c i p i t a t i o n ( s e e below). In t h e i n s tance of SO2, two more complications occur ; t h e r a t e of oxidation i n t o p a r t i c u l a t e s u l f a t e which, i f f i n e d e t a i l i s sought, may be broken down i n day (photochemically r a t e - l i m i t e d ) a n d n i g h t ( c a t a l y t i c a l l y r a t e - l i m i t e d ) processes. P a r t i c u l a t e s u l f a t e i s a l s o s u b j e c t o t dry and wet d e p o s i t i o n . Although f u r t h e r below we w i l l attempt some numerical computations f o r SO2, it i s q u e s t i o n a b l e i f a l l t h e s e mechanisms should be taken i n t o account i n d e t a i l , a s few of t h e r a t e const a n t s a r e r e l i a b l e enough. We probably g e t b e t t e r e s t i m a t e s by lumping s e v e r a l of t h e s e mechanisms t o g e t h e r .
MASS BALANCE OF THE WELL-MIXED
A I R PARCEL
A s convection f u l l y develops on t h e second day a f t e r t h e emission, t h e pollu-
t a n t becomes well-mixed. I n s t e a d of computing with a "two-box"
model s e q u e n t i a l l y , one f o r t l hours of
t h e day and t h e o t h e r f o r t 2 hours f o r t h e n i g h t a s t h i s has been done i n r e f . 1 , we d e f i n e and use a s i n g l e compound r a t e c o n s t a n t f o r a 24-hour p e r i o d a s t h e average of t h e day and n i g h t r a t e s
t Cbi 1
+
:
t2bn = B
+
t2
Thus a f t e r a 24-hour cycle t h e a i r p a r c e l w i l l contain
p a r t of t h e o r i g i n a l p o l l u t a n t m a s s . A f t e r k c y c l e s t h e remaining mass w i l l be
exp (-Bk)
(4)
Numerical c a l c u l a t i o n s follow i n Section 3.
NUMERICAL APPLICATIONS TO SO2 PLUMES
Emissions i n f u l l y convective s i t u a t i o n s The c o n s i d e r a t i o n s developed above a r e v a l i d ; one o r a t most t w o hours a f t e r emission i t s h e i g h t has no i n f l u e n c e anymore because t h e p o l l u t a n t i s well-mixed.
Formula (1) a p p l i e s f o r t h e t hours a f t e r sunset. Typical c o n s t a n t s
t o be used a r e i n Table 2 .
166 S t a b l e condition - decoupling of t h e s u r f a c e l a y e r . During t h e n i g h t , t h e p o l l u t e d box i s . d e c o u p l e d from t h e ground. This process may be described a s follows. The v e r t i c a l t u r b u l e n t f l u x becomes smaller than t h e d e p o s i t i o n v e l o c i t y and t h u s t h e v e r t i c a l d i f f u s i v e exchange alone i s r a t e determining. This pccurs when KZ
5
1 m2sec-l, t h a t means i n very s t a b l e atmospheric
c o n d i t i o n s . P r a c t i c a l l y , i t i s enough i f only a very t h i n l a y e r - a few centimeters t o a few meters - has t h i s s t a b l e s t r a t i f i c a t i o n . The upper l a y e r s are decoupled from t h e underlying s u r f a c e . This occurs q u i t e o f t e n by r a d i a t i o n i n v e r s i o n during a l a r g e p o r t i o n of t h e n i g h t hours provided t h e s t a b l e s t r a t i f i c a t i o n i s n o t p e r t u r b e d by winds.
We may c h a r a c t e r i z e t h i s s i t u a t i o n by a " n i g h t r a t e constant" bn which almost vanishes i n t h e above-described i d e a l c o n d i t i o n s ; otherwise it has some small value when compared t o t h e day r a t e . Experimental d i s t r i b u t i o n of convective and s t a b l e s i t u a t i o n s Beyond g e n e r a l i t i e s , such a s t h a t convective s i t u a t i o n s a r e more f r e q u e n t during
the day and poor exchange dominates d u r i n g t h e n i g h t , only experimental determinations of t h e atmospheric l a y e r i n g can g i v e f u r t h e r i n s i g h t i n what a c t u a l l y happens.This l a y e r i n g i s s t r o n g l y influenced by l o c a l c l i m a t e and geography. I t should be experimentally e s t a b l i s h e d f o r many s i t e s . To our p r e s e n t knowledge, one s i n g l e paper r e l a t e s about such measurements ; r e f . 7 . During summer about 1/3 of t h e s i t u a t i o n s a r e convective, and 1/6 of t h e time ground-based i n v e r s i o n s a r e t o be found. During t h e w i n t e r months, convective s i t u a t i o n s a r e less than 10% of t h e
t i m e and somewhat less than 10% a r e t h e ground-based i n v e r s i o n s . Therefore, i n summer 1/2 of t h e time, and i n winter 1/5 of t h e time t h e r e i s no emission h e i g h t e f f e c t on t h e mesoscale mass balance of a c t i v e p o l l u t a n t s .
The p e n e t r a t i o n of i n v e r s i o n s . In t h e presence of e l e v a t e d l a y e r i n g , r e f . 7 shows t h a t a s f a r a s Scotland i s concerned, t h a t e l e v a t e d l a y e r i n g can be observed with n e a r l y t h e same average frequency of 1/5 e i t h e r i n winter
o r i n summer. In
w i n t e r , t h e r e i s s c a r c e l y a d i u r n a l c y c l e t h a t i s q u i t e a s pronounced a s i n summer. During summer days, e l e v a t e d i n v e r s i o n s almost never occur, though they a r e frequent during t h e n i g h t . In r e f . 7 , t h e " p o t e n t i a l c o n t r i b u t i o n " of d i f f e r e n t s t a c k h e i g h t c a t e g o r i e s (category I :
2
150 m ; category I1 : 90-120 m , and category I11 : 50-85 m) t o
t h e ground l e v e l concentration h a s been c a l c u l a t e d . The p r e s e n t use of t h e s e r e s u l t s
w i l l be t h e complement : the frequency by which plumes emitted from t h e s e s t a c k
h e i g h t c a t e g o r i e s p e n e t r a t e i n v e r s i o n s and t h u s remain f o r a more o r less long time decoupled from t h e ground, The summer and winter seasons p r e s e n t d i s t i n c t i v e f e a t u r e s and t h e r e f o r e w i l l be discussed s e p a r a t e l y . From A p r i l u n t i l September, between 700 h and 1800 h l o c a l time, t h e emissions
167 always occur i n f u l l y convective s i t u a t i o n s . There i s no d i f f e r e n c e , t h e r e f o r e , a s f a r a s s t a c k h e i g h t i s concerned. The average frequency f o r p e n e t r a t i n g n i g h t i n v e r s i o n s (averaged from Fig.4, of r e f . 7 ) i s i n Table 1.
TABLE 1
Average inversion p e n e t r a t i o n percentage during t h e n i g h t , i n f u n c t i o n of stack h e i g h t , v a l i d f o r t h e Forth Valley, Scotland, a f t e r Maugham (1979).
Stack Height 50-85 m 90-120 m > 150 m
Summer
Winter
60 82 96
92
81 98
The frequency of n o t p e n e t r a t i n g through an i n v e r s i o n - t h a t i s , of afumigation s i t u a t i o n with t h e plume remaining below t h e i n v e r s i o n - i s obviously 100
-
( p e n e t r a t i o n frequency 8 ) . Thus, d u r i n g t h e n i g h t , i n d i f f e r e n t l y i f i n summer o r
> 150 m high s t a c k s w i l l fumigate about 4-5 times l e s s f r e q u e n t l y i n winter, than 90-120 m , and
10 times l e s s f r e q u e n t l y than 50-85 m s t a c k s .
We may conclude therefrom, t h a t i n t h e summer approximately h a l f t h e daytime short-range d e p o s i t i o n of p o l l u t a n t s w i l l n o t be influenced a t a l l by t h e emission h e i g h t . The p o l l u t a n t decay w i l l follow a unique exponential law ( s e e below) f o r any h e i g h t . During t h e n i g h t , t h e plumes l o c a t e d above t h e i n v e r s i o n s may be s u b j e c t t o r a i n scavenging, b u t they a r e decoupled from t h e ground and t h e r e f o r e not s u b j e c t t o dry d e p o s i t i o n . The events must be evaluated each with i t s respect i v e frequency. During t h e winter months (October-March) between 800 and 1600 hours, t h e r e i s a r e l a t i v e l y smooth r i s e u n t i l noon, afterwards t h e r e i s a f a l l i n t h e convective mixing, which a t any time and a t any s t a c k h e i g h t category does n o t a t t a i n t h e summer values. The noon peak values f o r t h e frequency of p e n e t r a t i o n a r e of 75% for
2
150 m s t a c k s ,
=
43% f o r 90-120 m and 50% f o r 50-85 m s t a c k s .
For t h e n i g h t , t h e p e n e t r a t i o n frequencies can be read from Table 1. Deposition and o t h e r l o s s e s u n t i l t h e morning t h a t follows t h e emission I f t h e emission - a t any h e i g h t - occurs a t a time when it i s decoupled from ground, d e p o s i t i o n l o s s e s may be neglected u n t l l
convectice mixing occurs. This
sets i n u s u a l l y a t t h e f i r s t subsequent morning. I f t h e emission occurs d u r i n g a convective s i t u a t i o n , t h e l o s s e s should be computed only f o r t h e time t h i s s i t u a t i o n l a s t s . I f a non-convective (ground o r low-based i n v e r s i o n ) follows, t h e d e p o s i t i o n during t h i s i n t e r v a l w i l l be n e g l i g i b l e u n t i l f u l l convection develops t h e n e x t morning.
-
168 TABLE 2
Constants f o r t h e SO2 decay. Mainly a f t e r Denison (1979) and Sehmel (1980)
Summer Mean Range Mixing h e i g h t L m
1200
Dry d e p o s i t i o n v e l o c i t y vd cm s-1 S O -SO
2
4 kS02 s - l
1.2 (Grass)
conversion
10-6
Winter Mean Range
1800-6000
700
400-1200
0.5-2.5
0.15 (snow)
0.05-1.5
3.10-7-3.10-6
10-6
3.10-'-3.
0.5
0.01-1.5
Scavenging c o e f f i c i e n t so2 s-1
10-5
Par ti c u l a t e d e p o s i t i o n v e l o c i t y ( a ) vso4 cm s-1
0.5
0.01-1.5
P a r t i c u l a t e scavenging c o e f f i c i e n t so4 s-1
10-4
2.10-5-30.
P r o b a b i l i t y of p r e c i p i t a t i o n ( b ) Pp
0.1
0.0-0.4
210-5-3010-4 0.2
0.1-0.8
( a ) S i z e dependent ( b ) C l i m a t i c average f o r Western Europe - o c e a n i c a l l y influenced climate. Large y e a r l y , monthly v a r i a t i o n s . The SO - t o - s u l f a t e conversion, and t h e scavenging and d e p o s i t i o n of s u l f a t e 2 i s a r a t h e r complex process. This s u b j e c t has been q u i t e thoroughly and c r i t i c a l l y reviewed r e c e n t l y i n r e f . 8 , t a k i n g i n t o c o n s i d e r a t i o n t h e experimental and t h e o r e t i c a l r e s u l t s of t h e l i t e r a t u r e . This r e f e r e n c e should be consulted f o r d e t a i l s . Considering r e a l i s t i c values f o r t h e long-range average of wet and dry p e r i o d s i n C e n t r a l Europe, r e f . 8 comes t o an o v e r a l l residence time of f o r SO2 t o Cbi = 1.75 10-5s-1. with L = 1000 m and vd
=
16 h
This f i g u r e i s an average f o r winter and summer,
0.8 c m s-1.
The p o r t i o n of s i n g l e removal processes i s
a follows : 9% homogenous SO7 oxidation 35% l i q u i d phase SO2 o x i d a t i o n 45% dry d e p o s i t i o n 11%wet d e p o s i t i o n About 50% of t h e emitted SO2 i s removed by dry d e p o s i t i o n (predominantly a s SO ) and 50% i s removed by t h e atmosphere by w e t d e p o s i t i o n a s s u l f a t e .
2
Ref. 9 , based on h i s own measurements a s w e l l a s on o t h e r s '
( f o r example r e f . 1 0 )
has shown t h a t most o x i d a t i o n occurs e a r l y i n t h e plume's l i f e and h a l f of t h e f i n a l s u l f a t e y i e l d i s obtained c l o s e t o t h e source. Therefore t h e c o n s t a n t Cbl =
1.75 10-5 w i l l only be used f o r t h e f i r s t 12 hours o r less of consecutive plume history. Table 3 p r e s e n t s a c a l c u l a t i o n of t h e s u l f u r budget of an a i r p a r c e l i n which
169
SO
2
has been emitted at the hour of the day as given by the first column.
TABLE 3 Yearly average of sulfur remaining in an air parcel - Central European conditions. Emission in convective situation
:
the source height does not enter into conside-
ration.
Time of emission
Sulfur remaining in the air parcel at 18-20 h.
8-10 10-12 12-14 14-16 16-18 18-20
0.54 0.61 0.69 0.78 0.88 1 .oo
The figures have been confirmed by numerous experiments, e.g., ref. 1 1 where further bibliography can be found. Emission under poor vertical exchange conditions Emissions near the ground. As radiation inversion develops in the proximity of the surface, stabilizing the nocturnal surface layer, a shallow mixing layer may develop caused by mechanical turbulence. The height of this nocturnal mixed layer depends on surface roughness and wind velocity. At very low wind speeds, the depth of the nocturnal mixed layer is essentially zero and may attain a few hundred meters for high wind speeds. Therefore a pollutant emitted near ground into this layer will be trapped and can be subject to removal - provided tdat sufficient vertical turbulence exists to transport material towards the ground. Beyond these qualitative considerations, begins the great area of quantitative ignorance. The lack of detailed knowledge notwithstanding, we may attempt a few calculations for two idealized limiting situations. One of these instances occurs when a low, impenetrable inversion barrier exists, but under which the shallow wind-induced -+ lOn~*s-~, which z c allows vd to remain rate determining. This situation is fairly frequent when
mixing layer still provides a vertical diffusion constant K
surface roughness is rather high, as in extended suburban regions with cottagetype houses isolated with 500-1000m2 gardens, and each one fenced and surrounded by shrubs and some tall trees. Quite frequently the mixed layer is limted to about 100 m in such surroundings, and capped by a strong inversion (unpublished results,
based on measurements in Strasbourg, France, Benarie (1975)
1. Applying results
from ref. 12 for stable atmosphere and grass in summer, vd = 0.5 cm snow in winter vd = 0.05 cm s-1, we have
S-l,
and for
bl = - =0 ' 5
5 10-5
summer
104
A further major incertitude arises regarding the conversion rate into sulfate
and the subsequent sulfate deposition. Most authors (ref.13) agree that night conversion rates are substantially lower than those found during the day.Refs.8 estimates are based on long term(year1y) averages. To use them for night conditions only would be an overestimate. Therefore, we roughly guess that in between figures, bl
=
7.5
s-l (summer) and bl
=
7.5
s-l (winter), would be
adequate. Considering that the thickness of the mixed layer which co-determines the results has already been a rather sweeping generalization with considerable possibility of error, there is no point in trying to obtain better estimates for the deposition rates, at the time being. If we use the most frequent heights for the inversion as found by ref. 7 - 175 m (see below) - the above bl values must approximately be halved. Anyway, the use of these figures is only to obtain an upper limit for night deposition losses from ground level sources (see Tables 4 and 5). The other limiting case would be when stability is so high that the last few decimeters represent an impenetrable barrier to diffusion. It is immaterial if the vertical extent of the polluted air layer is a few tens or several hundred meters. In this case, only a very thin layer next to the ground is subject to deposition - a few percent of the total mass at most. What we do not know with precision is the intensity
-
frequency distribution of such strong ground-based
inversions. Obviously this zero deposition rate is a lower limiting value. Stack emissions. We are guided here by Maugham's paper which can be used for a (locally valid) comparative computation. Table 1 shows the average night penetration frequencies for various stack heights. The method for computation has been obtained above
;
the constants -
with the exception of L - are in Table 2.
As the most frequent night inversion height, L = 175 m is assumed for summer and
winter alike based on Maugham's data. When conditions are stable, the minimum vd values are selected. It should be stressed that this way of reasoning assumes implicitly that vertical exchange below the inversion is still strong enough to let v be rate determining. We use the exponential deposition formula (1) d with dry deposition and scavenging rates for the fraction of time the plume is considered below inversion, and scavenging alone with penetrating plumes. Transformation rate into sulfate, and subsequent sulfate deposition are not being taken here into account due to three reasons. First, most authors (refs. 1 , 9 ) agree, that night oxidation rates are from small to negligible, below 0.5%
h-l. Second, the sulfate oxidation deposition rate is of importance for the absolute mass balance only, for the computation of the total amount of sulfur
171 remaining. As far as our special problem is concerned, that is the relative mass balance for various stack heights, any loss rate, and therefore the assumed zero loss rate, yields the same relative result. Finally, the assumed zero loss rate
leads to an upper limit estimation of the sulfur transported at distance. The time-weighted situations are taken from Table 1. A reminder of the numerical values is summarized in Table 4 , the results of computation in Table 5. Sulfur balance in the well-mixed parcel. The second day decay can be computed in the same way as the first well-mixed period. The computation and the constants to be used have already been discussed previously. From sunrise to sunset, the well-mixed air mass loses for about 10 hours sulfur, at the rate shown by Table 3 , i.e., about 0.54 part of the original budget remains, at evening. TABLE 4
Reminder of the night loss rates used for calculation in Table 5 A. For stacks
Vd
Summer dry depositions
; -=
L
scavenging Pp SO
2
=
0 . 5 cm s-1 17500 cm
=
0.1 h-l
0.1 10-5 s-1 = 3 . 6
Summer dry deposition + scavenging
h-1
0.1 h-l
Vd = 0 . 5 cm s-l Winter dry deposition L 17500 cm
= o.017
h-l
scavenging 0.2 10-5 s-1 = 7.2 10-3h-1 Winter dry deposition + scavenging
2.4 10-2h-1
B. For ground level sources.
Estimated upper limits. Summer
7 . 5 10-5 s-l = 0.27 h-1
Winter
7.5 10-6 s-1 = 0.027 h-l
TABLE 5 Average mass of SO2 remaining at sunrise in an air parcel. Stack emissions during the night - poor vertical exchange. Inversion penetration frequencies from Maugham (1979) i assumed average Western Europe Oceanic climate conditions. ~
Height of Emission m Time of emission 16-18 18-20 20- 2 2 22-24 24-02 02-04 04-06 06-08
Summer 50-85
90-120
.71 .I4 .78 .83 .89 .96
.85 .87 .89 .91 .94 .98
Winter h150 .94 .95 .96 .97 .98 .99
50-85 .86 -88 .89 .91 .93 .95 .97 .99
90-120 .88 .90 -91 .93 .94 .96 .97 .99
2150 .89 .91 -92 .94 .95 .96 .98 .99
172
As the assumptions for the mixed layer height are different for Table 5 and Table 3, the results are not directly comparable. During the night, the air parcel is decoupled from the ground and thus the dry deposition loss will be negligible, but rain scavenging has to be accounted for
9 hours of the summer night and for 13 hours of the winter night. On the
average, after one summer night it remains the 0.968 part (0.911 part of the winter night) of SO2 within the air parcel. Thus, after one cycle of 24 hours, the remaining SO2 represents 0.52 part in summer and 0.49 in winter - not significantly different in view of the incertitudes of the assumptions and constants. Subsequent days of transport will account on the average for the same rate of exponential decay. The third morning the air parcel will contain30.25 part of the original SO
mass
;
the fourth 0.12, and so on.
If the initial emission takes place in a convective situation, the time of the emission has to be accounted for taking the respective figure from Table 3 For instance, an air parcel containing a 12-14 hour emission, in summer, attains the evening with an 0.69 part of the inital SO2 mass
;
of that .968 remains on
next morning. Therefore .69 x 0.968 has to be mulitiplied by 0.50 for each subsequent 24 hours of transport. As the subsequent sulfur during transport days is insensitive as regards emission height, the differential deposition during the first 24 hours will account for the mass-balance at any transport distance.
REFERENCES 1 R.B. Husar, D.E. Patterson, Y.D. Husar, N.V. Gilliani and W.E. Wilson Jr., Atmos. Environm., 12 (1978)549-568. 2 J.N. de Wys, A.C. Hill and E. Robinson, Atmos. Environm., 12 (1978) 633-639. 3 R.J. Yamartino Jr., J. Air Pollut. Control Assoc., 27 (1977)467-468. 4 M.E. Smith and I.A. Singer, J. Appl. Meteor. 5 (1966)631-639. 5 T.A. McMahon and P.Y. Denison, Atmos. Environm., 13 (1979)571-585. 6 G.A. Sehmel, Atmos. Environm. 14 (1980)983-1011. 7 R.A. Maughan, Atmos. Environm., 13 (1979)1697-1706. 8 D. Moller, Atmos. Environm. 14 (1980)1067-1076. 9 J. Freiberg, Atmos. Environm., 12 (1978)339-347. 1 0 M.T. Dana, J.M. Hales and M.A. Wolf, J. Geophys. Res., 80 (1975)4119-4129. 11 H. Flyger, E. Levin, T.E. Lund, J. Fenger, E. Lyck and S.E. Vryning, Atmos. 12 D.M. Whelpdale and R.W. Shaw, Tellus 26 (1974)196-204. 13 Y. Forrest and L. Newman, Atmos. Environm., 11 (1977)517-520.
173
HEALTH
EFFECTS POLLUTION CONTROL
The reader should n o t be misled by the slimness of t h i s s e c t i o n .
The
number of pages or t h e amount of words i s not a measure of t h e significance of t h e opinions or of the s u b s t a n t i a l i t y of t h e r e s u l t s . Health e f f e c t s were and a r e considered as the main r a t i o n a l e behind a i r pollution research and abatement.
Dr. L i p f e r t draws our a t t e n t i o n here t o
~
t h e f a c t t h a t t h e measured a i r p o l l u t a n t s , more s p e c i f i c a l l y sulphur dioxide and suspended matter concentrations on non-episodic l e v e l s , did n o t display any demonstrable harm t o human h e a l t h . To avoid any misunderstanding, I emphasise t h a t t h e r e i s no a s s e r t i o n i n the sense t h a t health e f f e c t s do not occur, b u t merely a statement t h a t such e f f e c t s cannot c l e a r l y be proved with our present s t a t e of knowledge. I f s o , t h e money and e f f o r t spent on reducing emissions of sulphur dioxide i s counter-productive. Loosely coupled t o t h i s section a r e several technological papers about pol 1 u t a n t c o n t r o l .
This Page Intentionally Left Blank
175
MORTALITY AND A I R POLLUTION
-
LESSONS FROM STATISTICS
Frederick W. L i p f e r t Brookhaven National Laboratory, Upton, NY 11973
ABSTRACT
This paper reviews cross s e c t i o n a l s t u d i e s which attempt to l i n k p e r s i s t e n t geographic
differences i n mortality rates with a i r pollution.
Some e a r l y
s t u d i e s are mentioned and d e t a i l e d r e s u l t s are given f o r seven major contemp o r a r y studies, two o f which are s t i l l in the p u b l i c a t i o n process.
Differences
among t h e s t u d i e s are discussed with regard t o s t a t i s t i c a l techniques, i n the r e s u l t s over time (1959-19741, sults.
trends
and i n t e r p r e t a t i o n and use o f the r e -
The a n a l y s i s concludes t h a t t h e r e a r e f a r too many problems w i t h t h i s
technique t o a l l o w c a u s a l i t y t o be f i r m l y established,
and thus the r e s u l t s
should n o t be used f o r c o s t b e n e f i t o r p o l i c y analysis.
INTRODUCTION Since the beginning o f the environmental movement, a t t e n t i o n has focused on p r o t e c t i o n o f human h e a l t h .
The a i r p o l l u t i o n episodes o f t h e 1 9 5 0 ' s and
1 9 6 0 ' s provided dramatic evidence o f man's s u s c e p t i b i l i t y to p o l l u t e d a i r ,
although these e f f e c t s were l a r g e l y unnoticed a t the time.
I n general,
the
e a r l y attempts a t a n a l y s i s o f these episodes were crude and incapable o f determining
which
specific
pollutant
was
associated
m o r t a l i t y r a t e s , since a l l p o l l u t a n t s tend to show d u r i n g an episode.
with
the
increased
elevated concentrations
Subsequent s t u d i e s o f time-varying p o l l u t i o n and m o r t a l i t y
have employed s o p h i s t i c a t e d time-series a n a l y s i s methods, r e s u l t i n g i n g r e a t e r s t a t i s t i c a l power and more d e f i n i t i v e conclusions. relate
only
causality.
to
the
timing o f
death,
However,
and n o t n e c e s s a r i l y
these studies to
fundamental
I t has l o n g been assumed t h a t o n l y t h e f r a g i l e p o r t i o n o f t h e
p o p u l a t i o n i s a t r i s k from acute a i r p o l l u t i o n episodes,
and the degree o f
p r e m a t u r i t y o f death has never been s a t i s f a c t o r i l y determined.
Such studies,
even though they p r o v i d e q u a n t i t a t i v e r i s k f a c t o r s f o r acute exposures to s p e c i f i c p o l l u t a n t s , have n o t found f a v o r w i t h economists seeking dose-response f u n c t i o n s f o r use i n c o s t - b e n e f i t studies.
176
The cross-sectional approach, on the o t h e r hand, deals with geographic d i f f e r e n t i a l s which a r e assumed t o be s t a b l e in time, and t h u s i s intended t o r e l a t e t o chronic e f f e c t s , which should be a b e t t e r i n d i c a t o r of the basic s t a t e of health. Some cross-sectional studies have found r e l a t i v e l y l a r g e d i f f e r e n c e s i n mortality r a t e s associated w i t h a i r pollution. Various costb e n e f i t s t u d i e s have t h e n drawn on these findings, a l s o in p a r t because they have been c a s t in a form which i s convenient to use. For example, a recent OECD study ( r e f . 1) c i t e d the work of Lave and Seskin ( r e f . 2 ) in quantifying b e n e f i t s of sulphur oxides control. In so doing, OECD used a r e l a t i o n s h i p between t o t a l (crude) mortality r a t e and the minimum annual sulphate concentrat i o n , without regard to the cause of death, the age of the decedent, or the actual chronic exposure. However convenient, there a r e many flaws i n the cross-sectional studies in t h e l i t e r a t u r e and a l s o i n t h e way they have been used in policy-related studies. T h i s paper is intended to explore the f e a t u r e s and r e l i a b i l i t y of findings of the major cross-sectional s t u d i e s and t h e i r implications f o r policy. Some r e s u l t s from a new cross-sectional study based on 1970 mortality in U.S. metropolitan areas will a l s o be discussed.
REVIEW OF CROSS-SECTIONAL AIR POLLUTION-MORTALITY STUDIES The Early Studies The e a r l y s t u d i e s of geographic d i f f e r e n t i a l s were often qua1 i t a t i v e i n nature. Dust-fall s t a t i s t i c s were sometimes used as the measure of a i r pollut i o n ( r e f . 3 ) o r , in some c a s e s , s o l i d fuel usage r a t e s ( r e f . 4 ) . Most of these s t u d i e s focused on r e s p i r a t o r y - r e l a t e d causes of death, and some of them attempted to control f o r smoking habits. The most r e l i a b l e conclusion was t h a t there was an urban-rural g r a d i e n t i n m o r t a l i t y ( i n B r i t a i n ) f o r c e r t a i n causes of death, even accounting f o r smoking ( r e f . 5 ) . In the U.S., Winkelstein and h i s co-workers went a step f u r t h e r i n t h e i r analysis' of various causes of death in E r i e County ( B u f f a l o ) , New York ( r e f s . 6-9). They found a highly s i g n i f i c a n t association between t o t a l suspended p a r t i c u l a t e s (TSP) measured from J u l y 1961 t o January 1963 and t o t a l mortality from 1959-61, f o r white males and females. Such a r e l a t i o n s h i p was not found f o r s u l p h u r oxides, a1 though a r e l a t i v e l y crude measuring technique (lead sulphation candles) was used. The association w i t h p a r t i c u l a t e s was a l s o shown t o hold f o r stomach cancer, chronic r e s p i r a t o r y disease (males), and h e a r t Winkelstein's s t u d i e s did not control f o r d i s e a s e , b u t not f o r lung cancer. smoking and used only two broad age groups. However, Finch and Morris ( r e f . 10) reanalyzed t h e Winkelstein data using the actual ages of the decedents (obtained from death c e r t i f i c a t e s ) and e s s e n t i a l l y confirmed the e a r l i e r
findings.
A l a t e r paper by Winkelstein and Kantor ( r e f . 11) discounted the
p o s s i b i l i t y o f smoking h a b i t s as a confounding f a c t o r , and a l s o showed a r e l a t i o n s h i p between r e s p i r a t o r y symptoms and TSP f o r females.
I t i s important to
note t h a t the lowest mean TSP l e v e l i n t h i s study was 79pg/m3, s l i g h t l y above t h e U.S.
primary standard; t h e h i g h e s t annual mean was about 2 4 O p g l d .
Thus,
t h i s group o f s t u d i e s i s n o t u s e f u l w i t h regard t o questions concerning the presence o f n o - e f f e c t thresholds below the U.S. standard. Zeidberg and h i s colleagues conducted an extensive i n t r a - u r b a n cross-sectiona l study i n the N a s h v i l l e , TN area from 1949 t o 1960 ( r e f . 12). c o n t r o l l e d f o r age, race, sex, tion.
The study was
economic c l a s s , b u t n o t f o r smoking o r occupa-
For the middle c l a s s , an a s s o c i a t i o n was shown f o r females between var-
ious h e a r t disease c a t e g o r i e s and " s o i l i n g , " s i m i l a r t o " B r i t i s h smoke."
I n general,
an index o f p a r t i c u l a t e matter
t h i s a s s o c i a t i o n was n o t seen f o r
males ( p o s s i b l e confounding due to occupation o r smoking?), and was stronger f o r nonwhites than f o r whites. Contemporary Cross-sectional Studies The f o l l o w i n g t a b l e s describe seven more r e c e n t studies,
a l l o f A i c h used
mu1 t i p l e r e g r e s s i o n techniques i n a v a r i e t y o f d i f f e r e n t ways. coefficient*
The regression
r e l a t i n g changes i n m o r t a l i t y r a t e to changes i n ambient a i r
q u a l i t y i s t h e parameter d e s i r e d by the economist f o r use i n c o s t - b e n e f i t studies. able,
and,
However,
i n most s t u d i e s the c o e f f i c i e n t s tend to be h i g h l y v a r i -
i n any event,
a s t a t i s t i c a l l y s i g n i f i c a n t coefficient i s not a
guarantee o f causal i t y . Taken as a group, the seven s t u d i e s support the f o l l o w i n g conclusions: 0
There i s no one "model" o r group o f v a r i a b l e s t h a t uniquely "explains"
t h e U.S.
geographic d i s t r i b u t i o n o f m o r t a l i t y r a t e s ( h i g h e r i n t h e East and
South).
For age- o r d i s e a s e - s p e c i f i c r a t e s , t h i s problem i s more severe.
0
I n general,
as more n o n - p o l l u t i o n v a r i a b l e s are included, the s i g n i f i -
cance o f the p o l l u t i o n v a r i a b l e s drops. e f f e c t i n t h i s regard.
No one v a r i a b l e has an overwhelming
Since as a r u l e , the standard e r r o r s o f the p o l l u t i o n
v a r i a b l e s are n o t g r e a t l y i n f l a t e d when the models are expanded to i n c l u d e new ( n o n - p o l l u t i o n ) v a r i a b l e s , t h i s appears to be an instance o f p o l l u t i o n serving as a surrogate v a r i a b l e r a t h e r than a case o f m u l t i c o l l i n e a r i t y per se.
* I n d i s c u s s i n g these r e s u l t s , the term " s i g n i f i c a n t " r e f e r s to a regression c o e f f i c i e n t w i t h l e s s than 5% chance o f being zero.
178
Table 1 Synopses o f Contemporary Cross-Sectional
Studies
Lave and Seskin (Ref. 2 ) 1. 1 9 M M i Analyses 117 SMSA's, 1960 h 1961: Crude ( t o t a l ) , age-adjusted, by broad age M o r t a l i t y Data: group (0-14, 15-44, 45-64, 65+), by r a c e and sax. by cause o f death. A i r Q u a l i t y Data: 1957-61, c e n t r a l c j t y observations; min, mean, max TSP. SO; ( o n l y 58 v a l i d s i t e s f o r SOa).* Other Variables .%3 5 , .%nonwhite, .% w i t h incomes <$3000, p o p u l a t i o n density, log of B a s i c Model : SMSA population. Occupation, h o m heating, and c l i m a t e v a r i a b l e s ; s u i c i d e and venereal Variables i n Other d isea% rates. Models Tested: Findings: min SO: and mean TSP were s i g n i f i c a n t w i t h t h e b a s i c model, but o n l y ( 1 ) Total M o r t a l i t v : TSP was s i g n i f i c a n t w i t h occupation v a r i a b l e s and n e i t h e r was (crude o r a d j u i t e d ) s i g n i f i c a n t w i t h t h e home-heating f u e l model. S i g n i f i c a n t Associations By Age Group: mean TSF' : age 15-44, 45-64. 65+ ( b a s i c model, a l I causes) min : age 45-64, 65+ mean TSP : nonwhite &Race, Sex: m i n SO; : females By Cause o f death: mean TSP : TE a l l ages, b a s i c min : a l l cancers, dig. cancer, h e a r t disease model w i t h occupations mean TSP : TE, asthma : h e a r t disease min 4mean TSP : none w i t h home h e a t i n g fuel min SOi : h e a r t disease A.
'Results f o r min SO; a r e i n v a l i d s i n c e about h a l f t h e q u a r t e r l y composite samples r a t h e r than t h e minimum of a r t i f a c t r a i s e s t h e min SOZ value f o r those c i t i e s by about R 2 I s d r a m a t i c a l l y increased when occupational o r h e a t i n g w i t h both s e t s of a d d i t i o n a l v a r i a b l e s , bath p o l l u t a n t s negat ive.
2. 1%9 Analyses Mortality Data:
observations were t h e minimum o f 4 26 bi-weekly samples. T h i s sampling a f a c t o r o f 2. v a r i a b l e s were added t o Lasic model; l o s t s i g n i f i c a n c e and SOZ was o f t e n
1969 m o r t a l i t y f o r 112 SMSA's: crude, age-adjusted, by broad age groups (0-14. 15-44, 45-64, 65+), by r a c e and SEX. 1969 c e n t r a l c i t y observations; min, mean, max, SO; and TSP. same basic mcdel as 1960-61; I n t e r p o l a t e d p o p u l a t i o n and socioeconomic data; no a l t e r n a t i v e m d e l s except non-linear p o l l u t a n t s p e c i f Ications. S l q n l f i c a n t Associations
A i r Quality Data: Other Variables:
F I n d ings:
mean TS? both crude and age-adjusted mortal i t y min mean TSE : age 15-44, 65+ (except males) : 65+ min (3) By Race, Sex: mean T y : a l I race-sex groups min Sqi : nonwhite o n l y ( 4 ) Non-linear p o l l u t a n t s : mean TSP : mld-range values more important ( t o t a l mortality) mln 504 : h i g h values more important colents: The a i r q u a l i t y data used a r e more v a l i d than f o r 1960, but a l t e r n a t i v e m d e l s were not e x t e n s i v e l y t e s t e d w i t h t h i s data set, making it impossible t o evaiuate t h e e x t e n t of u n d e r s p e c i f i c a t i o n i n t h e same manner as w i t h t h e 1960 data.
(1)
Total Mortallty:
(2)
By Age Group:
8. Chappie and Lave Mortality Data:
A i r Qua1lty Data:
Mher Variables: F Indinqs: ( 1 ) Total Mortality:
-
(Ref.
13) 104 SMSA's f o r 1975 f o r t o t a l and "nontraumatic" deaths. Separate r e g r e s s i o n s f o r c i t i e s and counties. 1973-75 averages f o r min, mean, max S64, and TSP ( c e n t r a l c i t y observations). same basic model as Lave and Seskin, p l u s a l c o h o l and tobacco expenditure, education, income, occupation, diet, medical care var i a b I8s. With b a s i c model f o r t o t a l m r t a i l t y , mean TSP was n o t s i g n i f l c a n t , min SO= was more s i g n i f i c a n t than i n 1960 and 1969 d a t a sets; mean 5044 was more s i g n i f i c a n t than min SO;.
179
Table 1 ( c o n t ' d ) Synopses o f Contemporary Cross-Sectional 8.
(2)
Studies
Chapple and Lave cont. Changes t o P o l l u t i o n C o e f f i c i e n t s ' Smking Medlcal educ. diet care
E f f e c t s of other v a r i a b I es ( t o t a l mortality):
6 alcohol mean
505
mean TSP
+
-
-
nil
-
'nil
nil
OCC.
-
collents:
e4
The c o e f f i c i e n t s were w c h l a r g e r r e l a t i v e to t h e 1969 r e g r e s s i o n s which i s unexplained s i n c e t h e mean SO; v a l w has decreased. T h i s may be r e l a t e d t o t h e use o f intracensal p o p u l a t l o n data; e r r o r s c o u l d be associated w i t h p o l l u t i o n through s e l e c t i v e m i g r a t i o n away fran i n d u s t r i a l c i t i e s n o t r e f l e c t e d i n t h e p o p u l a t i o n estimates. Ad hoc s p e c i f i c a t i o n s were used throughout t h e study r a t h e r than searching f o r t h e best specification. The smoking v a r i a b l e was o f t e n n o n - s i g n i f i c a n t and negative. presumably due t o e r r o r s i n measurement ( s e l f - r e p o r t e d d o l l a r s a l e s f i g u r e s were used, by %SA, w i t h no c o r r e c t i o n s for p r i c e d i f f e r e n c e s per u n i t OT t a x d l f f e r e n c e s c r e a t i n g I n t e r - a r e a t r a n s f e r s ) . The repeated use of minimum mean, and maximum p o l l u t i o n v a r l a b l e s c r e a t e s confusion and has no physical mean 1 ng.
*+
i n d i c a t e s t h a t i n c l u d i n g t h e v a r i a b l e increased t h e c o e f f i c i e n t ;
-
i n d i c a t e s a decrease.
................................................................................................. C. Mendelsohn and Or& MCNIailty Data:
A i r Quality Data:
Other Variables:
F 1n d 1ngs:
(Ref. 14) E n t i r e US, grouped i n t o 404 county groups by race, sex. and broad age 1-4, 5-17, 18-24, 25-44, 45-64, 65+), f o r 1970 deaths by groups (0-1, iI I ness. Mlssing loca1974, a v a i l a b l e data f o r SOz, S.O ,; TSP. NOz. CO, t i o n s were f i l l e d by i n t e r p o l a t i o n . 4 e * . education*. r e l a t i v e Incane*, m a r i t a l * and f a m i l y status, populat l o n density, c l i m a t e , r e g i o n a l dummy v a r i a b l e , n e t mlgration, housing, unemployment. *These v a r i a b l e s were s u p p l i e d both f o r t h e e n t i r e county group as a whole and f o r i n d i v i d u a l age, race. sex c e l l s w i t h i n t h e group. was t h e most important p o l l u t i o n v a r i a b l e and was s i g n i f i c a n t f o r a i l ages above 18, w h i t e males and females. CO was s i g n i f i c a n t fran age 25 t o 64. male and female; o t h e r p o l l u t a n t s were o f t e n negative. Use o f (*I c e l I - s p e c i f i c v a r i a b l e s d i d n o t improve regressions. Family and m a r i t a l v a r l a b l e s were Important.
q. "5.
k t s : T h l s study i s to be canmended i n i t s search f o r a meaningful s p e c l f l c a t i o n , which u n f o r t u n a t e l y d i d n o t Include smoking, alcohol, or d i e t factors. It i s s e r i o u s l y flawed i n t h e use of t h e a l r q u a l i t y data, which were p o s t mortem and p o o r l y matched to t h e r m r t a i i t y data. E r r o r s due to i n t e r p o l a t i o n a r e p o t e n t i a l l y s e r i o u s ; a subset o f t h e county groups having v a l i d a i r q u a l i t y d a t a should have been analyzed separately. Note: t h e R2 values published i n t h i s paper have been found to be i n e r r o r ( t o o large) ( r e f 15).
.................................................................................................
0. Crocker. Crt a l Mortality Data: A i r Quallty Data: Other Varlables:
Findings:
(Ref.
16) 60 ( c e n t r a l ) c l t i e s for 1970, by cause of death. 1970 TSP, 1970 SOz, 1969 NO2. nonwhite, median age, education, cllmate, c i g a r e t t e sales, d i e t a r y v a r l a b l e s , p o p u l a t i o n per roam, physlclans per c a p i t a (used i n a 2-stage procedure). TSP : s i g n i f i c a n t f o r pneumonia 502 : s i g n i f i c a n t f o r e a r l y i n f a n t disease : n e a r l y s i g n i f i c a n t (negative) f o r h e a r t disease and e a r l y I n f a n t dlsease
4
c lgarette sales : s l g n l f i c a n t f o r t o t a l mortal i t y . disease, b i r t h defects, and cancer.
vascular
disease,
heart
Corsnts: Lack o f s i g n i f i c a n c e of a i r p o l l u t i o n v a r l a b l e s may be due i n p a r t t o s u b s t a n t i a l e r r o r s i n t h e d a t a base, I n c l u d i n g I n d l v l d u a i c i t i e s f o r TSP and SO2 and t h e e n t l r e s e t f o r NO ( i n v a l i d measurement method). Although t h i s r e l a t i v e l y crude measure of c l g a r e t t e m k l n g was 8 u n d to be s l g n i f l c a n t for m s t causes o f death ( i n c l u d i n g h e a r t disease and cancer), t h e 2-stage procedure whlch Incorporated m a k i n g I n a n e g a t i v e sense i n t h e axpresslon f o r medical care s i g n l f l c a n t l y reduces t h e magnltude o f t h e r e s u l t .
...............................................................................................
180
Table 1 ( c o n t ' d ) SvnoDses o f Contemmrarv Cross-Sectional S t u d i e s
E. L i p f e r t (Ref. Mortality Data:
A i r Qua1ity
17-19)
Data:
Other Variables:
Findinqs:
1969-71:
Up to 189 c e n t r a l c i t i e s , 1969-71, by 10 year age group (0-1. 2-44, 45-84 by 10's. 85+) and cause o f death. 1959 t o t a l m r t a i i t y f o r up t o 97 c i t i e s . Matched f o r 1969-71, f o r SIT^, TSP, SO2*, Fe, Mn, k P * . 1955-62 data used w i t h 1959 m o r t a l i t y . % 2 65, ;I nonwhite, % w i t h f a m i l y incomes below poverty, adjusted c i g a r e t t e sales, b i r t h r a t e , b u s i n g age, education, population, p o p u l a t i o n change, p o p u l a t i o n density. TSP: s i g n i f i c a n t f o r t o t a l m o r t a l i t y , iI lness deaths, h e a r t disease; n o t s i g n i f i c a n t by age group.
s%. SO;
1959:
: never ( p o s i t i v e l y ) s i g n i f i c a n t BaP : n o t s i g n i f i c a n t Fe, Ih : s i g n i f i c a n t f o r t o t a l m r t a i i t y , i n f a n t s , ages above 55, cancer, lung cancer, resp. disease, h e a r t disease. c igarelte sales : s i g n i f i c a n t for t o t a l m o r t a l i t y , a i l cancers, lung cancer, most age groups except 65-74. Only h was s i g n i f i c a n t .
w t s : T h i s study went to some lengths to use t h e best a v a i l a b l e a i r q u a l i t y data, b u t suffered from incomplete data sets for b P and for a g e - s p e c i f i c death rates. hb attempts were-made to disaggregate by SEX. Separate regressions f a c o u n t i e s and s t a t e s showed t h a t t h e SO4 c o e f f i c i e n t tended to Increase w i t h t h e s i z e of t h e geographic area, u s i n g c e n t r a l c i t y a i r q u a l i t y throughout. *Data n o t a v a i l a b l e for a i l locations,
r e q u i r i n g use of subsets.
................................................................................................ F. L i p f e r t (Ref. 2 0 ) M o r t a l i t y Data: A i r @fa1 ity Data:
Other Variables:
Findings:
l i l WSA's f o r 1970, by sex and age (<65, -%5). 1969 Sd'4 and TSP from Lave and Seskin ( w i t h e r r o r s c o r r e c t e d ) ; 1975 Ozone'; 1969-71 Fe, Mn. V a r i a b l e t h r e s h o l d s tested, adjustments made for migration. Lave and Seskln's basic m d e l p l u s d i e t , d r i n k i n g water quality.* a d j u s t e d c i g a r e t t e sales, m i g r a t i o n , % o t h e r nonwhite ( o r i e n t a l 1, home h e a t i n g fuels. S a m r e g r e s s i o n s performed with a p r i o r i values s p e c i f i e d f o r age, race, smoking. TSP : s i g n i f i c a n t f o r t o t a l m r t a i i t y , h i g h values tend to be more important; g e n e r a l l y n o t s i g n i f i c a n t f o r age 1p5. v a r i a b l e r e s u l t s f o r age 6 5 . s4, : g e n e r a l l y n o t s i g n i f i c a n t f o r t o t a l m o r t a l i t y or age <65; v a r i a b l e r e s u l t s f o r age F65. : u s u a l l y s i g n i f i c a n t f o r t o t a l mortal ity.females <65. Fe. Ih : o n l y s i g n i f i c a n t f o r males L65.
w,
orone
c Igarelte sales : s l g n l f i c a n t f o r t o t a l and male m r t a i i t y . d r i n k i n g water quality : s i g n i f i c a n t f o r t o t a l and male m r t a i i t y ; females 565. Caents: T h i s study confirms L i p f e r t ' s e a r l i e r ( c l t y ) r e s u l t s , suggests t h a t t h e manganese r e s u l t s f o r c i t i e s were a s u r r o g a t e for occupational e f f e c t s , and suggests t h e need for f u r t h e r s t u d i e s o f ozone and d r i n k i n g water qua1 i t y . 'Data
not a v a i l a b l e f o r a i I locations,
r e q u i r i n g use o f subsets.
As the geographic observational unit increases in size (from central c i t i e s to SMSA's, e t c ) , the sulphate coefficients tend to increase in magnitude and statistical significance when based on central c i t y air quality measurements. TSP coefficients, on the other hand, tend to decrease, as expected,
183
When sulphate is indicated to be significant, i t i s mainly associated with heart disease, n o t respiratory causes of death. No physiological hypothe s i s has been advanced f o r t h i s association, which was not found i n the early studies. Since there is abundant amonia present i n human airways for neutral i z a t i o n ( r e f . 211, even an acid aerosol would not likely behave differently than f i n e smoke particles i n the lung. T h i s tends to reinforce the suspicion t h a t the sulphate-mortal i t y associations indicated i n some studies are spurious. Note t h a t associations of cancer mortail i t y with pollution measurements of the same time period are also suspect because of the latency periods of most cancers 0 Studies of this type are generally incapable of establishing h e t h e r a threshold is present o r , alternatively, whether a pollutant has a linear e f f e c t a t a l l concentration levels. Since lifetime dose is the theoretically preferable variable, the response should be expressed i n terms of (concentration x years of exposure). The e a r l i e s t studies of chronic a i r pollution e f f e c t s in the U.S. had the v i r t u e of a relatively constant prior experience of a i r pollution levels. In many U.S. locations, natural gas began replacing coal f o r home heating i n the 1950's, w i t h a resulting drastic improvement i n ambient particulate levels. In the l a t e 1960's and early 1970's, clean a i r legislation began h a v i n g an e f f e c t on industrial and commercial pollution sources, such that SOx levels began t o improve i n many urban areas. Pollution changes related to mobile sources began i n the 1970's, b u t only carbon monoxide levels have shown much improvement. These improvements i n ambient a i r qua1 i t y mean t h a t studies based only on ca. 1970 data do n o t r e f l e c t the whole prior exposure history t h a t should r e l a t e to chronic health effects. I t is also useful to compare the behavior of the various regression coeffic i e n t s across time periods, i n order to formulate judgements regarding the evidence f o r causality. The Lave and Seskin model for SMSA's finds that the S O i c o e f f i c i e n t increases w i t h time (from 1960 t o 1969 to 19741, d u r i n g a period of generally improving a i r quality. Also, the S& coefficient i n creases i n magnitude as the size of the area surrounding the measuring s t a t i o n increases (from central c i t i e s to counties to SMSA's), as shown i n both L i p f e r t ' s work w i t h the 1969 data s e t s and some of the Chappie-Lave results. Both of these findings are counter-intuitive, a1 though i t could be argued that according t o conventional s t a t i s t i c a l tests, none of the coefficients are significantly different. However, these are not randomly drawn samples being tested here, b u t simply d i f f e r e n t mathematical treatments of essentially the same data set. Thus there i s a rationale to attempt to interpret the results o f these "numerical experiments"in a re1 ative context without rigorous regard f o r significance t e s t s , especially when rep1 icated i n several studies. 0
.
182 While the TSP c o e f f i c i e n t s decrease as the area surrounding the measuring s t a t i o n increases, as expected, the behavior o f these c o e f f i c i e n t s over time i s more puzzling.
Both L i p f e r t and Lave-Seskin found s u b s t a n t i a l l y l a r g e r TSP
c o e f f i c i e n t s ( f o r t o t a l m o r t a l i t y ) i n 1969-71 than i n 1959-60 ( L i p f e r t ' s 1959 c i t y c o e f f i c i e n t s were n o n - s i g n i f i c a n t ) , were s u b s t a n t i a l l y higher.
However,
even though the e a r l i e r TSP l e v e l s
they b o t h also showed t h a t t h e r e was
s l i g h t tendency f o r a b e t t e r r e g r e s s i o n when lagged a i r p o l l u t i o n v a r i a b l e s were used (measured some years previous to t h e m o r t a l i t y data).
Thus t h e
poorer r e s u l t s i n 1959-60 m i g h t be explained by the l a r g e changes i n TSP t h a t had occurred i n the mid-50's
and t h e f a c t t h a t same-year
s u r r o g a t e f o r long-term exposure. r e s u l t s o f Chappie and Lave.
TSP i s a poor
S i m i l a r reasoning appl i e s to the 1974
I f t h e proper TSP v a r i a b l e i s a lagged one o r a
long-term exposure average, then i t i s n o t s u r p r i s i n g t h a t 1974 TSP ( a p e r i o d o f much lower c o n c e n t r a t i o n s ) i s n o t associated w i t h 1974 m o r t a l i t y . A f u r t h e r problem area t h a t i s shown i n most o f the s t u d i e s i s the sensi-
t i v i t y o f t h e p o l l u t i o n c o e f f i c i e n t t o the model o r s p e c i f i c a t i o n employed. Sulphate c o e f f i c i e n t s are seen to depend on the presence o f other v a r i a b l e s i n t h e regression,
such as o t h e r a i r p o l l u t a n t s ,
l i f e s t y l e v a r i a b l e s such as smoking.
occupational
variables,
and
T h i s l a c k o f robustness leads t o the
s u s p i c i o n t h a t sulphate may be a c t i n g as a surrogate f o r some i l l - d e f i n e d c h a r a c t e r i s t i c s o f i n d u s t r i a l and urban populations, e s p e c i a l l y i n view o f the behavior o f t h e c o e f f i c i e n t s over t i m e and f o r d i f f e r i n g geographical areas. I n summary, the body o f cross-sectional
s t u d i e s suggest the f o l l o w i n g asso-
ciations with mortality: TSP
-
l i k e l y to be s i g n i f i c a n t o n l y a t h i g h concentrations;
lagged
a n a l y s i s should be used.
SO=, - l i k e l y a surrogate f o r i n d u s t r i a l i z a t i o n , u r b a n i z a t i o n e f f e c t s ; no p l a u s i b l e p h y s i o l o g i c a l hypothesis. Mn,Fe
-
probably surrogates f o r some occupational e f f e c t s associated w i t h heavy i n d u s t r y .
Ozone
-
c o n f l i c t i n g findings;
d e t a i l e d study hampered by r e s t r i c t i v e
data base. Concluding Discussion These cross-sectional
s t u d i e s are seen to p r e s e n t the policymaker w i t h some-
t h i n g o f a dilemma i n attempting to evaluate c h r o n i c a i r p o l l u t i o n e f f e c t s . The c o n f l i c t s include: 0
The e a r l y s t u d i e s f e a t u r e d h i g h p o l l u t i o n l e v e l s ( a t which a r e a l e f f e c t
i s more l i k e l y ) b u t crude measurement and a n a l y s i s techniques.
Even though we
may n o t be able to s a t i s f a c t o r i l y q u a n t i f y t h e i r f i n d i n g s , n e i t h e r can they be summarily discounted.
183 0 More recent s t u d i e s disagree on whether any p o l l u t a n t s a r e associated w i t h mortality and i f so, which species. Furthermore, threshold models cannot be re1 iably distinguished from 1 i n e a r , non-threshold models. 0 In the U.S., the population is becoming more mobile and pollution l e v e l s a r e decreasing w i t h time. This may i n d i c a t e t h a t the only hope f o r a definit i v e a n a l y s i s will involve e i t h e r s e l e c t e d non-migratory segments of the population, studied r e t r o s p e c t i v e l y over a long term, o r analyzing some of the older studies. W i t h regard t o c o s t - b e n e f i t a n a l y s i s , the use of response functions or c o e f f i c i e n t s from any of the cross-sectional s t u d i e s i s obviously fraught with g r e a t uncertainty. The reaction of most analysts to the d i v e r s i t y of r e s u l t s shown i n the t a b l e s has been to employ some s o r t of averaging technique i n order to e s t a b l i s h a "damage function" and its l i k e l y range of e r r o r . I t has been the aim of this paper t o show t h a t such a procedure should not be done without f u l l y considering in d e t a i l the conditions under which a s p e c i f i c c o e f f i c i e n t was generated and whether c a u s a l i t y r e a l l y has been established. I t has been shown t h a t regression c o e f f i c i e n t s f o r pollution are extremely s e n s i t i v e t o the model used, i.e., the o t h e r explanatory v a r i a b l e s in the s p e c i f i c a t i o n . Thus i t makes l i t t l e sense to average the c o e f f i c i e n t s from a sparse model (such a s Lave and Seskin) with those from a more complete s p e c i f i c a t i o n (such as L i p f e r t ) . Yet, t h i s is e s s e n t i a l l y what Morgan and his coworkers have done .(ref 27) and what the OECD study employed. Instead, a b e t t e r procedure is to decide a p r i o r i (on t h e o r e t i c a l grounds, i f necessary), on the required f e a t u r e s of a study and then to consider only those s t u d i e s which meet these c r i t e r i a . The appropriate range of e r r o r s f o r the c o e f f i c i e n t s i s then given by the s t a t i s t i c a l l i m i t s derived from the regression a n a l y s i s , plus any b i a s e s f o r the c o e f f i c i e n t per se which may be indicated by comparing studies. I f the a v a i l a b l e s t u d i e s f a i l t o meet these c r i t e r i a , the cost-benefit a n a l y s t i s faced w i t h the need to j u s t i f y c o s t s without considering chronic health b e n e f i t s a t a l l . He would then be assured t h a t any such b e n e f i t s t h a t were underestimated o r neglected would t i 1 t the balance f u r t h e r i n favor of the proposed control action.
Acknowledgments: T h i s was work performed under the auspices of the U.S. Department of Energy, c o n t r a c t no. DE-AC02-76CH00016. I thank Laine McCarthy and June Martino f o r cheerfully typing several versions of the manuscript. REFERENCES 1 Organization f o r Economic Cooperation and Development, The Costs and Benefits of Sulphur Oxides Control: A methodological Study, P a r i s , 1981. 2 L.B. Lave and E.P. Seskin, Air Pollution and Human Health, Johns Hopkins Press f o r Resources f o r the Future, 1978.
184
3 4 5
6
7 8 9 10
11 12 13 14 15 16
17 18 19 20
21 22
C.A. Mills and M. Mills-Porter, "Health Costs of Urban Air Pollution," Arch. Ind. Hygiene and Occ. Medicine 2(1948)614 P. Stocks, "Recent Epidemiological Studies of Lung Cancer Mortality, Cigar e t t e Smoking, and Air P o l l u t i o n , w i t h Discussion of a New Hypothesis of Causation", Br. J of Cancer ZO(1966) p . 595 See, f o r example, G. Dean, "Lung Cancer and Bronchitis i n Northern I r e l a n d , " B r i t i s h Medical Journal l(196611506, o r S.F. Buck and A.J. Wicken, "Models f o r Use i n Investigating the Risk of Mortality from Lung Cancer and Bronchitis," Applied S t a t i s t i c s 16(1967)185 , as referenced by Lave and Seskin ( 2 ) . W. Winkelstein, J r . , e t a l . , "The Relationship of Air Pollution and Economic S t a t u s t o Total Mortality and Selected Respiratory System Mortali t y in Men. I . Suspended P a r t i c u l a t e s , " Arch. Environ. Health 14(1967) 162-171. I b i d "11. Oxides of Sulfur," Arch. Environ. Health. 16(1968)401-5 S.M. Brown, S. Selvin, and W. Winkelstein, Jr., "The Association of Economic S t a t u s w i t h the Occurrence of Lung Cancer," Cancer 36(1975)19031911. W. Winkel stein, J r . and S. Kantor, "Stomach Cancer: P o s i t i v e Association w i t h Suspended P a r t i c u l a t e Air P o l l u t i o n , " Arch. Environ. Health 18(1969) 544-547. S.J. Finch and S.C. Morris, "Consistency of Reported Health Effects of Air Pollution ," Brookhaven National Laboratory, BNL-21808R (January 1977). W. Winkelstein, Jr. and S. Kantor, "Respiratory Symptoms and Air Pollution i n an Urban Population of the Northeastern United S t a t e s , " Arch. Environ. Heal t h 18(May 1969). L.D. Zeidberg, R.J.M. Horton, and E . Landau, "The Nashville Air Pollution Study: VI. Cardiovascular Disease Mortality in Relation t o Air Pollution," Arch. Environ Health 15(1967)225-235 M. Chappie and L. Lave, "The Health Effects of Air Pollution: A Reanalysis ,'I Journal of Urban Economics, forthcoming. R. Mendelsohn and G. Orcutt, "An Empirical Analysis of Air Pollution DoseResponse Curves," J . Env. Econ. and Management 6(1979)95-106. F.W. L i p f e r t , "Comment t o Robert Mendelsohn and Guy Orcutt Regarding: An Empirical Analysis of Air Pollution Dose Response Curves," submitted to J . Env. Econ. and Management. T.D. Crocker, W. Schulze, S-B. David, and A.V. Fneese, "Methods Development f o r Assessing Air Pollution Control Benefits, Vol I , Experiments i n the Economics of Air Pollution Epidemiology. EPA-600/5-79-001a (February 1979). F.W. L i p f e r t , " D i f f e r e n t i a l Mortality and the Efvironment: The Challenge of Mu1 t i c o l l i n e a r i t y i n Cross-Sectional S t u d i e s , Energy Systems and Pol icy 3 , 4(1980)367-400. F.W. L i p f e r t , " S t a t i s t i c a l Studies of Mortality and Air Pollution: Multiple Regression Analyses S t r a t i f i e d by Age Group," Science o f the Total Environment 15(1980 )103-122. F.W. L i p f e r t , " S t a t i s t i c a l Studies of Mortality and Air Pollution: Multiple Regression Analyses by Cause of Death," Science of the Total Environment 16(1980)165-183. F.W. L i p f e r t , "Air Pollution and Mortality: An SMSA-Based Analysis o f Additional Explanatory Variables," submitted t o J . Env. Econ. and Management (September 1981). T.V. Larson, D.S. Covert, R. Frank, and R.J. Charlson, "Ammoni; i n the Human Airways: Neutralization of Inspired Acid S u l f a t e Aerosols, Science 197(1977)121-3 M.G. Morgan, S.C. Morris, A.K. Meier, and D.L. Shenk, "A P r o b a b i l i s t i c Methodology f o r Estimating Air Pollution Health Effects from Coal-Fired Power P l a n t s , " Energy Systems and Pol i c y , 2(1978)287-309
.
.
.
.
-
.
185
OPPOSITE EFFECTS OF INHALED CADMIUM MICROPARTICLES ON MOUSE SUSCEPTIBILITY TO AN AIRBORNE BACTERIAL AND AN AIRBORNE VIRAL INFECTION
G . BOULEY, C . CHAUMARD, A-M.
QUERO, F . GIRARD and C 1 . BOUDENE
L a b o r a t o i r e de Toxicologie-U 122 INSERM, and L a b o r a t o i r e de V i r o l o g i e , F a c u l t 6 de Pharmacie de 1 ' U n i v e r s i t C P a r i s - S u d , r u e J - B .
Clement, 92290 Chatenay-Malabry
(France)
ABSTRACT
An e x p e r i m e n t a l s t u d y on 489 mice i s r e p o r t e d . The t e s t a n i m a l s were submitted t o a s i n g l e 15-mn exposure t o atmosphere c o n t a i n i n g a b o u t 10 mg of cadmium microp a r t i c l e s (CdO) p e r m3 of a i r and t h e c o n t r o l s t o a n e q u i v a l e n t amount of aluminium m i c r o p a r t i c l e s (A1203). A t t h e 48th hour a f t e r e x p o s u r e s , t h e t e s t and cont r o l mice were s u b m i t t e d t o a b a c t e r i a l ( P a s t e u r e l l a m u l t o c i d a ) o r t o a v i r a l (Orthomyxovirus i n f l u e n z a e A) c h a l l e n g e , v i a t h e r e s p i r a t o r y r o u t e . The exposure t o cadmium s i g n i f i c a n t l y i n c r e a s e d t h e d e a t h - r a t e o f mice s u b m i t t e d t o t h e b a c t e r i a l challenge, but i t s i g n i f i c a n t l y decreased the death-rate following the v i r a l cha 1l e n g e .
INTRODUCTION The amounts of heavy m e t a l s i n t h e a i r of i n d u s t r i a l a r e a s i n c r e a s e s i n c e 1950 (ref.1).
I n p o l l u t e d atmospheres cadmium, one o f t h e most noxious of t h e s e heavy
m e t a l s f o r t h e r e s p i r a t o r y system, i s p r e s e n t mainly i n t h e form of p a r t i c l e s , e s p e c i a l l y of o x i d e (CdO) i n s o l u b l e i n w a t e r . We i n v e s t i g a t e d on t h e e f f e c t s of i n h a l e d cadmium m i c r o p a r t i c l e s on two e x p e r i m e n t a l a i r b o r n e i n f e c t i o n s of Mouse: p a s t e u r e l l o s i s and i n f l u e n z a .
MATERIAL AND METHODS A t o t a l of 489 s p e c i f i c pathogen f r e e mice w a s u s e d , 8 6 f o r b a c t e r i a l c h a l l e n g e
and 403 f o r v i r a l c h a l l e n g e . The body w e i g h t s of t e s t and c o n t r o l a n i m a l s d i d n o t s i g n i f i c a n t l y d i f f e r a t t h e b e g i n n i n g of e x p e r i m e n t s . The mice s u b m i t t e d t o m i c r o p a r t i c l e s i n h a l e d CdO o r A 1 0 ( m i c r o p a r t i c l e - c o n t r o l s ) i n a s i n g l e 15 mn2 3 e x p o s u r e ; t h e nose o f t h e a n i m a l s was t h e o n l y p a r t exposed t o t h e p o l l u t e d a t mospheres. The CdO and A1203 m i c r o p a r t i c l e s were g e n e r a t e d by two a p p a r a t u s b u i l t a c c o r d i n g t o Horstman e t a l ' s d e v i c e ( r e f . 2 ) :
d r o p l e t n u c l e i a e r o s o l i z e d from aqueous
186 s o l u t i o n s of cadmium a c e t a t e o r aluminium l a c t a t e ( i n e q u a l m o l a r i t i e s ) were pyrol y z e d a t 650°C. The p a r t i c l e s i z e w a s measured on electron-photomicrographies and a n a l y z e d a c c o r d i n g t o Raabe ( r e f . 3 ) : t h e count median d i a m e t e r (CMD) of CdO p a r t i c l e s was 0.33 prn and t h e g e o m e t r i c s t a n d a r d d e v i a t i o n of t h e d i s t r i b u t i o n 6
was g g i v i n g a mass median d i a m e t e r (MML)) of 1 . 7 9 p m ; t h e CMD of A 1 0 p a r t i c l e s 2 3 was 0 . 3 8 pm, w i t h 6 = 2 . 1 6 and MMD = 2 . 2 5 pin. The chemical d e t e r m i n a t i o n of p o l l u g t a n t l e v e l s i n a i r and i n t h e t r a c h e a - b r o n c h i a - l u n g a r e a ("lung") of mice was per2.12,
formed by a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y ; t h e cadmium amount i n a i r was 9.02
+ 1 . 9 7 mg of
Cd p e r m3 of a i r (mean
2
SD); t h e Cd l e v e l s i n t e s t mouse "lung"
1 . 1 8 p g p e r g of f r e s h "lung" immediatly a f t e r e x p o s u r e , and 3 . 0 6
was 5.52
2
0 . 3 7 p g two days l a t e r (immediatly b e f o r e i n f e c t i o u s c h a l l e n g e s ) ; t h e Cd l e v e l s i n c o n t r o l mice were 2 5 - f o l d lower than i n t e s t a n i m a l s . A i r b o r n e i n f e c t i o n s i n mice were provoked through i n h a l a t i o n of atmospheres c o n t a i n i n g b a c t e r i a l o r v i r a l a g e n t s d i s p e r s e d i n f i n e d r o p l e t s . These i n f e c t i o u s c h a l l e n g e s were performed a t t h e 48th hour a f t e r a s i n g l e s h o r t exposure t o microp a r t i c l e s . B a c t e r i a l i n f e c t i o n w a s provoked by one l e t h a l dose 50% (LD-50) of a P a s t e u r e l l a m u l t o c i d a s t r a i n ( L B 4203), u s i n g H e n d e r s o n ' s a p p a r a t u s ( r e f . 4 ) ; t h e t e c h n i c a l p r o c e d u r e was d e t a i l e d e l s e w h e r e ( r e f . 5 ) . V i r a l c h a l l e n g e used one LD-50 of a n Orthomyxovirus i n f l u e n z a e s t r a i n (APR 8 H N ) and was performed a c c o r d i n g 1 1 t o B r e d o n ' s p r o c e d u r e ( r e f . 6 ) . Animals were observed f o r 1 7 days and t h e d e a t h r a t e of mice was d e t e r m i n e d . The e x p e r i m e n t s were conducted i n random o r d e r and t h e m o r t a l i t y of c o n t r o l and t e s t a n i m a l s was compared by t h e P e a r s o n ' s c h i - s q u a r e test
2
(XI.
RESULTS Table 1 shows t h a t , i n o u r e x p e r i m e n t a l c o n d i t i o n s , cadmium a l o n e was n o t l e t h a l (group 1 ) ; however when cadmium m i c r o p a r t i c l e s were a s s o c i a t e d w i t h a i r b o r n e b a c t e r i a l i n f e c t i o n ( g r o u p 4 ) , t h e d e a t h - r a t e of mice i n c r e a s e d v e r y much i n comp a r i s o n t o t h e c o r r e s p o n d i n g r a t e of o n l y i n f e c t e d mice (group 2 ) . A 1 0 micropar2 3 t i c l e s d i d n o t s i g n i f i c a n t l y modify t h e i n f e c t i o u s m o r t a l i t y (group 3 ) . TABLE 1
E f f e c t s of i n h a l e d CdO m i c r o p a r t i c l e s on t h e d e a t h - r a t e o f mice exposed t o a n a i r borne b a c t e r i a l i n f e c t i o n ( P . m u l t o c i d a )
*
Mouse t r e a t m e n t : 1-0d0 a l o n e Dead/ t o t a l : (% m o r t a l i t y )
0120 (0%)
2-Infection alone
3-A1 0 + i n f e c t . 2 3
4-CdO+infect.
10/22 (45%)
9/22 (41%)
22/22 (100%)
187 Table 2 shows t h a t , c o n t r a r i l y t o what we observed w i t h p a s t e u r e l l o s i s ,
the
d e a t h - r a t e of mice i n f e c t e d by i n f l u e n z a a f t e r exposure t o CdO m i c r o p a r t i c l e s (group 3 ) was s i g n i f i c a n t l y lower than i n A1203 exposed a n i m a l s ( g r o u p 2 ) o r than i n v i r u s - c o n t r o l s (group 1). TABLE 2 E f f e c t s of i n h a l e d CdO m i c r o p a r t i c l e s on t h e d e a t h - r a t e of mice exposed t o an a i r borne v i r a l i n f e c t i o n (0. i n f l u e n z a e A ) Mouse t r e a t m e n t :
1-Infection alone
2-A1 0 + i n f e c t i o n 2 3
3-CdO+infection
551138
671 132 (51%)
25/133 (19%)
Dead/ t o t a l : (% m o r t a l i t y )
(40%)
Statistical
x1,2,3=30.239 2
(p=3xlO-');
xz ,3=29. 858
ana 1y s i s :
( ~ = l x l O - ;~ )
C o a r s e l y , Cd exposure i n c r e a s e d decreased
twice
twice
x:,,=
3.238 (p=0.072);
x 21,
=14.43 5
(p=5xlO-') t h e d e a t h - r a t e by p a s t e u r e l l o s i s and
t h e d e a t h - r a t e by i n f l u e n z a .
DISCUSSION The enhanced s u s c e p t i b i l i t y of mice t o a i r b o r n e p a s t e u r e l l o s i s ,
f o l l o w i n g expo-
s u r e t o cadmium, i s e a s i l y e x p l a i n e d by t h e noxious e f f e c t s of t h i s heavy metal on n a t u r a l and a c q u i r e d immunity, p a r t i c u l a r l y i n t h e r e s p i r a t o r y system. I n t h e c a s e of n a t u r a l r e s i s t a n c e ,
t h e d e f e n s e mechanisms of t h e lower r e s p i r a t o r y t r a c t , p r i n -
c i p a l l y t h e a l v e o l a r macrophages, a r e impaired ( r e f s . 7 - 8 ) ;
t h i s impairment pro-
vokes a s l o w e r c l e a r a n c e o f i n h a l e d b a c t e r i a , a f t e r exposure t o Cd*
( r e f . 9 ) and
t o m i c r o p a r t i c u l a t e Cd ( r e f . 10). I n s p e c i f i c immunity, Cd++ i m p a i r s t h e a n t i b o d y production (refs.11-12);
on t h e o t h e r hand, Cd++ i n h i b i t s i n v i t r o t h e plasma
membrane r e c e p t o r s of mononuclear c e l l s ( i n c l u d i n g macrophages) f o r IgG immunog l o b u l i n s ( r e f . 1 3 ) and t h i s e f f e c t which d i s t u r b s p h a g o c y t o s i s of i n f e c t i o u s bact e r i a , i s a l s o observed w i t h Cd m i c r o p a r t i c l e s , i n v i t r o and i n v i v o ( r e f . 1 4 ) . A f t e r c h r o n i c o r a l exposure t o s o l u b l e cadmium, a d e c r e a s e i n mouse d e a t h - r a t e f o l l o w i n g i n t r a p e r i t o n e a l i n o c u l a t i o n of e n c e p h a l o m y o c a r d i t i s v i r u s , was f i r s t r e p o r t e d by Exon e t a l . ( r e f . 1 5 ) . We c o r r o b o r a t e t h i s f a c t , u s i n g r e s p i r a t o r y e x p o s u r e t o m i c r o p a r t i c u l a t e cadmium and t o i n f l u e n z a v i r u s . We c a n n o t y e t e x p l a i n t h i s p a r a d o x i c a l e f f e c t , though w e a r e s t u d y i n g cadmium i n f l u e n c e on v i r a l r e p l i c a t i o n i n v i t r o and i n v i v o , on i n v i v o i n t e r f e r o n p r o d u c t i o n , and on a n t i b o d y and c e l l - m e d i a t e d immunity of Mouse.
ACKNOWLEDGMENTS T h i s work was s u p p o r t e d by a g r a n t of INSERM &
M i n i s t e r e de 1'Environnement
e t du Cadre de V i e (programme " A i r , Eau, Amiante e t SantB")
188 REFERENCES M . B r i a t , i n M.M. B e n a r i e ( E d . ) , Atmospheric P o l l u t i o n 1978, E l s e v i e r , Amsterdam, 1978,pp.225-228. S . Horstman, W. B e r t l e y , E . Larson and E. Bingham, Arch. Environ. H l t h , 26
(1973) 75-77. O.G. Raabe, i n C.L. S a n d e r s e t a l . ( E d s . ) , Pulmonary T x i c o l o g y of R e s p i r a b l e ? P a r t i c l e s , T e c h n i c a l I n f o r m a t i o n C e n t e r ( E d . ) , U.S.Dep of Energy, 198O,pp.l-28 D.W. Henderson, J . Hyg. Cambridge, 50 (1952) 53-69. E . Azoulay, G. Bouley and M-C. Blayo, J . T o x i c o l . Environ. H l t h , 7 (1981) 873-
882. M. Bredon, I n f l u e n c e de l a fumee de t a b a c s u r l a r e s i s t a n c e d e s s o u r i s 1 c e r t a i n e s m a l a d i e s v i r a l e s , These 3e Cycle U n i v e r s i t e P a r i s - S u d , 1980. J.A. Graham, D.E. Gardner, M.D. Waters and D.L. C o f f i n , I n f e c t . Immun.,11
(1975) 1278-1283. A . D u b r e u i l , G. Bouley and C 1 . Boudene ,Scand. j . work e n v i r o n and h e a l t h ,
5 (1979) 211-216. D . E . Gardner, F . J . M j l l e r , J . W . I l l i n g and J . M . K i r t z , B u l l . e u r o p . P h y s i o p a t h . r e s p . , l 3 (1977) 157-174. 10 G . Bouley, A . D u b r e u i l , N . Despaux and C 1 . B o u d h e , Scand. j . work e n v i r o n and h e a l t h , 3 (1977) 116-121. 11 R . H . J o n e s , R . L . W i l l i a m s and A.M. J o n e s , Proceed. S O C . exp. B i o l . Med., 137
(1971) 1231-1236. 12 L.D.
Koller, J.H.
Exon and J.G. Roan, Proceed. SOC. exp. B i o l . Med., 151 (1976)
339-342. 13 J . G . Hadley, D.E. Gardner, D.L. C o f f i n and D . B . Menzel, J. R e t i c u l o e n d o t h . SOC. 22 (1977) 417-425. 14 H . Vo P h i , G. Bouley and C 1 . Boudene, C . R . Acad. S c i . P a r i s , 293(1981)697-700. 15 J . H . Exon, L.D. K o l l e r and N . I s s a c s o n - K e r k l i e t , Arch. Environ. H l t h , 3 4 (1979) 469-475.
189
GENETIC FACTORS AND ACUTE CARBON MONOXIDE INTOXICATION
Victor-Hugo DEMARIA PESCE",
Maurice STUPFEL*, A r t h u r PERRAMON"", P h i l i p p e FlfRAT"",
Veronique GOURLET',
Huguette THIERRY"
" I n s t i t u t N a t i o n a l de l a Sante e t de l a tiecherche MGdicale (INSERM), Groupe de Recherches s u r l e s MScanismes Physiopathologiques des Nuisances de 1 ' Environnernetit, 44, Chemin de Ronde, 78110, Le Vesinet, France.
""Institut
N a t i o n a l de l a Recherche Agronomique (INN), L a b o r a t o i r e
de Gen6tique F a c t o r i e l l e ,
ABSTRACT. LD12:12
78350, Jouy en Josas, France.
(L = 0600-1800;
L = 100 l u x ) synchronized, 5-10
grouped sinall l a b o r a t o r y v e r t e b r a t e s , were d u r i n g p a r t o f t h e L p e r i o d (0900-1130) exposed t o an acute carbon monoxide i n t o x i c a t i o n , r e s a l t i n g i n an o v e r a l l 50 % m o r t a l i t y . I n t e r s p e c i f i c and i n t e r s t r a i n d i f f e r e n c e s were found i n outbred and i n b r e d mice (CEA, C57B1, OFl), outbred r a t s (Sprague-Dawley,
Wistar),
guinea-pigs,
c h i c k s (R+, R-),
and Japanese q u a i l s . I n t h i s l a s t b i r d species, a g e n e t i c s e l e c t i o n produced two genotypes, one s e n s i t i v e and one r e s i s t a n t t o a carbon monoxide acilte i n t o x i c a t i o n .
INTRODUCTION. Carbon monoxide i s s t i l l a h e a l t h hazard f o r homes, f i r e f i g h t e r s , i n d u s t r y workers which causes thousands o f death per y e a r (10, 2 3 ) , and i t i s a l s o a p o t e n t i a l r i s k f o r p a t i e n t s w i t h c a r d i o v a s c u l a r disease
(2, 25). I t i s m o s t l y b e l i e v e d , s i n c e
Claude BERNARD, t h a t carbon monoxide i n t o x i c a t i o n r e s u l t s from t h e
C3 f i x a t i o n on hemoglobin ( 5 ) , though t h e importance o f i t s e f f e c t s
190 on r e s p i r a t o r y enzymes ( 6 ) i s debated. Moreover t h e r o l e o f g e n e t i c f a c t o r s has been evidenced i n o t h e r r e s p i r a t o r y c h a l l e n g e s and p a r t i c u l a r l y i n a c u t e h y p o x i a (11, 13, 19), w h i c h i s u s u a l l y cons i d e r e d as t h e consequence o f an exposure t o h i g h c o n c e n t r a t i o n s o f carbon monoxide. I t i s t h i s a s p e c t o f g e n e t i c v a r i a t i o n s i n carbon monoxide t o x i c i t y t h a t we have e x p e r i m e n t a l l y i n v e s t i g a t e d (20, 2 1 ) . C o n s i d e r i n g t h e t o x i c i t y o f carbon monoxide,the
acute e f f e c t s
o f h i g h c o n c e n t r a t i o n s o f t h i s gas have t o be s t u d i e d on animal models w h i c h advantages and l i m i t s have been d i s c u s s e d elsewhere
(13). Two k i n d s o f e x p e r j m e n t a l processes were used t o i n v e s t i g a t e p o s s i b l e g e n e t i c d i f f e r e n c e s . The f i r s t one was t o t e s t t h e l e t h a l i t y o f an a c u t e CO t o x i c i t y i n d i f f e r e n t s p e c i e s and s e v e r a l s t r a i n s
o f small l a b o r a t o r y v e r t e b r a t e s . The second one was t o t r y t o s e l e c t , i n a same species, two s t r a i n s , one s e n s i t i v e and one r e s i s t a n t t o an a c u t e carbon monoxide i n t o x i c a t i o n . F o r t h i s l a s t e x p e r i m e n t a t i o n Japanese q u a i l s were chosen because i t i s p o s s i b l e , w i t h t h i s b i r d species, t o g e t a new g e n e r a t i o n w i t h i n s i x weeks. ANIMALS AND METHODS. C o n v e n t i o n a l a l b i n o g u i n e a - p i g s , o u t b r e d OF1,
i n b r e d CBA and
C57B1, SPF ( s p e c i f i c pathogen f r e e ) n i c e , o u t b r e d Sprague-Dawley and Wistar, SPF,rats were i s s u e d from t h e Breeding Research Center o f Les Oncins ( S a i n t Germaiti s u r l ' A r D r e s l e , 69210, France). Kt and R- young c h i c k e n s w h i c h had been s e l e c t e d f o r a h i g h and l o w a d u l t
feed e f f i c i e n c y , and Japanese q u a i l s which had been s e l e c t e d f o r r e s i s t a n c e t o carbon monoxide a c u t e t o x i c i t y came f r o m t h e F a c t o r i a l Genetics Laboratory o f INRA. The a n i m a l s were, a c c o r d i n g t o s p e c i e s , housed i n separated rooms, which were a i r c o n d i t i o n e d ( t e m p e r a t u r e 20-21°C; 50-60 % ) and LD12:12
liuinidity
( L = 0600-1800 h r ) l i g h t e d w i t h 100 l u x . A l l
a n i m a l s were randomly d i s t r i b u t e d , species, s t r a i n and sex b e i n g separated, i n w i r e mesh cages of 2 s i z e s . I n t h e s m a l l e s t ones, mice were 10-11 grouped; i n t h e l a r g e s t ones, r a t s , g u i n e a - p i g s , q u a i l s , c h i c k s were 5-7 grouped. A s y n t h e t i c f o o d a p p r o p r i a t e t o t h e v a r i o u s species, and t a p w a t e r , were p r o v i d e d ad l i b i t u m . F o r t h e a c u t e i n t o x i c a t i o n , t h e w i r e mesh cages c o n t a i n i n g t h e a n i m a l s were e n c l o s e d i n a l u c i t e p a r a l l e l e p i p e d chamber. A r n i x t u r e
191 of 5.0 % carbon monoxide, 2 1 % oxygen, and 74
X
n i t r o g e n (Compagnie
F r a n q a i s e des P r o d u i t s Oxygenes) was f l u s h e d t h r o u g h t h i s chamber a t a r a t e of 75-120 l i k e r s p e r hour. Soda l i m e ( P r o l a b o , a n e s t h e s i a g r a d e ) was p l a c e d i n t h e b o t t o m of t h e chamber t o m a i n t a i n a l o w c o n c e n t r a t i o n o f carbon d i o x i d e (0.05-0.30
% ) . The atmosphere o f
t h e chamber was analyzed f o r carbon monoxide, c a r b o n d i o x i d e
(ONERA i n f r a r e d a n a l y s e r s ) and f o r oxygen ( V i a l m o n i t o r ) concent r a t i o n s . Carbon monoxide f l u s h i n g was stopped and t h e chamber was opened when i t appeared t h a t about 50 % o f t h e enclosed a n i mals had ceased b r e a t h i n g . Continuous r e c o r d i n g (Maxant r e c o r d e r ) shows t h a t i n s i d e t h e chamber, d u r i n g t h e i n t o x i c a t i o n , t h e t e m p e r a t u r e and h u m i d i t y ranges i i e r e r e s p e c t i v e l y 19-22°C and 84-100 %; t h e l i g h t i n g was 100-120 l u x . Because o f c i r c a d i a n v a r i a t i o n s i n s e n s i t i v i t y t o carbon moriox i d e i n t o x i c a t i o n ( 1 5 ) , a l l e x p e r i m e n t s were begun a t t h e same tiitie o f t h e day (0910-0920). S t a t i s t i c a l d i f f e r e n c e s were t e s t e d by F i s h e r analysis,or
5 test,
variances
chi-square t e s t i n g .
RESULTC,. T a b l e 1 shows t h e r e s u l t s o f d i f f e r e n t e x p e r i m e n t s performed i n one s t r a i n o f g u i n e a - p i g s , 3 s t r a i n s o f mice, 2 s t r a i n s o f r a t s , 2 s t r a i n s o f c h i c k s and 2 ( s e l e c t e d f o r CO s u r v i v a l ) s t r a i n s o f q u a i l s . Species, s t r a i n , sex, age, number o f a n i m a l s and t h e i r body w e i g h t s , a r e shown i n columns 1-6 o f t h e t a b l e . I n column 7 i s t h e p r o d u c t o f t h e l e n g t h o f t h e carbon monoxide exposure ( i n m i n u t e s ) by t h e pC0 ( i n t o r r ) , which was achieved when t h e o v e r d l l 50 % s u r v i v a l was reached. I n column 8 a r e t h e s u r v i v a l percentages o f t h e a n i m a l s o f each s p e c i e s , s t r a i n , and sex. When s e v e r a l r e s u l t s were obtained, t h e a r i t h m e t i c mean i s f o l l o w e d by i t s s t a n d a r d d e v i a t i o n (mean f SD). I n t e r s p e c i e s comparisons, made by a c l a s s i f i c a t i o n a c c o r d i n g t o t h e l e n g t h o f i n t o x i c a t i o n m u l t i p l i e d by pC0, g i v e a c l a s s i f i c a t i o n r a n g i n g f r o m small t o g r e a t CO s e n s i t i v i t y : g u i n e a - p i g s c mice c r a t s = c h i c k s < q u a i l s . When c o n s i d e r i n g s t r a i n and sex d i f f e r e n c e s t h e f o l l o w i n g d a t a a r e obtained :
192
SURVIVAL TO AN OVERALL 50 % LETHAL CARBON MONOXIDE CHALLENGE OF DIFFERENT
T a b l e 1.
S P E C I E S AND S T R A I N S OF SMALL LABORATORY VERTEBRATES. ( m e a n ? SD; n u m b e r of e x p e r i m e n t s b e t w e e n brackets)
-. :
SPECIES
GUINEAPIGS
YICE
STRAIrNS
:
SEX
:
A N I M A L S AGE NUMBERS WEIGHTS days: (9)
:
: :
: :
Conventional
: :
1. F
:’ 47f7
.
I.
57 59
: 354 f 6 9
:
CBA
: :
M F
: :
: :
93 78
:
:
C57El
i
1.
103 101
:
45’4
: 368f60
:
:
: LENGTH OF EXP. :
:
x END PCO x torr)
; (min. I. 1494
103(2)
19f1 15f2 19f2 16’2
: :
:
285 f 6 ( 3 )
1
47.37 55.93
1
:
.
SURVIVAL
:
:
10.75 24.36 65.05 67.35
:
103 102
27f2 2122
: :
: :
58.25 84.31
: :
61 62
: 351214
: :
: :
9.84 68.33
: 349f12
:
:
:
60 60
: 207* 8
:
:
35.00 91.67
: :
158 174
: 140f14 : 151f20
: :
: :
58.23 71.26
: :
25.00 33.07
OF1
:
ivl F
: :
SpragueDawley
: :
M F
:
: :
Wistar
: 14 : F
:
:
:
: :
: :
I :
:
:
:
RATS
:
Ls+
M F
:
QUAILS
:
Ls-
:
: M : : F :
79f3
: :
: 222i10
:
:
:
56f9 : :
124 127
: 134?23 : 142?20
:
:
158 f 22(4)
:
95 t 31(9)
193 I n mice, CBA o f b o t h sexes a r e s t a t i s t i c a l l y ( P <
0.01) l e s s
r e s i s t a n t t h a n C57B1 and OF1. A s e x - r e l a t e d d i f f e r e n c e i s noted i n OF1 where s u r v i v a l i s s t a t i s t i c a l l y ( P
(58.25
X)
< 0.001)
t h a n i n females (84.31 % ).
I n rats,a sex-related difference (P b o t h s t r a i n s . I n each sex,Sprague-Dauleys P
l e s s i n males
< 0.001)
i s noticed i n
<
a r e s i g n i f i c a n t l y (0.01
0.001) l e s s r e s i s t a n t t h a n W i s t s r s .
R t c h i c k s are s i g n i f i c a n t l y (P
< 0.001)
l e s s r e s i s t a n t than
R- chicks.
I n Japanese q u a i l s a s i g n i f i c a n t ( P < 0.001) d i f f e r e n c e i s observed between t h e s e l e c t e d r e s i s t a n t L s t and t h e s e l e c t e d s e n s i t i v e Ls- s t r a i n . I n each of t h i s s t r a i n , males a r e s l i g h t l y
P
<
0.05)
l e s s r e s i s t a n t t h a n females.
DISCUSSION.
The a f o r e m e n t i o n e d d a t a c o n f i r m s t h e d i s c r e p a n c i e s i n carbon monoxide a c u t e t o x i c i t y a c c o r d i n g t o t h e chosen animal model (1, 4, 14, 24).
I n a d d i t i o n i t p r o v e s t h a t , i n a same species, d i f f e r e n c e s
a r e o b t a i n e d a c c o r d i n g t o s t r a i n and sex. Several p h y s i o l o g i c a l and b i o c h e m i c a l f a c t o r s a r e i n v o l v e d i n t o t h e s e reporceci g e n e t i c d i f f e r e n c e s .
A few c o n c e r n v e n t i l a t i o n and
d i f f u s i o n w h i c h d e t e r m i n e t h e i n t a k e o f t h e i n h a l e d CO, o t h e r s c o n cern cardiac output which takes care o f i t s d i s t r i b u t i o n . Both t h e s e r e s p i r a t o r y and c i r c u l a t o r y parameters a r e g r o s s l y r e l a t e d t o body w e i g h t s (8, 16). To e x p l a i n t h e s e i n t e r and i n t r a s p e c i e s d i s c r e p a n c i e s i n carbon monoxide t o x i c i t y one must a l s o c o n s i d e r d i f f e r e n c e s i n COHb k i n e t i c s (7, 9, 2 1 ) , i n n e u r o v e g e t a t i v e r e a c t i o n s (12), and even i n r e s p i r a t o r y c i r c a d i a n and u l t r a d i a n rhythms (17, 22) o f t h e v a r i o u s phenotypes. It c a n be conceived t h a t t h e g e n e t i c s e l e c t i o n performed i n q u a i l s has developed one o r a few o f t h e p h y s i o l o g i c a l o r biochemical mechanisms c o n s i d e r e d above and r e s p o n s i b l e f o r r e s i s t a n c e o r s e n s i t i v i t y t o t h e a c u t e carbon monoxide c h a l l e n g e . M o r e o v e r , i f c a r b o n monoxide i n t o x i c a t i o n m i g h t be c o n s i d e r e d as a k i n d o f hypoxia, i t c a n be h y p o t h e s i z e d t h a t t h e here r e p o r t e d CO g e n e t i c s u r v i v a l d i f f e r e n c e s a r e s i m i l a r t o t h o s e w h i c h have
been r e p o r t e d i n e x p e r i m e n t a l a c u t e h y p o x i c h y p o x i a (3, 11, 12, 13, 23), and which a r e w e l l known i n h i g h and l o w a l t i t u d e r e s i d e n t s o f Andes and Himalaya.
194
T h e r e f o r e t h e here evidenced g e n e t i c d i s c r e p a n c i e s , i n s e v e r a l v e r t e b r a t e s species, i n s u r v i v a l t o a n a c u t e CO c h a l l e n g e , p o i n t
o u t t h e p o s s i b i l i t i e s o f such g e n e t i c d i f f e r e n c e s i n t h e human species. These g e n e t i c d i f f e r e n c e s i n s e n s i t i v i t y t o carbon monoxide c o u l d be o f i n t e r e s t t o e x p l a i n human i n t e r i n d i v i d u a l d i s c r e p a n c i e s o f c a r d i a c p a t h o l o g i c a l s e n s i t i v i t y o f smokers and m o r t a l i t y i n a i r p o l l u t i o n a c u t e episodes.
.
AC KNOWL EDGEIlE NTS 1Je acknowledge w i t h g r a t i t u d e t h e s k i l l f u l t e c h n i c a l a s s i s t a n c e of C h r i s t i a n LEMERCERRE, Jean-Louis M O N V O I S I N , Gerard COQUERELLE, and t h e t a l e n t e d s e c r e t a r i a l a s s i s t a n c e o f M i r e i l l e PAUCHARD.
REFERE NCE S
1. ALEXANDROV, N.P. Choice o f e x p e r i m e n t a l a n i m a l s f o r e l a b o r a t i o n o f s t a n d a r d s f o r carbon monoxide ( i n R u s s i a n ) . Gig. i S a n i t . , 1973, 11, 92-95.
2. ARONOW, K.S. E f f e c t o f carbon monoxide on c a r d i o v a s c u l a r d i s e a s e . P r e v e n t . bled., 1979, 8, 271-278. 3. BARTELS, H., BARTELS, R . , RATHSCHLAG-SCHAEFER, A.N.,
ROBBEL, H., LUODERS, S. A c c l i m a t i z a t i o n o f newborn r a t s and g u i n e a - p i g s t o 3000 t o 5000 m s i m u l a t e d a1 ti t u d e . Resp. P l i y s i o l , 1979,
.
375-389.
36,
4. CAMERON, J. Age and s p e c i e s d i f f e r e n c e s among r o d e n t s i n r e s i s t a n c e t o CO asphyxia. J . C e l l . Comp. P h y s i o l . , 1941, 18, 379-383. 5. COBURN, R.F. Mechanisms o f carbon monoxide t o x i c i t y . Prev. Med.,
1979,
8,
310-322.
6. GOLDBAUM, L.R., RAllIREZ, R.G., ABSALON, K.B. What i s t h e mechanism o f c a r b o n monoxide t o x i c i t y ? A v i a t . Space Env. Med.,
1975,
46,
1289-1291.
7. HOLLAND, A.B. R e a c t i o n r a t e s o f carbon monoxide and hemoglobin. N . Y . Acad. Sci., 1970, 154-171.
174,
8. KLEINMAN, L . I . , RADFORD, E. J r . V e n t i l a t i o n s t a n d a r d s f o r small mammals. J . Appl. P l i y s i o l . , 1965, 20, 113-116. I
9. KLIMISCH, H.J., CHEVALIER, H.J., HARKE, H.P.,
DONTENWILL, W. Uptake o f carbon monoxide i n b l o o d o f m i n i a t u r e p i g s and o t h e r mammals. T o x i c o l o g y , M75, 3, 301-310.
195
10. LARENG, L., FABRE, M. Place a c t u e l l e du gaz de v i l l e dans l e s causes d ' i n t o x i c a t i o n s aigugs par l ' o x y d e de carbone. Nouvel. Presse Med., 1981, 10, 371-372.
11. MERAT, P., STUPFEL, M., COQUERELLE, G., PERRAMON, A. Sex-linked dwarf gene and c h i c k s u r v i v a l t o acute hypoxia. Ann. Genet. s e l . anim., 1978, 10, 525-531. 12. MORDELET-DAMBRINE, !I., STUPFEL, M. Comparison i n guinea-pigs and i n r a t s o f t h e e f f e c t s o f vagotomy and o f a t r o p i n e on r e s p i r a t o r y r e s i s t a n c e m o d i f i c a t i o n s induced by an acute carbon monoxide o r n i t r o g e n hypoxia. Comp. Biochem. P h y s i o l . , 1979, 63A, 555-559. 13. PERRAMOW, A., MERAT, P., STUPFEL, M., MOUTET, J.P., MAGNIER, 1.1. Mise en evidence, chez l a c a i l l e japonaise, de d i f f e r e n c e s genetiques l o r s de l a s u r v i e 2 l ' h y p o x i e . C.R. Ac. S c i . , 1976, D, 1313-1315.
283,
14. SPENCER, T.D. E f f e c t s o f carbon monoxide on man and canaries. Ann. Occup. Hyg., 1961, 5, 231-240. 15. STUPFEL, M., IZAGNIER, M., ROMARY, F. Rythme c i r c a d i e n de 1 ' a c t i o n de 1 'oxyde de carbone sur 1 '&mission du gaz carbonique du Rat en groupe. C.R. Ac. Sci., 1973, 276, D, 1009-1012. 16. STUPFEL, FI. Choix des modsles animaux pour l ' e t u d e des nuisances r e s p i r a t o i r e s . S c i . Techn. Anim. Lab., 1976, 45-51.
1,
17. STUPFEL, I!., DAVERGNE, E l . , PERRANON, A., LEMERCERRE, C., GDURL;ET, V. Sythmes u l t r a d i e n s ( 5 < S C 70 minutes) r e s p i r a t o i r e s (VO , VCD ) de q u a t r e p e t i t s vertEbrEs u t i l i s e s pour l a rechercge 289, D, 675-678. b i o t k d i c a l e . C . R . Ac. Sci., 1979, -
18. STUPFEL, M., MORDELET-DAMBRINE, M., VAUZELLE, A., PERRAiqON, A. Animal models and acute and long-term carbon monoxide i n t o x i c a t i o n . Prevent. Med. 1979, 8, 333-343. ¶
19. STUPFEL, I l . , PERRAMON, A., MERAT, P., FAURE, J.M., DEMARIA PESCE, V.H., MASSE, H. I n t e r and i n t r a s p e c i e s g e n e t i c d i f f e r e n c e s i n surv i v a l t o an acute hypoxic challenge i n mice, r a t s , q u a i l s and chickens. Comp. Biochem. P h y s i o l . , 1979, 648, 317-323. ~
20. STUPFEL, M., DEMARIA PESCE, V.H., PERROT, A . Phenotypic d i f f e r e n c e s i n s u r v i v a l t o an experimental acute carbon monoxide i n t o x i c a t i o n . Environ. Res., 1980, 21, 207-216. 21. STUPFEL, M., MORDELET-DAMBRINE, M., VAUZELLE, A . COHb f o r m a t i o n and a c u t e carbon monoxide i n t o x i c a t i o n i n a d u l t male r a t s 17, and guinea-pigs. B u l l . Europ. Physiopath. Resp., 1981, 43-51. 22. STUPFEL, M., PERRAMON, A., GOURLET, V., THIERRY, H., LEMERCERRE, C., DAVERGNE, M . , M O N V O I S I N , J.L., DA SILVA, J. L i g h t - d a r k and s o c i e t a l s y n c h r o n i s a t i o n o f r e s p i r a t o r y and motor a c t i v i t i e s i n l a b o r a t o r y mice, r a t s , guinea-pigs and q u a i l s . Comp. Biochem. 265-274. P h y s i o l . , 1981,
E,
196
23. T E R R I L L , J . B . , MONTGOMERY, K . R . , REINHARDT, C.F. Toxic gases from f i r e s . Science, 1978, 200, 1343-1347. 24. THEODORE, J . , O ' D O N N E L L , R . D . , BACK, K . V . Toxicological evaluation o f carbon monoxide i n humans and o t h e r mammalian species. J . Occup. Med., 1971, 13, 242-255. 25. Forum : Workshop on carbon monoxide and cardiovascular d i s e a s e . Prevent. Ned., 1979, 8, 261-406.
197
WATER ANALOGUE MODEL ACHIEVES OPTIMAL DESIGN OF FURNACE FLUE GAS COLLECTION SYSTEM J. RIGARD and M. MILHE
NEYRTEC, Grenoble Division of Alsthom-Atlantique, Le Pont-de-Claix (France).
ABSTRACT Arc furnaces used for melting and refining steel generate large amounts of smoke and dust that can cause severe pollution in and around the furnace building unless a satisfactory depollution system is provided. This paper discusses a water analogue model study conducted at Neyrtec's Research & Test Centre t o design an efficient
furnace-pollution collection
system
in which
the gas
flow to
be
processed was optimized. The study showed that this flow could be 25-30 per cent lower than the value recommended by dust collection plant suppliers on the basis of standard design procedures. A fullscale collection system based on the design developed with the model has just been completed. The fullscale system confirmed the excellence of the collection efficiencies and the validity of the model results
.
1. INTRODUCTION Arc furnaces for melting and refining steel cause considerable pollution within the furnace building unless suitable means are provided to eliminate the fumes and smoke produced. Also, as this pollution is ultimately discharged to atmosphere, considerable inconvenience or damage is likely to be caused in the exterior environment.
Current
legislation
concerned
with
waste
gases
and
airborne
particulates in work areas requires furnace operators to restrict the amounts rejected to atmosphere. This means that pollutants must be collected at source and then suitably processed. Air purification equipment is expensive and savings much greater than the cost of a comprehensive design study may be achieved by careful design of the plant. This, at any rate, was the case of the study reported here, which relates to a 30-ton arc furnace initially discharging all gaseous and airborne
particulate
waste
outside
the
furnace
building.
The
study
was
comprehensive in that it involved (a) measurements within the plant to assist in setting up a scale-model and in designing the filter system, ( b ) a full-fledged water
analogue
model
(WAM)
investigation,
and
(c)
implementation
of
the
model-optimized design in the furnace building. The initial factory measurements, described in the next section, related to gas velocities and temperatures and photographic records showing how certain factors affect the upward motion of the warm furnace gases. Also measured in the factory were the
R ISS
flow and size
198 distribution of the solid particulates emitted. The WAM tests we conducted - the principles and essential results of which form the basis of this paper
-
led to the
optimal design of airborne waste collection and purification system and indicated the optimum amount of solids-laden gas to be processed per hour. As will be seen, recent fullscale implementation of the design thrown up by the model bore out the validity of the design. For comparison purposes, solids removal efficiencies
-
on
which the final design considerably improves - were initially estimated by dust collection plant suppliers on the basis of standard design procedures in the absence of an auxiliary burner as : 95 per cent efficiency at a gas flow of 340 000 Nm3/h, 50 per cent at 200 000 Nm3/h and 20 per cent at 100 000 Nm3/h.
2. DESCRIPTION OF ORIGINAL, PLANT AND IN SITU MEASUREMENTS The 30-ton arc furnace investigated (Fig. 1) does not comprise a flue-gas outlet port (the so-called fourth port) t o collect the gases as soon a s they are produced. The flue gases and dust thus rise directly to the top of the building. Most of the gas and smoke is discharged to atmosphere through the opening in the roof but a significant proportion flows along the opening (Fig. 2 ) ,
cools down and returns to
the floor where pollution and worker discomfort occurs in various parts of the building. To counter this pollution process a flue-gas collection and filtration system was needed and this could only be installed at roof level owing to the presence of the overhead crane which moves continually above the furnace. The aim of the measurements taken within the furnace building was (a) to time and (b) to characterize the various stages making up the furnace operating cycle. Times were as follows : charging (11 min), melting (108 min, including 7 5 min in which
oxygen
was
admitted),
refining
miscellaneous other operations ( 2 7
min),
(40
min),
discharging
(4
min)
yielding a total cycle time of
and 190
minutes. The miscellaneous other operations, which include for example electrode adjustment, skimming and furnace repairs, were assigned either to the charging stage (eg furnace repairs) or to the melting and oxygenation stage (eg electrode adjustment, skimming, etc.). The velocity of the gas rising to the roof was measured by taking photographs at various relatively-short intervals. The rise velocity varied from 1.5 to 3.5 m/s with a mean value (eg during the melting stage) of about 2.5-3.0 m/s. Temperatures recorded in the rising column of warm gas at electrode level fluctuated between 150 and 200°C with occasional values as high a s 25OoC during the oxygen admission
stage.
The fluctuation in temperature reflected
the varying
composition of the gas column which comprised successive volumes of hot gas each followed by a volume of cooler entrained air. The temperature above the furnace by the overhead crane varied between about 5OoC and a peak of occurred during oxygen admission.
about 60°C which
199
F i g . 1. View of a r c f u r n a c e modelled F i g . 2. Smoke a t r o o f l e v e l
The s i z e of t h e d u s t p a r t i c l e s produced, knowledge of which w a s mainly needed t o d e s i g n t h e f i l t e r , w a s measured by a n a l y s i n g samples of a i r a t c r a n e l e v e l d u r i n g the
various
100-600 mg/m3
furnace
operating
depending
stages.
Particle
concentration
on t h e s t a g e i n t h e c y c l e ,
50-75
and
was
typically
per cent
of
the
easy
to
p a r t i c l e s sampled were smaller t h a n 2 u m . The measurements and
photographs
taken
showed t h a t
would n o t
it
d e s i g n a n e f f i c i e n t d u s t c o l l e c t i o n system u n l e s s a n in-depth
be
s t u d y of t h e d e t a i l e d
phenomena was u n d e r t a k e n . P o i n t s r e q u i r i n g p a r t i c u l a r s t u d y were shown t o be ( a ) the
b e h a v i o u r of
"rebound" e f f e c t ,
t h e hot
gas
in
the
roof
region
and
the
associated
kinetic
( b ) t h e e x t e n t t o which t h e overhead c r a n e a f f e c t s t h e upward
p a t h of t h e g a s e s r i s i n g from t h e f u r n a c e , eg d u r i n g t h e c h a r g i n g and d i s c h a r g i n g stages,
and
( c ) t h e f e a s i b i l i t y of u s i n g t h e r o o f
region a s a
b u f f e r volume to
smooth o u t t h e i n s t a n t a n e o u s f l u c t u a t i o n s i n t h e r a t e of f l o w of t h e p o l l u t a n t s .
3. DESIGN OF COLLECTING HOOD USING A WATER ANALOGUE MODEL
3.1 P r i n c i p l e of w a t e r model s i m u l a t i o n , model and t e s t s The s t u d y of t h e d i f f u s i o n of g a s e o u s and p a r t i c u l a t e p o l l u t i o n d i s c h a r g e d i n t o the
atmosphere
almost
always
involves
the
difference
in
density
between
the
p o l l u t a n t s and t h e s u r r o u n d i n g a i r o r between d i f f e r e n t r e g i o n s of t h e a i r i t s e l f . These d e n s i t y d i f f e r e n c e s may be due e i t h e r t o d i f f e r e n c e s i n t e m p e r a t u r e o r t o d i f f e r e n c e s i n t h e t y p e of gas.
I t h a s been shown t h a t s u c h d e n s i t y d i f f e r e n c e s and
t h e r e s u l t i n g d i s p e r s i o n of t h e p o l l u t a n t c l o u d may be s i m u l a t e d w i t h a n a i r model and a l s o w i t h a water model
(ref.
1,2,3).
200
Long experience of atmospheric diffusion phenomena has stressed the advantages of adopting the water-model approach, especially when density effects have to be modelled. In addition, the fact that the kinematic viscosity of water is 10
-
15
times smaller than that of air means that WAM simulation of Reynolds number turbulence effects can be achieved with smaller models than would be possible when using a wind tunnel. WAM simulation also lends itself extremely well not only to qualitative flow tracing and visualization of diffusion phenomena but also to the quantitative measurement of pollutant dilution rates along the path of plumes such as the warm gas emitted by the furnace in the present investigation.
In a WAM simulation, a flow of warm gas whose density differs from that of ambient air is modelled by an appropriate aqueous solution and the ambient air is modelled by pure water. To simplify the test procedure, the model may be turned upside down
so
that gravity forces are exerted upwards rather than downwards. In
this upside-down configuration, which we adopted here, rising flows of warm gas are simulated by denser-than-water aqueous solutions that are emitted downwards, as shown in Figure 3 . We used a denser-than-water salt solution to simulate the warm pollutant upflow from the furnace and we chose the initial salt concentration so that the ratio of the densities of the pollutants and air (simulated by water) was complied with. Use of salt meant that the concentration of the pollution throughout the diffusion process could readily be determined by conductivity measurements. Had the model not been turned upside down, the warm rising plume would have had to be modelled by a lighter-than-water alcohol solution whose concentration at various points within the model would have been far more
difficult
to measure.
The
arrangement used thus made it possible to characterize pollutant dilution factors by conductivity probes linked to signal amplifiers and chart recorders. Accurate modelling is possible by applying a number of scaling laws involving density and momentum scales, Froude-Richardson similarity and a sufficient Reynolds number. The Richardson number Ri representing the ratio of inertia forces to thermal and gravity forces must be the same on the model as at fullscale and may be written as : R i = !?-.gD P
7
, with
Ri model / Ri fullscale
=
1
(1)
in which : p
= specific gravity of ambient air (or of pure water simulating air on the
model); Ap
=
difference between densities of warm gas and ambient air (or between salt solution and pure water);
g D
-
=
acceleration due to gravity (9.81 m/s2
=
characteristic dimension of fullscale geometry (represented by d for the
same on model and at fullscale);
model)
V = characteristic fullscale velocity (represented by v for the model).
201
I
F i g . 3 . a ) The r e a l s i t u a t i o n . b) Schematic of upside-down model. c ) View of model t e s t .
F i g . 4 . V i e w s of model. a ) M e l t i n g and o x y g e n a t i o n s t a g e s . b ) c h a r g i n g and r e p a i r s . c ) Skimming a n s d i s c h a r g i n g .
Most model t e s t s a r e based on a r e l a t i v e d e n s i t y s c a l e of u n i t y , t h a t i s , t h e r a t i o A P / P i s t h e same on t h e model a s a t f u l l s c a l e . A s t h e s c a l e of o u r model w a s
1 / 3 3 , t h e s c a l e s of a l l t h e v a r i a b l e s of i n t e r e s t were as f o l l o w s : L i n e a r model scale............................ Density s c a l e
(
Ap
/
p model)
(4)
S c a l e of volume flow, from
A
/ ( Ap / p fullscale)
......... ................. ( Z ) , (5) .........
V e l o c i t y s c a l e , from (l), ( 2 ) , T i m e s c a l e , from ( 2 ) ,
d/D =
(3)
V/V
t/T
=Alp
q / Q =A5/’=
1/33
(2)
=
1
(3)
=
1/5.75
(4)
=
1/5.75
(5)
1/6250
(6)
=
The model was d e s i g n e d t o p e r m i t s i m u l a t i o n of t h e m e l t i n g c y c l e , i n c l u d i n g t h e c h a r g i n g and d i s c h a r g i n g s t a g e s ( F i g .
4 ) . The model of t h e f u r n a c e b u i l d i n g was
e n t i r e l y b u i l t of P l e x i g l a s s o t h a t t h e f l o w c h a r a c t e r i s t i c s c o u l d be photographed. The c o l l e c t o r hood comprised a n a d j u s t a b l e - f l o w
s u c t i o n system t o remove t h e
p o l l u t i o n from t h e model, which c o u l d a l s o r e p r e s e n t t h e overhead c r a n e between t h e hood
and
the furnace.
202 V a r i o u s hood d e s i g n s were t e s t e d . Hood w i d t h s ranged from 8 t o 1 4 m and l e n g t h s from 1 0 t o 24 m. P r e l i m i n a r y t e s t s showed t h a t w i d t h s less t h a n 10-12 m p r e v e n t e d some of t h e g a s from b e i n g sucked o u t of t h e b u i l d i n g .
The main t e s t s were run
w i t h hood d e s i g n s 14 m wide because t h i s w a s t h e w i d t h of t h e b u i l d i n g and i t made i t e a s i e r t o s u p p o r t and f i t t h e hood i n t o t h e r o o f .
T e s t s were r u n f o r e a c h hood d e s i g n and s t a g e i n t h e f u r n a c e o p e r a t i n g c y c l e t o d e t e r m i n e t h e minimum f l o w t h r o u g h t h e hood t h a t was needed t o c o l l e c t a l l t h e f u r n a c e g a s and
particulates.
The
tests a l s o i n d i c a t e d
c o l l e c t i o n system ( i e t h e r a t i o of
the
efficiency
of
the
p o l l u t a n t s e m i t t e d by t h e model f u r n a c e t o
p o l l u t a n t s c o l l e c t e d ) when t h e hood f l o w was l e s s t h a n t h e optimum flow. Knowing t h e f u r n a c e o p e r a t i n g c h a r a c t e r i s t i c s and t h e d u r a t i o n of e a c h s t a g e i n t h e c y c l e , i t was a l s o p o s s i b l e t o assess t h e o v e r a l l c o l l e c t i o n e f f i c i e n c y i n terms of hood
flow.
3.2 T y p i c a l t e s t r e s u l t s F i g u r e s 5 and 6 a r e t y p i c a l of t h e r e s u l t s o b t a i n e d f o r t h e o p t i m a l hood f l o w and t h e c o l l e c t i o n e f f i c i e n c i e s a t lower f l o w s . T a b l e 1 shows t h e o p t i m a l f l o w s required
by
three
hood
designs during
the
four
main
stages
of
the
furnace
operating cycle. 3 T a b l e 1. Optimal f l o w s t h r o u g h t h r e e hood d e s i g n s , 1 0 Nm3/h DESIGN 1
STAGE
DESIGN 2
DESIGN 3
Charging
350
200
225
Melting
120
120
150
Oxygenation
300
250
290
Discharging
300
200
275
Optimal f l o w
350
250
290
Amongst a l l t h e hood d e s i g n s t e s t e d , Design 2 ( l e n g t h a b o u t 16 m) was shown t o I t was l a r g e enough t o c o l l e c t t h e p o l l u t a n t s d u r i n g t h e
be t h e most e f f i c i e n t .
c h a r g i n g and d i s c h a r g i n g s t a g e s d e s p i t e t h e p r e s e n c e of t h e overhead c r a n e and i t r e s t r i c t e d t h e d i f f u s i o n of smoke and fumes i n t h e working areas of t h e b u i l d i n g . T a b l e 1 (Design 2 ) shows t h a t t h e minimum f l o w needed t o c o l l e c t a l l p o l l u t i o n w a s about 250 000 Nm3/h, necessary
being
e f f i c i e n c y of each
stage,
procedures. possible study.
by
35
per
Design 2 , and
t h e f l o w of cent
greater.
assessed
compares
this
340 000 Nm3/h Figure
s t u d y were
t h a t was o r i g i n a l l y thought
shows
the
overall
collection
by i n t e g r a t i n g t h e i n d i v i d u a l e f f i c i e n c i e s of with
the
C o n s i d e r i n g t h e h i g h c o s t of t h e WAM
6
curve plant
appreciable
-
estimated of
by
t h i s kind,
several
times
standard
design
t h e s a v i n g s made the
cost
of
the
203
0.4 0.2
F i g . 5. D e t e r m i n a t i o n of hood e f f i c i e n c y : a ) & b ) D i s p e r s a l of plume i n model. c ) T y p i c a l p l o t of c o l l e c t i o n e f f i c i e n c y E v s f l o w r a t e Q ( l o 3 Nm3/h) t h r o u g h hood.
E
t 120
250
me1t ing b, charging c, discharging d, oxygenation
Fig. 6 . Hood-collection e f f i c i e n c y tests f o r each furnace operating stage. a ) Model test d u r i n g oxygenation. b ) S t a g e e f f i c i e n c i e s . c ) Average model e f f i c i e n c y o v e r whole cycle(*)and e f f i c i e n c y i n i t i a l l y e s t i m a t e d by s u p p l i e r s (0).
4 . FULLSCALE IMPLEMENTATION A
fullscale
developed
c o l l e c t i o n hood
on t h e model and a
was
constructed i n
250 000 Nm3/h
accordance
extractor
fan was
with
t h e design
installed.
The
f u l l s c a l e b e h a v i o u r e x a c t l y r e f l e c t e d t h e model behaviour in a l l r e s p e c t s . F i g u r e s
9 - 1 2 show t h e hood i n p o s i t i o n i n t h e f u r n a c e b u i l d i n g and F i g u r e s 8 and 9 show t h e e f f i c i e n c y of t h e g a s c o l l e c t i o n p r o c e s s . The smoke and fumes g i v e n o f f by t h e f u r n a c e a r e now no l o n g e r d i s p e r s e d i n t h e b u i l d i n g b u t are e n t i r e l y c o l l e c t e d by t h e hood where t h e y p a s s t h r o u g h f i l t e r s a t t h e end of t h e b u i l d i n g b e f o r e being r e j e c t e d t o atmosphere. The c o s t of t h e i n s i t u measurements t o d e v e l o p t h e model and t h e c o s t of r u n n i n g t h e a c t u a l model t e s t s were small compared w i t h ( a ) t h e s a v i n g s i n i n i t i a l o u t l a y t o c o n s t r u c t t h e hood system, and ( b ) t h e r e d u c t i o n i n operating costs
achieved
by minimizing
the
gas
flow
through
the
system.
204
Today the collection plant is running efficiently and has solved the operator's worrying air pollution problem as economically as possible.
Fig. 7 and Fig. 9
-
8. Hood in the furnace building at roof level.
12. Smoke collected in hood.
REFERENCES
1. L.CAUDRON, P.L VIOLLET : M6thodes et moyens d'6tude des panaches d'effluents rejet6s dans l'atmosphgre - EDF no 4 - 1 9 7 5 . 2. VADOT : Etude de la pollution industrielle par l'emploi d'une analogie hydraulique - Nuisances et Environnement no 2 4 . 3 . VADOT : Etude des retombees de particules solides, sur modgle hydraulique - 13 8me Colloque sur les atmosphsres pollu6es - Avril 1978.
205
FLUORIDE DEPOSlTION T4ROIJGFT PRECIPITATION AND LEAF LITTER Ib! A BOREAL
FOREST IY TEE V I C I N I T Y OF A PHOSPHORUS PLANT S . S . SIPHU
EIewfoundland F o r e s t %?search Centre, Canadian F o r e s t r y S e r v i c e , E w i r o m e n t Canada, St. cJohn’s, ?levfoundland, Canada.
A J C 5X8
A-ESTHACT S e s u l t s of s h o r t term n o n i t o r i n g of f l u o r i d e ( F ) d e p o s i t i o n i n s o i l humus through p r e c i p i t a t i o n and l e a f l T t t e r i n a b o r e a l f o r e s t i n the v i c i n i t y of phosphorus p l a n t , a r e described i n t h i s paper.
P
Regressional r e l a t i o n s h i p s of
F-deposition by t h e tv:o pa~thwayst o t h e d i s t a n c e f r o n t h e emission source a r e
also presented. The concentrati.ons of f l u o r i d e i n l e a f l i t t e r of s e v e r a l s p e c i e s and prec i p i t a t i o n and P, Ca, l , : ~ ,S amd ‘\rai n p r e c i p i t a t i o n only, a r e summarized.
‘he
average P-concentrations ranged Crom 930 t o 17 ppm i n s e v e r e l y and l i g h t l y danaged a r e a s r e s p e c t i v e l y . were 0.36 t o < 0 . 0 1 pprn.
Corresponding F-concentrations i n p r e c i p i % a t i o r
Fluoride d e p o s i t i o n i n s o i l humus v i a p r e c i p i t a t , i o n
was a t l e a s t 5 t i c e s g r e a t e r than through l e a f l i t t e r . c i p i t a t i o n ranged f r o n damape r e s p e c t i v e l y . !:gF/’na/year
F-input through pre-
3.43 t,o 0.15 kg/ha/year i n a r e a s of severe t o l i g h t
F--
Corresponding values from l e a f l i - t t e r were 0.72 t o 0.010
.
Estimates of t o t a l and a v a i l a b l e amounts of f l u o r i d e i n t h e upper 4 cm of s o i l h m x s were 57.0 t o 1 . 2 0 kg/ha and 1.20 t o 0.24 kg/ha i n a r e a s of severe and l i g h t damage r e s p e c t i v e l y .
The excessive concentrations of f l u o r i d e i n
s o i l humus d i d not appear t o c o n t r i b u t e towards t h e F-accumulation i n f o l i a g e . INTRODUCTION
F l u o r i d e s ( F ) emitted i n t h e atmosphere e v e n t u a l l y f i n d t h e i r way t o t e r r e s t r i a l and a q u a t i c r e c e p t o r s e i t h e r by a c t i v e a b s o r p t i o n b y p l a n t s or by a d s o r p t i o n on s u r f a c e s and washdown by p r e c i p i t a t i o n .
Ares (Re:.
1 ) concluded
i n h i s work on t h e f l u o r i d e budget for a c o a s t a l f l u o r i d e emission source t h a t a major n o r t i o n of f l u o r i d e s absorbed a n d incorporated i n t o t h e s o i l follow the l e a f l i t t e r pathway.
However, very l i t - t l e i s understood of t h e f a t e of
f l u o r i d e s once t h e s e a r e deposited on t h e s o i l s u r f a c e . Present i n v e s t i y a t i o n s were a p a r t of an imgact study of a nhosphorus p l a n t
206 i n :jewfoundland, Canada (47°26'?J,53O17'W).
The e x t e n t o f F-damage and
p a t t e r n s and l e v e l s of F-accumulation i n f o l i a g e were r e p o r t e d e a r l i e r ( R e f s .
2,2,4). The F-concentrations i n a i r for t h e a r e a from 1976 t o 1980 were r e p o r t e d by Sidhu (Ref. 5 ) .
This paper d e s c r i b e s t h e r e s u l t s of s h o r t term
monitoring of F-deposition i n s o i l humus v i a p r e c i p i t a t i o n and l e a f l i t t e r i n a b o r e a l f o r e s t under t h e i n f l u e n c e of emissions from a phosphorus p l a n t . VETHODS
The study a r e a was t h e same a s described by Sidhu ( R e f s . 3 , 5 ) . o f t h e a r e a i s c l a s s i f i e d a s b o r e a l (B.3'0,
The f o r e s t
Avalon, Newfoundland; Ref. 3 ) with
Abies balsamea ( L . ) I f i l l . (balsam f i r ) and Picea mariana (Mill.) BSP ( b l a c k spruce) a s dominant s p e c i e s .
Betula p a p y r i f e r a Marsh. (white b i r c h ) and
L a r i x l a r i c i n a [ Du Roi ) Koch ( l a r c h ) form a minor component i n f o r e s t s t a n d s of t h e study a r e a .
D e t a i l s of c l i m a t i c c o n d i t i o n s , v e g e t a t i o n and i n d u s t r i a l
emissions were published e a r l i e r ( R e f s .
4,5).
F i e l d sampling o f p r e c i p i t a t i o n Based on previous knowledge of t h e p a t t e r n and e x t e n t of F-damage t o v e g e t a t i o n and F-concentrations i n t h e a i r ( R e f s . 2,4,5),p r e c i p i t a t i o n samplers were l o c a t e d a t v a r i o u s d i s t a n c e s along a NE-transect from t h e emission source ( F i g . 1).
Fig. 1. Map showing t h e sampling l o c a t i o n s f o r l e a f l i t t e r (1 t o 15), r a i n water (2,4,6,10,15),and snow water (2,4,15). (X) i s t h e source of emission; Zones I - I V a r e t h e F-damage zones, Zone-I being t h e most damaged and. Zone-Iv t h e l e a s t damaged a r e a .
207 Five r a i n sampling s t a t i o n s were e s t a b l i s h e d on September 1, 1977 a t various d i s t a n c e s from t h e emission source ( F i g . 1, l o c a t i o n s 2,4,6,10,15).
A t each
s t a t i o n , r a i n was c o l l e c t e d i n p l a s t i c c y l i n d e r housed within a standard copper r a i n gauge. coating. period.
The s u r f a c e of t h e r a i n gauge was sprayed with a p l a s t i c
Rain water was c o l l e c t e d on t h e morning following each 24 h r a i n There were 8 samples c o l l e c t e d a t each s t a t i o n during t h e 30 day
monitoring p e r i o d .
In t h e f i e l d , t h e volume a s well a s amount of r a i n f a l l
was recorded and r a i n water was s t o r e d i n p l a s t i c b o t t l e s a t 4OC u n t i l l a b o r a t o r y analyses were completed.
The winds were from S-SW 547 of t h e times
during t h e sampling period. Snow samples were c o l l e c t e d a t s t a t i o n
2,4 and 1 5 ( F i g . 1) using Nipher
Shielded snow gauges l i n e d with polyethylene p l a s t i c bags from 29 January t o 1 0 March 1978.
The amount of snow water equivalent was recorded a f t e r each
snowfall and snow water c o l l e c t e d f o r l a b o r a t o r y a n a l y s i s .
Seven samples
were c o l l e c t e d a t each s t a t i o n during t h e monitoring period.
The winds were
from S-SW 72% of t h e times during t h e sampling p e r i o d . F i e l d sampling of l e a f l i t t e r Leaf l i t t e r of dominant t r e e s and shrubs was sampled a t 1 5 s i t e s ( F i g . 1 ) ;
3 s i t e s i n each o f t h e f o u r damage zones and 3 from an a r e a with no v i s i b l e F-damage t o v e g e t a t i o n . survey ( R e f s . 2 , 4 ) .
The damage zones were e s t a b l i s h e d by an e a r l i e r
Leaf l i t t e r was c o l l e c t e d i n square t r a p s (0.5 m x 0.5 m )
w i t h 1 0 ern high wooden w a l l s and bottoms of f i n e nylon screening.
Three t r a p s
were i n s t a l l e d for each s p e c i e s a t each sampling s i t e on June 1, 1977 and opera t e d until November, 1977.
The s p e c i e s a r e l i s t e d i n Table 2 .
The l i t t e r
t r a p s were checked a t 2 week i n t e r v a l s from June t o October and a t monthly i n t e r v a l s for t h e r e s t of t h e p e r i o d .
The l i t t e r from each box was c o l l e c t e d
s e p a r a t e l y , s o r t e d f o r s p e c i e s , weighed and d r i e d a t 7OoC f o r a t l e a s t 72 h. The d r i e d samples were weighed and ground t o p a s s through 40 mesh s i e v e . The ground samples were analysed for t o t a l f l u o r i d e s using a p o t e n t i o m e t r i c method used e a r l i e r by Sidhu ( R e f . 3 , 6 ) . HESULTS AND DISCUSSION Fluoride d e p o s i t i o n through u r e c i D i t a t i o n The results of monitoring of r a i n and snow and t h e i r chemical a n a l y s i s a r e summarized i n Table 1. The average pH of t h e r a i n and snow water v a r i e d from 6 . 2 t o 6 . 4 , s u b s t a n t i a l l y h i g h e r t h a n t h e pH 5.6 expected f o r p r e c i p i t a t i o n from unpolluted a r e a s .
The concentrations of f l u o r i d e (F), phosphorus (P) and
calcium ( C a ) i n r a i n a s well a s snow water were d i r e c t l y r e l a t e d t o t h e d i s t a n c e from t h e emission source, being maximum c l o s e s t t o and minimum f a r t h e s t from t h e source ( T a b l e 1). For example, average F, P and Ca-concentrations i n r a i n water were r e s p e c t i v e l y 0.28, 0.50 and 0.91 ppm a t 1 . 4 km and < 0.01 and 0.26
TABLE 1
Average concentrations of fluoride [ F- J arid selected cations in rain and snow water r?ear a phosphorus plant,, Lone: Harbour, Newfoundland. VE
I. T o t a l precipitation
-
3istance from s o u r c e (h)
5.E
8.0
129.6*(8.4-29.5)+
116.3( 5.8-29.9)
142 .?( 5.6-38.6 )
96.5(3.1-19.8)
77.0(1.1-17.0)
6.?( 6.2-6.5) 6.4(6.2-6.5)
6.3c6.2-6.5 ) 6.3( b .2-6.4 )
1.4
Parameter
10.3
IF.?
for the
sampling period: rain (mm; 1 to 30 September 1977)
(a)
(b )
127.5(5.8-38.'7)110.5:7.1-33.2)
snow water equivalent (mi; 29 Jan. to 10 Mar.,
1978)
-
-
98.6( 2.3-44.7)
11. pH precicita:ion (a) r a i n
(b)
snor; waTer
111. F-concentration (ppm) (a) rai? water ( b ) snow water 2 ( c ) air (ugF/dm /? days, Ref. 5 ) IV. F-deposition :hrough precipitation ( a ) gF/ha/monitoring period (i) rain (gF/ha/30 days) ( ii ) sp.ow ( gF/ha/40 days)
0.28( 0.11-0.58) 0.36(0.11-1.04)
6.4(6.3-6.'I )
-
h .2(h.1-6.4 )
-
G.3( 6.2-6.j) 6.2(6.1-6.1)
0.0?(0.03-0.14)0.@6(0.02-0.13) 0.03(0.02-0.0b) < 8.01(N.D-0.02) 0.04(N.D-0.12) 0.02( ': . D-0 . 0Y )
155.7
'75 .O
37.8
317.6 ?Ol.3
71.3 3.6
59.8 5'7. 5
2.4
18.6
36.3
( estimate )
39.1, ( estimate )
0.42 0.40 ( estimate )
0.28 0.31 ( est,lmatej
<
11.0 l4.>
( b ) Av. gF/ha/mm ?f precipitation
(i) rain water (ii) snow water
2.61 1.10
0.64
0.43
0.10 0.15 Con'utd
,
-
Distance frov s o u r c e (h)
Parameter
1.4
5.8
( c)
3.4? x 103
0.64 x 10'
e s t i m a t e d gF/ha/year based on a v e r a g e o f 1200 nun of p r e c i p i t a t i o n ( R e f . 5)
8.0
18.7
10. j
0 . 3 5 x I03 \ estirnaLe)
3.49 x 103 (esximate )
<
u.15 x 103
V. C a t i o n c o n c e n t r a t i o n (rum) of g r e c i p i t a t i o n :
(a ) Phosphorus c\Ji d
--
. (9.
e m
1
r l 0
I
00
??
00
-id
d-i
00
mr-
M M
. . oo -. . -
0
I r - I
0 0
d
d
0
r-
-- --
r -.m.
1
00
. .
I
00
0 0
d
toa
d
. .
00
0 PJ M (U
0.30( 0.08-0.79) 0.22(0.06-0.81)
-
m
I
L n l
0:
0
?
0
d
M
0
N
m
I
0 *
0
d
r i
0
d
4,
0
1.72(0.60-4.2) -
P O
. .
I 1 Lnn
00
-2
00
i
. -i.
1
r
00
00
m
01
I n l
-
-
u'
0
I
3
v \ I
-f
C'
-
d
0
1 . U 0.63-4.3) -
0
a
.f
0
I
C
0
0
0
miu
-- --
1
M d oi u . 3.
I
00
0 0
66
an
. .
-v
-Id
iunl
0 CI
1
. .
Ma N N
0 0
. .
I
FC0 0
0 0
. .
m m
-Id
dv
0 0
1.21( 0.61-4 .O ) 1.28( 0.65-3.89)
0
0.2319.05-0.98 ) -
0 0
0 . Mr3.05-0.43 ) -
-,
0.2610.10-0.31.) 0.28(0.10-0.?7)
CI! -i
0.331 0.08-1.39)
-
0.66(0.3-1.35 ) -
-
0.iO( 0.05-0.21) 9.10(0.05-0.21)
ru
no\
M M . .
0 0
. .
I 1 M F
0 0
0 0
-LA
2. 2.
00
0.1?(3.05-0.29) -
--
m.r -.
1
. .
0 0
I
--u
. .
. .
. .
. .
=
@Jk
N.D.
k
Ldf)
'Values
+> a,
*Average
00
1.21(0.50-1.90) 1.31(0.41-3.48)
00
( e ) Sodium ( i ) r a i n water ( i i ) snow w a t e r
-Y
0.12(0.06-0.31) 0.18(0.07-0.10) 0.1710.07-0.33) 0.18(0.13-0.61) 0.12( 0.05-0.28) 0.17(0.10-0.60)
r-iu mc-
0.13(0.07-0.28) 0.12(0.07-0.26)
00
( d ) Magnesium ( i) r a i n w a t e r ( i i )snow w a t e r
F.N
3.14(0.03-0.38) 0.1.4(0.07-0.32)
Lcr-
0.1410.06-0.35) 0.13(0.05-0.29)
rid 1 1
( c ) Potassium ( i ) r a i n water ( i i ) snow water
00
0 . 4 3 ( 0.13-1.10 ) 0.42( 0.10-1.40)
NID ( N
0.91(0.32-1.89) 0.86(0.29-1.72) vv
(b) Calcium ( i ) r a i n water ( i t ) SROW w a t e r
TI& Dto
0.37(0.04-0.83) 0.20(0.02-0.46) 0.32(0.04-0.79) -
00
O.50( 0.05-1.41) 0.55( 0.05-1.52)
( i ) r a i n water ( i i ) snow w a t e r
2.2210.64-5.40) 2.3010.7-4.80)
o f 8 r a i n w a t e r samples and 7 snow water samples i n p a r e n t h e s e s a r e r a n g e of v a l u e s r e c o r d e d f o r the s a n p l e s
Not d e t e c t a b l e
209
210 ppm a t 18.7 km.
Ares (Ref. 1) r e p o r t e d much h i g h e r F-concentrations i n r a i n
water a s compared t o values l i s t e d above.
It i s estimated t h a t 2.61 gF/ha/mm
o f r a i n and 3.10 gF/ha/mm of snow water equivalent were deposited a t 1 . 4 km from t h e source.
The r a t e of F-deposition decreased with t h e i n c r e a s e d d i s t a n c e
from t h e source (Table 1 ) . Based on t h e a f o r e l i s t e d r a t e s of F-denosition p r e c i p i t a t i o n and 1200 mm of annual p r e c i p i t a t i o n , deposited a t 1.4 km from t h e emission.
.,l'o~gh
3.43 kg/ha/year were being
I n c o n t r a s t , F-deposition i n t h e a r e a
with no f l u o r i d e damage was < 0.15 kgF/ha/year ( F i g . 2, Table
3).
Unlike F, P and Ca c o n c e n t r a t i o n s of K , Mg and Na d i d not show any r e l a t i o n s h i p w i t h t h e d i s t a n c e from t h e emission source.
The increased i n p u t of P and
Ca i n t h e a c i d i c and n u t r i e n t poor s o i l s of t h e study a r e a may have a p o s i t i v e e f f e c t on t h e growth of v e g e t a t i o n where F - e f f e c t s were minimal. Fluoride d e p o s i t i o n through l e a f l i t t e r The average q u a n t i t y of l i t t e r f a l l , t h e F-concentrations i n f r e s h l y f a l l e n l e a f l i t t e r and estimated d e p o s i t i o n of f l u o r i d e t o s o i l humus v i a l e a f l i t t e r a r e presented i n Table 2.
The e s t i m a t e s of F-deposition v i a l e a f l i t t e r a r e
based on average l i t t e r f a l l and F-concentration of t h e l i t t e r of a l l s p e c i e s l i s t e d i n Table 2.
This method of e s t i m a t i n g F-input through l i t t e r was
adopted because v e g e t a t i o n below t h e dominant s t r a t u m d i d not appear t o cont r i b u t e t o F-input s i g n i f i c a n t l y .
The f l u o r i d e concentrations i n s p e c i e s of
t h e subdominant s t r a t a were t h e same a s f o r t h e unpolluted condition.
For
example, f l u o r i d e c o n c e n t r a t i o n s i n kalm5a l i t t e r under a balsam f i r overstorey was 1 2 t o 20 pprn a s compared t o > 1000 ppm i n l e a f l i t t e r of Kalmia growing i n open heathland.
The e s t i m a t e s of F-inputs through l e a f l i t t e r were conservative
a s any l i t t e r f a l l of evergreens o c c u r r i n g through w i n t e r was not included.
The
w i n t e r sampling was excluded because an e a r l i e r work by Damman concluded t h a t peak l i t t e r f a l l i n evergreens occurred during s p r i n g and f a l l (Ref. 7 ) . I n evergreen a s well a s deciduous s p e c i e s , t h e average amount of l e a f l i t t e r d i d not r e l a t e t o t h e s e v e r i t y of F-damage t o v e g e t a t i o n . with t h e s p e c i e s , s i t e c o n d i t i o n s and s i z e of t h e t r e e s .
Leaf l i t t e r v a r i e d I n case of evergreen
s p e c i e s , t h e l e a f l i t t e r c o n s t i t u t e d one t o t h r e e y e a r o l d f o l i a g e i n s e v e r e l y F-damaged a r e a s (Zones I and 11; F i g . 1 and Table 2 ) but s i x t o e i g h t year o l d i n a r e a s w i t h l i g h t o r no v i s i b l e F-damage.
Depending on t h e s p e c i e s , t h e
amount o f l e a f l i t t e r ranged from 204 kg/ha t o 1693 kg/ha (Table 2) and f l u o r i d e c o n c e n t r a t i o n s v a r i e d from 1085 ppm i n Zone-I t o 1 2 ppm o u t s i d e Zone-IV. On t h e average l e a f l i t t e r amounted t o 776, 590, 623, 864 and 717 kg/ha i n Zones I , 11, 111, I V and o u t s i d e Zone-IV r e s p e c t i v e l y w i t h corresponding Fc o n c e n t r a t i o n s of 930, 243, 118, 60 and 1 7 ppm.
A s a r e s u l t t h e F-input v i a
l e a f l i t t e r t o s o i l was q u i t e v a r i a b l e , 720 i n Zone-I t o 10 gF/ha/year a r e a s o u t s i d e Zone-IV (Table
3).
in
The r e l a t i o n s h i p of annual F-input v i a
211 'TABLE 2 l-verage f l u o r i d e (F-) c o n c e n t r a t i o n i n l e a f l i t t e r o f domicant f o r e s t , s p e c i e s and e s t i m a t e d c o n t r i b u t i o n t o soil f l u o r i d e s v i a l e a f l i t t e r i n f o u r F-damaged zones* and o u t s i d e F - v i s u a l damage a r e a .
Av. l e a f litter dry w t . (kg/ha)+
Species
(L. ) M i l l (Erilsam f i r ) Zone - I Zone - I1 Zone - I11 Zone - IV O u t s i d e 7,or.e - I V
Av . F-cone. (ppm, d r y wt.)
g F/ha/ kg l e a f l i t t e r
892 272 163 '7 5 18
0.89 0.27 0.16 0.07 0.02
405 649 556 1002
845
0.84
317 61
544
17
0.32 0.06 0.04 0.02
548
577 195 117
_L
Abi.i.7 balsamea
P i c e a m a r i a n a ( h i i l l . ) RSP (Black s p r u c e ) Zone - I Zone - I1 Zone - 111 Zone - IV @ u t s i d e Zone - IV
925
1104 864 645 1572
36
Larix l a r i c i n a (Du R o i ) Koch (Larch) Zone - I Zone - I1 Zone - 111 Zone - IV O u t s i d e Zone
511
-
IV
B e t u l a p a p y r i f e r a 14arsh. [White b i r c h ) Zone - I Zone - I1 Zone - I11 Zone - IV O u t s i d e Zone - IV
552 792 356
78 17
696
809
196 408
133 137
938 370
26 12
P i c e a g l a u c a (Moench) Voss [White spruce ) Zone - I Zone - I1 Zone - I11 Zone - IV O u t s i d e Zone - IV
496 662
A h u s c r i s p a ( A i t . ) Pursh. ( Green a l d e r ) Zone - I Zone - I1 Zone - I11 Zone - IV O u t s i d e Zone - IV
1264 929 1154 11'76 1691
0.58 0.19 0.12 0.08 0.02
0.81 0.33 0.14 0.03 0.01
0.15 0.02
1085 350
1.1
0.35 0.13 0.06 0.03
133 62 2L Cont'd
. ..
+
212 TABLE ?
-
Concluded
Spec i e s
Av. l e a f lizter d r y wt . (kg/ha)'
Av. F-cone. .~ g !
Sorbus americana b r s h . (American a s h ) Zone - I Zone - I1 Zone - I11 Zone - I V Outside Zone - I V
492
Kalmia a n g u s t i f o l i a L ( Sheep l a u r e l ) Zone - I Zone - I1 Zone - I11 Zone - IV Out s i d e Zone - I V
952 4 09
1.I 0.15
547 160
0.04 0.01.
Rubus i d a e u s L. (Lispberry) Zone - I Zone - I1 Zone - 111 Zone - I V Outside Zone - I V
644
-
3 80
909 189
16
-
Average of a l l s p e c i e s Zone - I Zone - I1 Zone - 111 Zone - I V Outside Zone - I V
0.02
-
-
-
75%
0.10
-
-
S p i r a e a l a t i f o l i a ( A i t . ) Borkh. 7Meadowsweet) Zone - I Zone - I1 500 Zone - I11 Zone - I V Outside Zone - IV ;.'yrica gal; 1,. (Sweetgale Zone - I Zone - 11 Zone - I11 Zone - I V Outside Zone - I V
0.91 0.19
0.23
-
-
204 -
0.10
-
0.20
550 776 580
910 243
623 864
118 60 17
71'7
*Damage zones based on an e a r l i e r s t u d y ( Ref. 1). 'Average of 9 samples from each damage zone. ( - ) s p e c i e s n o t p r e s e n t i n sample p l o t .
0.91 0.24 0.12 0.06
0.02
213 TASLF!
3
Estirriated t o t a l and a v a i l a b l e f l u o r i d e i n iipper 4 c m of s o i l humus and average F-input t h r o u g h p r e c i p i i a i i o r i and l e a f l i t t e r .
Damage zone
ZONE-I ZONE-II ZONE- II I ZONE- IV Unpolluted area**
Average f l u o r i d e ( F ) S o i l humus ( k g / h a i n 4 em s l i c e ) * Precipitation toial available kgF/ha/year 57.00 26.40 12.12
2.88 1.27 0.67 0.24
1.20 0.90
0.20
<
Leaf l i t - t e r kg/ha/year
3.43
0.720
0.64 0.49
0.140 0.070
0.15
0.010
0.15
0.00'7
*Based on 0 . 3 2 g/cm3 b u l k ' d e n s i t y o f humus. it*
Based on 710 kg o f l i t t e r / h a and F-cone. of 5 ppm i n l e a f l i t t e r .
@
LEAF LITTER RAIN WATER WATER
8. SNOW
Yr3.0e-o.osx,r1=o.~ Y=2.8-00(1~,~*=0.0~ Y = 2 26-0.Mx1r2= 0.87
F i g . 2 . R e l a t i o n s h i p between amount of f l u o r i d e d e p o s i t e d t h r o u g h r a i n and snow w a t e r , and l e a f l i t t e r and NE-distance from t h e e m i s s i o n s o u r c e .
l e a f l i t t e r t o d i s t a n c e from t h e e m i s s i o n i s i l l u s t r a t e d i n F i g . 2.
i s e s t i m a t e d t o b e 7 gF/ha/year
at
The i n p u t
an a v e r a g e l i t t e r f a l l o f 710 kg/ha/year
and 5 ppm F - c o n c e n t r a t i o n i n t h e i i t t e r .
The comparison of y e a r l y i n p u t v i a
214 p r e c i p i t a t i o n and l e a f li tt,er showed t h a t i n p u t through p r e c i p i t a t i o n i s 5 t i m e s t o 15 iirnes g r e a t e r t h a n t h a t v i a l e a f l i t t e r i n s e v e r e l y and l i g h t l y Fdamaged a r e a s r e s p e c t i v e l y .
The F-input, t o s o i l by p r e c i p i t a t i o n i s s t , i l l
more s i g n i f i c a n t t h a n F-input by l i t t e r i n u n p o l l u t e d a r e a s ( T a b l e
3).
The
f l u o r i d e s accumulated i n s o i l s of t h e study a r e a a t t h e r a t e of 7010, 3140, 1402, 37 gF/ha/year
1969 t o 1977.
i n Zones I , 11, Ill and I V r e s p e c t i v e l y f o r the p e r i o d
Although both t o t a l and a v a i l a b l e f l u o r i d e i n s o i l from F-
p o l l u t e d a r e a s i n c r e a s e d 50 times t h a t i n c o n t r o l s , it i s u n l i k e l y t h a t much
i s removed by r o o t a b s o r p t i o n and accumulated i n t o f o l i a g e of p l a n t s .
A com-
p a r i s o n of two y e a r s d a t a , d u r i n g one o f which t h e phosphorus p l a n t was nono o e r a t i v e , shows -t,his [ Table 4 ) .
During t h e non-operative y e a r , t h e c u r r e n t
y e a r ' s f o l i a g e accumulated f l u o r i d e not s i g n i f i c a n t l y g r e a t e r t h a n f o l i a g e
from c o n t r o l a r e a s .
The pathway of t h e l o s t f l u o r i d e from s o i l during t h e non-
Q p e r a t i o n n l p e r i o d i s n o t knovm.
TABLE
4
Concentralions o f f l u o r i d e i n s o i l and balsam f i r f o l i a g e during o p e r a t i o n a l and non-operational y e a r s .
Damage zone
In o p e r a t i o n F-concentration (ppm) soil foliage t o t a l available
I
475
I1 I11
220 101 52 10
IV Outside I V
Out of o p e r a t i o n F-concentration ( ppm) soil f o l i aEe t o t a l available
237
281
8
10
10 "
149
141
6
75
6
3
36
91 44
8 4
2
6
6
2 2
6 6 2
ACKNOWLEDGFMENTS S i n c e r e thanks a r e due t o M r . C . French f o r a s s i s t a n c e i n t h e f i e l d and
Mrs. D.J. Didharn f o r t y p i n g t h e manuscript.
REFERENCES J o r g e 0. P.res, J . A i r P o l l u t . Control Assoc. 28(1978) 344-349. S.S. Sidhu and B.A. Roberts, Environ. Canada, Can. For. S e r v . , Bi-Monthly Res. Notes, 32[ 1976)29-31. S.S.Sidhu, S t u d i e s i n Environ. S c i . Vol. 8 ( 1 9 8 0 ) 425-432, E l s e v i e r , Ams t e r d am. L. K . Thompson, S.S. Sidhu and B . A . Roberts, Environ. P o l l u t . 18 ( 1 9 7 9 )
2221-2234. S.S. Sidhu, Environ. Canada, Nfld. For. Res. Centre, I n f . Rep. N-X-203 (1981)l-55. S.S. Sidhu, Proc. 7 1 s t Ann. Meeting A i r P o l l u t . Control A ~ S G C . June 25-30, 1978, Houston, Texas, Paper No. 78-21.7, pp. 1-16. A.W.H. Damman, Ecol. ldonographs 4l(1971) 253-270.
215
STUDY OF THE WORKING OF A NEW MULTICELL SCRUBBER APPLIED IN THE FIGHT AGAINST AIR POLLUTION L. PERDREAU (*), S. DJERID ( * ) , C. BELIN (**), A. LAURENT (*) and J.C. CHARPENTIER (*) (*)
Laboratoire des Sciences du G h i e Chimique, CNRS-ENSIC, 1 , rue Grandville, 5 4 0 4 2 Nancy Cedex (France)
(**) Europoll, 2 rue Amorteaux, 78730 Saint Arnoult en Yvelines (France)
ABSTRACT The EUROPOLL multicell scrubber is a new gas-liquid contactor that may be use for the fight against the chemical and dust pollution of air. This contactor involves a regular package of elementary patterns called cells in which it is possible to transfer mass and/or heat between the gas and liquid phases. Indeed each cell comprises a convergent and a divergent the intersection of which constitutes the throat and thus leads to a good contact between the phases. From the hydrodynamic point of view, the scrubber is characterized by graphs of pressure losses and liquid holdup and by the domain of the flowrates leading to the working in satisfactory conditions. The capacity of the mass transfer of the contactor is presented in terms of 1;quid side and gas side mass transfer coefficients and of gas-liquid interfacial area. Finally the performances of the scrubber are compared with those of the other classical contactors employed to fight the air pollution. This is made with the use of a diagram plotting the mass transfer parameters versus the spent energy. INTRODUCTION The main classical absorbers and gas-liquid reactors are packed columns, plate columns, spray columns, bubble columns, mechanically stirred tanks, venturi and ejector reactors. Generally each one has its own specificity as concerns its application field and has its own flexibility of operation (ref. I).
For example, packed
columns are employed for the treatment of the gaseous effluents free of dust particles during an absorption with a rapid chemical reaction. Moreover turbulent jet reactors are well adapted for the washing of hot gases containing solid particles together with very rapid gas-liquid reactions. The aim of the present paper is to present the new EUROPOLL multicell scrubber, then to precise its hydrodynamica1 characteristics and its mass transfer performances and finally to define the limits of its potential use when compared with the other types of absorbers.
216 DESCRIPTION OF THE EQUIPMENT AND EXPERIMENTAL Description of the multicell contactor The multicell scrubber involves three main parts :
- an inferior hopper for the gas entrance and the recovering of the washing liquid, - a modular shell for gas washing the length and/or the height of which are variable by placing side to side and/or by packing identical elementary cells (Fig. la),
-
a cap for the gas exit and the entrance and distribution of the liquid. A classical elementary cell involves a
convergent and a divergent of rectangular section, the intersection of which forms the throat (Fig. Ib). The elementary cell investigated in the present study is defined by the angles of the convergent ( = 20 degrees) and the divergent
(2
20 degrees), the thick-
ness of the throat ( 1 0 mm), the wideness (80 mm), the length (80 mm) and the height ?
( 2 0 0 mm).
The contactor of the present study is Fig. la. Multicell scrubber
Fig. Ib. Elementary cell
constituted by a vertical package of elementary cells the number of which is comprised between I and 8.
Experimental apparatus A schematic description of the experimental apparatus is presented in figure 2.
The gas and the liquid phases flow counter-currently inside the absorber either with an initial trickling flow of the liquid phase or with an initial bubble flow of the gas phase. The liquid is distributed at the top of the package by a distributor having the shape of a cross and containing many holes. The gas is injected at the bottom of the apparatus by a fritted distributor. The range of the liquid and gas flowrates L and G are respectively 0.8xlO
-5
to
3
~ x I O -m3.s-' ~ and 0 to 0.01 m . s - ' . The scrubber is thus operating at range L/G comprised between 0.8 and 4 m3 of liquid per 1000 m3 of gas to be washed. The pressure l o s s in the equipment is measured with a U-tube water manometer at trickling flow operations and with two piezometric manometers at bubble flow operations ( a l s o sometimes called at flooded flow conditions). The amount of liquid held in the
apparatus is measured by weighting the liquid that leaves the apparatus after a rapid shut of the flows of the phases at the entrance and at the exit. Samples gathered in both phases before the entrance in the equipment and after the exit allow for the analysis of the gas solute concentration and of the liquid reactant concentration during the mass transfer study.
217
D
Fig. 2. Experimental apparatus. 1 . Liquid storage tank 6. Bottom of the scrubber 2. Centrifugal pump 7. Liquid rotameter 3. Liquid rotameter 8. Air compressor 4 . Multicell scrubber 9. Air rotameter 5. Gas-liquid demister 10. Gas solute rotameter
11.
Washing column
12. Gas sampling (in)
13. Gas sampling (out) 14. Liquid sampling (in) 15. Liquid sampling (out)
HYDRODYNAMICS
\
Operating zones 2:
When the equipment is initially working at
G (N m3.s-') A
m TRCKLW REGIME 0
BUBBLING REGIME
trickle flow (trickling regime), Boldo (ref. 2) and Djerid (ref. 3 ) have described the different flow regimes visually observed and have shown the
.\
existence of a discontinuity for the operation between the zones corresponding to a trickle flow or a surging flow of the liquid on the walls of the cells and the zone corresponding to a correct operation with a good mixture of both phases. This last zone is limited between the "picking-up" and TRICKLING FLOW
curves and the "flooding" curves in a L versus G
or
0.25 --.
plot.
BUBBLING FLOW
AIR-WATER AIR - WATER WSTEM n-5 I
1
1
1
2
3
When the equipment is initially working at bubble flow (bubbling regime), Perdreau (ref. 4 ) did .
i
Fig. 3. Operating zones of the multicell scrubber.
.
not observed the discontinuous picking-up phenome*non and led to the conclusion that the operating zone was only limited by the flooding curve.
218 The o p e r a t i n g zones of t h e s c r u b b e r working e i t h e r a t t r i c k l i n g regime o r a t b u b b l i n g regime a r e p r e s e n t e d i n f i g u r e 3 . It h a s t o b e u n d e r l i n e d t h a t t h e zone c o r r e s p o n d i n g t o a c o r r e c t o p e r a t i o n a t t r i c k l i n g regime i s i n c l u d e d i n t h e operat i n g zone a t b u b b l i n g regime. B e s i d e s , t h e f l o o d i n g c u r v e , which i s comnon f o r both o p e r a t i n g r e g i m e s , may b e p r e d i c t e d by a more g e n e r a l c o r r e l a t i o n c o n c e r n i n g t h e c o n t a c t o r s of t u b u l a r t y p e ( r e f . 5-6). P r e s s u r e drop The v a r i a t i o n s of t h e p r e s s u r e drop p e r u n i t l e n g t h AP/Z measured f o r t r i c k l i n g and b u b b l i n g f l o w regimes i n f u n c t i o n of t h e g a s and l i q u i d f l o w r a t e s a r e p r e s e n t e d i n f i g u r e 4a. T h i s p l o t confirms t h e l o c a t i o n of t h e f l o o d i n g zone f o r t h e same gas and l i q u i d f l o w r a t e s a t b o t h r e g i m e s . It should b e n o t e d t h a t t h e f l o o d i n g o c c u r s f o r a n a p p r o x i m a t i v e l y c o n s t a n t p r e s s u r e drop as i n t h e c a s e of packed columns ( r e f . 7 ) . A t t r i c k l i n g regime, f o r a g i v e n l i q u i d f l o w r a t e t h e p r e s s u r e drop f i r s t i n c r e a s e s
s l o w l y f o r t h e low gas f l o w r a t e s ( b e f o r e t h e picking-up p o i n t ) , t h e n p r e s e n t a jump a t t h e picking-up p o i n t and f i n a l l y i n c r e a s e s q u i c k l y up t o t h e f l o o d i n g p o i n t . For a c o n s t a n t gas f l o w r a t e i s a l l t h e more h i g h t h a t t h e l i q u i d f l o w r a t e i s h i g h . On t h e c o n t r a r y , a t b u b b l i n g regime, t h e p r e s s u r e drop d e c r e a s e s w i t h t h e gas flow-
r a t e f i r s t v e r y q u i c k l y , t h e n more s l o w l y up t o t h e f l o o d i n g . A l s o t h e p r e s s u r e drop
i s a l l t h e more weak t h a t t h e l i q u i d f l o w r a t e i s h i g h .
P(r) 100
AIR - WATER S T E M
AIR-WATER SYSTEM
.s-9 *G F i g . 4a.-4b.
V a r i a t i o n s of t h e p r e s s u r e drop ( 4 a ) and of t h e l i q u i d holdup (4b) v e r s u s gas and l i q u i d f l o w r a t e s .
219 L i q u i d holdup The v a r i a t i o n s of t h e t o t a l l i q u i d holdup r e p o r t e d t o t h e t o t a l empty volume of t h e s c r u b b e r i n f u n c t i o n of t h e g a s and l i q u i d f l o w r a t e s a r e r e p o r t e d i n f i g u r e 4b. The g e n e r a l t r e n d observed i n t h i s g r a p h i s i d e n t i c a l t o t h a t c o n c e r n i n g t h e p r e s s u r e drop. A t t r i c k l i n g regime, t h e e v o l u t i o n of t h e l i q u i d holdup a l s o p r e s e n t s a d i s c o n t i -
n u i t y a t t h e l e v e l of t h e picking-up p o i n t . The o r d e r of magnitude of t h e l i q u i d holdu p i s t h e same a t t h a t i n a packed column.
A t b u b b l i n g regime, t h e l i q u i d holdup i s g r e a t l y s u p e r i o r as compared w i t h t h e val u e s o b t a i n e d a t t r i c k l i n g regime. G e n e r a l l y t h e l i q u i d holdup d e c r e a s e s when t h e gas f l o w r a t e i n c r e a s e s and t h e i n f l u e n c e of t h e l i q u i d f l o w r a t e i s a l l t h e more marked t h a t t h i s l i q u i d f l o w r a t e i s h i g h and i s l o c a t e d n e a r t h e f l o o d i n g of t h e s c r u b b e r . MASS TRANSFER
The chemical t e c h n i q u e s f o r t h e e x p e r i m e n t a l d e t e r m i n a t i o n of t h e mass t r a n s f e r c o e f f i c i e n t s k S ( l i q u i d f i l m ) and k S (gas f i l m ) and of t h e i n t e r f a c i a l a r e a S (gasL G l i q u i d ) f o r a g a s - l i q u i d r e a c t o r by a b s o r p t i o n w i t h chemical r e a c t i o n have been reported in the l i t e r a t u r e (ref. I ) . A slow i r r e v e r s i b l e r e a c t i o n i s used f o r t h e measurement of k S , a f a s t pseudo m-th
L
o r d e r r e a c t i o n f o r S and an i n s t a n t a n e o u s s u r f a c e r e a c t i o n f o r t h e d e t e r m i n a t i o n of
kGS. The k i n e t i c s of each r e a c t i o n employed h a s been p r e v i o u s l y s t u d i e d i n a l a b o r a t o r y model of known i n t e r f a c i a l a r e a and c o n t a c t t i m e ( c y l i n d r i c a l w e t t e d w a l l column). These t e c h n i q u e s have been a p p l i e d i n t h e p r e s e n t equipment. L i q u i d phase c o e f f i c i e n t The l i q u i d mass t r a n s f e r c o e f f i c i e n t k S was determined by t h e a b s o r p t i o n of d i l u L t e carbon dioxyde (2 %) i n a i r i n t o aqueous p o t a s s i u m c a r b o n a t e and b i c a r b o n a t e b u f f e r s o l u t i o n s ( 0 . 6 M K 2 C 0 3 + 0 . 2 M HKCO ) i n t h e c o n d i t i o n s of a slow r e a c t i o n t o t a l l y 3 c o n t r o l l e d by t h e mass t r a n s f e r r e s i s t a n c e i n t h e l i q u i d phase. The v a r i a t i o n s o f t h e k S v a l u e s i n f u n c t i o n of t h e gas f l o w r a t e s f o r d i f f e r e n t L g i v e n l i q u i d f l o w r a t e s a r e p r e s e n t e d i n f i g u r e 5. A t t r i c k l i n g regime, k S i s simul-
L
t a n e o u s l y i n f l u e n c e d b o t h by L and G . A t b u b b l i n g regime, k S i n c r e a s e s w i t h t h e gas
L
f l o w r a t e and i s independent of t h e l i q u i d f l o w r a t e i f t h e a c c u r a c y of t h e measurements ( w i t h i n ? 10 %)
i s taken i n t o account. It has t o be noted t h a t t h e values
d e t e r m i n e d w i t h t h e b u b b l i n g regime a r e g r e a t l y s u p e r i o r . Gas phase c o e f f i c i e n t The g a s mass t r a n s f e r c o e f f i c i e n t k S was determined by a b s o r p t i o n of d i l u t e s u l G
phur dioxyde ( 2 % ) i n a i r i n t o aqueous s o l u t i o n of sodium hydroxyde ( I N )
i n t h e con-
d i t i o n s of an i n s t a n t a n e o u s s u r f a c e and i r r e v e r s i b l e r e a c t i o n t o t a l l y c o n t r o l l e d by t h e r e s i s t a n c e i n t h e g a s phase.
220
,lo4 k,S W . s - 9 4F 0'
A + -/
/*n,
5
0
/-
t 0
0.25
0.5
1O'G (Nm3.s-') a75 1F i g . 6. Gas-side mass t r a n s f e r i n the m u l t i c e l l scrubber
F i g . 5. L i q u i d - s i d e mass t r a n s f e r i n the multicell scrubber
S (m9
The v a r i a t i o n of t h e k S v a l u e s i n funcG t i o n of t h e gas f l o w r a t e s f o r d i f f e r e n t
1
1.2?
1.01
constant l i q u i d flowrates a r e reported in A
10SL(m3.r-1)OA33 25 1333
f i g u r e 6. A t t r i c k l i n g regime, k S i n c r e a G s e s w i t h b o t h L and G . A t b u b b l i n g regime,
4
i n t h e s t u d i e d zone, k S i s p r a c t i c a l l y a G
l i n e a r f u n c t i o n of t h e gas f l o w r a t e and i s independent of t h e l i q u i d f l o w r a t e . Interfacial area The i n t e r f a c i a l a r e a S w a s determined by the absorption with the rapid irreversible f a s t pseudo f i r s t o r d e r r e a c t i o n of d i l u t e carbon dioxyde ( 2 %)
i n a i r i n t o aqueous
s o l u t i o n of sodium hydroxyde ( 0 . 2 N ) .
0
a25
0.50
The v a r i a t i o n s of t h e S v a l u e s i n func-
0.75 1
1
t i o n o f L and G a r e r e p o r t e d i n f i g u r e 7 .
Fig. 7. Interfacial area in the multiceii I t i s observed t h a t S i n c r e a s e s w i t h both scrubber L and G i n t h e t r i c k l i n g and b u b b l i n g f l o w s . However a t b u b b l i n g regime, t h e i n t e r f a c i a l a r e a becomes independent of t h e l i q u i d f l o w r a t e when L i s h i g h e r t h a n 2 . 5 x 1 0 - ~m 3 . s - ' . regime i s a l s o b i g g e r t h a n w i t h t h e t r i c k l i n g regime.
The a r e a o b t a i n e d w i t h t h i s
221
COMPARISON OF THE PERFORMANCES OF THE MULTICELL SCRUBBER WITH OTHER ABSORBERS To tempt an exhaustive confrontation between the performances of the different ty-
pes of gas-liquid absorbers is very often a challenge due to the scatter of the literature results, of the various conditions of the tests and/or of the lack of the data necessary for this comparison. We are going to try to present now the performances of the EUROPOLL scrubber in a diagram with the plot - mass transfer parameter versus spent energy
-
in both trickling and flooding regimes and then to confront these per-
formances with those of other contactors when the literature data are available. k, S parameter
k
a(x )'I3
Perdreau determined the values of the
992
powers in the EUROPOLL scrubber necessary to obtain the values of the liquid side mass transfer k S reported in figure 5. L These are comprised between 1 to 2 watts for each cell in the trickling regime and between 1.5 and 4 watts for each cell in the bubbling regime (ref. 4 ) . It was also shown that for a constant dissipated power in each cell, the k S value at bubbling reL
gime is thrice as high as at trickling regime together with a liquid holdup ratio of ten. This leads to suggest the potential use of the EUROPOLL scrubber in the cases of gas-liquid absorptions followed by a 'slow
6
10-h-1
loo
10' <(VL
-'h p: 94)
Fig. 8. Dimensionless form of the volumetric liquid mass transfer coefficient for various contactors 1 . Stirred loop reactor 2. Stirred vessel (coalescing) 3. Stirred vessel (hollow stirrer) 4 . Injector 5. Stirred vessel (non coalescing) 6. Multicell scrubber
chemical reaction processes such as those encountered in the treatment of effluents with slow kinetics processes or in aerobic fermentations. Figure 8 presents in a dimensionless form the volumetric mass transfer coefficient k a as a function of the specific L power requirement and gives the location of the EUROPOLL scrubbcr among the conven-
tional reactors employed for oxidation (ref. 8). Comparing regions 1 , 5 and 6, it can be seen that the EUROPOLL scrubber achieves same mass transfer rates than the stirred vessel and the stirred loop reactor.
222 k,S
parameter
BUBBLING (n131
4
The comparison o f t h e k,S v a l u e s i n t h e " EUROPOLL s c r u b b e r shows t h a t t h e o p e r a t i o n a t t h e b u b b l i n g regime r e s u l t s i n g a s phase e f f i c i e n c i e s comprised between 99.6 % and 99.97 Z w h i l e t h e o p e r a t i o n a t t h e t r i c k l i n g regime r e s u l t s i n gas phase e f f i c i e n c i e s comprised between 8 3 and 93 %. The Number o f T r a n s f e r U n i t s i n t h e gas
PRP 25
DUAL FLOW TRAY
phase i s p l o t t e d a g a i n s t t h e energy d i s s i p a t e d p e r u n i t volume of t r e a t e d gas i n f i g u r e 9 . I t i s s e e n t h a t t h e performances of
TRICKLNG
t h e absorber s t r i c t l y vary with t h e dissipated energy f o r t h e studied gas-liquid
system
and whatever t h e flow regime. For a compari-
$ (k J. m3) 1
a1
I
I
I
I
I I l l 1
E
l
I
I
,
'
5 *
F i g . 9. Comparison between t h e a t t a i n a b l e number o f g a s mass t r a n s f e r u n i t s f o r d u a l flow t r a y , packed column and multicell scrubber.
son w i t h o t h e r a b s o r b e r s , t h e same diagram r e g r o u p s t h e d a t a o b t a i n e d w i t h t h e same g a s - l i q u i d s y s t e m i n a p l a t e column i n v o l v i n g 4 d u a l flow t r a y s ( d i a m e t e r : 0 . 5 m and d i s t a n c e between t h e t r a y s : 0.4 m) and i n a packed column ( h e i g h t : 1 m, packings a r e I i n c h and 2 i n c h e s p o l y p r o p y l e n P a l l
r i n g s ) , ( r e f . 9 ) . T h i s c o n f r o n t a t i o n shows t h e p o t e n t i a l u s e of t h e EUROPOLL s c r u b b e r f o r t h e t r e a t m e n t a t t r i c k l i n g flow regime of t h e gaseous e f f l u e n t s when an absorpt i o n with a rapid and/or instantaneous reaction i s required. S parameter
The comparison of t h e i n t e r f a c i a l a r e a i n t h e EUROPOLL equipment i n f u n c t i o n of t h e d i s s i p a t e d energy p e r u n i t volume of s c r u b b e r has been made by P e r d r e a u ( r e f . 4 ) . I t was o b s e r v e d t h a t a t t h e t r i c k l i n g regime, t h e o r d e r of magnitude was 2 -3 f o r a d i s s i p a t e d power comprised between I and I .5 kW.m while
a = 100-200 m .m-3
a t t h e b u b b l i n g regime, t h e i n t e r f a c i a l a r e a w a s comprised between -3 f o r a d i s s i p a t e d power comprised between 2 and 3 . 6 kW.m
m2.m-3
Moreover Nagel e t a l .
00 and 200
.
( r e f . 10) have proposed t h e u s e of a n o t h e r i n t e r e s t i n g
c h a r a c t e r i s t i c diagram p l o t t i n g t h e i n t e r f a c i a l a r e a c r e a t e d p e r un t v o l u m e t r i c gas f l o w r a t e i n f u n c t i o n of t h e energy s u p p l i e d p e r u n i t v o l u m e t r i c g a s f l o w r a t e , i n order t o d e f i n e a c r i t e r i o n f o r t h e c o n f r o n t a t i o n and t h e s e l e c t i o n of g a s - l i q u i d a b s o r b e r s . Using such a p l o t , f i g u r e 10 a l l o w s f o r a comparison t o be made between t h e performances of t h e EUROPOLL s c r u b b e r and o t h e r c o n t a c t o r s . T h i s working diagram shows t h a t t h e EUROPOLL s c r u b b e r i s o n l y s u i t a b l e f o r p r o d u c t i o n of a v e r a g e mass t r a n s f e r a r e a s , b u t a such diagram i s o n l y q u a l i t a t i v e l y v a l i d f o r t h e i n v e s t i g a t e d chemical system.
223
S/G(m2. s .m-?
CONCLUSION The present study shows that the
B . PIPE FLOW C . COUNTERCURRENT M E 0 COLUMN
EUROPOLL scrubber may be employed at trickling regime for the treatment of gaseous effluents containing eventually particles or dust in suspension and when a gas-liquid absorption accompanied by a rapid or an instantaneous chemical reaction occurs (abatement of SO2 , H2S, acidic aerosols...). It seems also
NH3,
that this equipment could be employed at bubbling regime for the treatment of gas effluents by liquids where a s l o w chemical reaction happens (absorption of
I
D - CELLULAR RUBBER (BUBBLING) E CELLULAR ?RIBBER (TWKLNG)
I
P/G (kJ.m-3
lfl .-
lo-'
Nitrogene oxides or oxygenation of loaded liquids) in trying in future to compare its performances with those of bubble columns.
10
Summarizing due to its flexibility de-
Fig. 10. Comparison of interfacial trans- pending its operating regime encountered, fer areas and specific power dissipathis new type of multicell contactor tions for any gas-liquid reactors. should allow to propose solutions adapted to the problems of the fight against the air pollution. NOTATIONS a
e g G kG kL L n NG P S
V
z B
pL TIL
AP
interfacial area per unit volume of reactor thickness of the throat gravitational acceleration volumetric gas flowrate gas mass transfer coefficient liquid mass transfer coefficient volumetric liquid flowrate number of elementary cells number of gas mass transfer units dissipated power total interfacial area total volume of reactor height of column total liquid holdup liquid density dynamic viscosity of liquid gas pressure drop
REFERENCES 1.
J.C. Charpentier, Mass transfer rates in gas-liquid absorbers and reactors, in Adv. Chem. Engng., Ed. T.B. Drew and T. Vermeulen, Vol. 1 1 , Academic Press, 1981, 1-133.
224
2.
P . Boldo, A . L a u r e n t , C . B e l i n and J . C .
C h a r p e n t i e r , La H o u i l l e Blanche, 6 / 7
( 1 9 7 9 ) 435. 3. 4. 5. 6.
S. L. T. T.
7. 8. 9. 10.
L. G. P. 0.
D j e r i d , DEA, Nancy ( 1 9 8 0 ) . P e r d r e a u , ThGse I N P L , ENSIC, Nancy ( 1 9 8 1 ) . Takahashi, Y . Akagi and K. F u j i t a , J. Chem. Eng. J a p a n , 1 ( 1 9 7 3 ) , 9 7 . Takahashi, Y. Akagi, K . F u j i t a and T . Kishimoto, J. Chem. Eng. J a p a n , 3
( 1 9 7 4 ) 223. M u s i l , C . P r o s t and P . Le G o f f , Chem. I n d . G h i e Chimique, 5 ( 1 9 6 8 ) 6 7 4 . K e i t e l and U. Onken, Ger. Chem. Eng. 4 ( 1 9 8 1 ) 250. KrEtzsch and M. Molzahn, Ger. Chem. Eng. 3 (1980) 257. Nagel, B . Hegner and H . KGrten, Chem. Ing. Techn. 50 ( 1 9 7 8 ) , 9 3 4 .
225
AEROSOLS
Aerosol science i s a branch of t h e study of the highly dispersed s t a t e o f matter and as such, exemplified by the work o f Tyndall, Raleigh,
Srnoluchovski, E i n s t e i n , Zsigrnondy and o t h e r s , antedates present day concern with pollution. Nonetheless, since s i l i c o s i s was pinpointed in S o u t h Africa a t the beginning o f t h i s century, airborne p a r t i c u l a t e matter has become a central t o p i c f o r those concerned with i n d u s t r i a l hygiene as well a s f o r a i r pollution s c i e n t i s t s . This section demonstrates, i f ever a demonstration were needed, t h a t aerosol science has m u l t i d i s c i p l i n a r y roots and polymorphous branches: basic aerosol physics, measuring techniques and devices, physics and, more p a r t i c u l a r l y , o p t i c s o f t h e atmosphere.
This Page Intentionally Left Blank
227
APPLICATION
THERMAL
OF
ANALYSIS
THE
TO
OF
CHARACTERIZATION
ORGANIC
AEROSOL
PARTICLES
ELIZABETH C. ELLIS R e s e a r c h a n d Development, S o u t h e r n C a l i f o r n i a Edison Company, Rosemead, C a l i f o r n i a
(U. S.A. ) TIHOMIR NOVAKOV* NM R e s e a r c h , Inc.,
Richmond, C a l i f o r n i a ( U . S . A . )
ABSTRACT A number
analyzed
of
by
Los Angeles
thermal
a e r o s o l samples,
(effluent
sample a t a p r e d e t e r m i n e d
gas)
c o l l e c t e d on
analysis.
quartz
The method
t e r m p e r a t u r e r a t e i n oxygen.
were
filters,
involves
heating
The e v o l v e d
gases
the
are
passed over a copper oxide c a t a l y s t t o a s s u r e t h e i r complete conversion t o carbon which i s d e t e c t e d by a n o n d i s p e r s i v e i n f r a r e d c a r b o n d i o x i d e a n a l y z e r .
dioxide, The
output
plot. to
the
of
the
analysis
a
is
thermogram,
i.e.,
a
C02
versus
temperature
The thermograms of a m b i e n t s a m p l e s show d i s t i n c t i v e p e a k s t h a t c o r r e s p o n d volatilization,
materials,
decomposition
and
s u c h as v o l a t i l e o r g a n i c s ,
combustion
of
higher molecular
different weight
carbonaceous
organic
species,
The f e a t u r e s of t h e thermograms a r e d i s t i n c t l y
elemental carbon, and carbonates.
d i f f e r e n t f o r a g e d a e r o s o l s t h a n f o r f r e s h source-dominated
Also, a t
particles.
t h e r e c e p t o r s i t e t h e r e are s u b s t a n t i a l d i f f e r e n c e s between daytime and n i g h t t i m e samples.
Based o n t h e s e r e s u l t s ,
a n e m p i r i c a l approach
to
by r e s u l t s on s o l v e n t t r e a t e d samples,
aided
differentiate
primary
and
secondary
organics
will
be
described.
INTRODUCTION
S t u d i e s of that sulfur-,
t h e a e r o s o l c o m p o s i t i o n of nitrogen-,
t h e Los Angeles
and carbon-containing
r e s p i r a b l e p a r t i c u l a t e mass (Ref. *Also a f f i l i a t e d w i t h Lawrence B e r k e l e y , C a l i f o r n i a (U.S.A.).
1).
a t m o s p h e r e have
shown
p a r t i c l e s a c c o u n t f o r most of t h e
The s u l f u r and n i t r o g e n p a r t i c l e s have been
Berkeley
Laboratory,
University
of
California,
228 shown t o be p r i m a r i l y v a r i o u s s u l f a t e and n i t r a t e compounds,
respectively,
but
v e r y l i t t l e i s y e t known a b o u t t h e s p e c i a t i o n of t h e c a r b o n - c o n t a i n i n g p a r t i c l e s . In
general,
t h e s e carbon
p a r t i c l e s would
consist
of
volatile
organics,
higher
m o l e c u l a r w e i g h t o r g a n i c s p e c i e s , e l e m e n t a l c a r b o n and c a r b o n a t e s .
I n a n e a r l i e r s t u d y i n Los Angeles, i t has been shown t h a t t h e o r g a n i c f r a c t i o n of t h e carbonaceous a e r o s o l can a c c o u n t f o r a s much as 30% t o 50% of t h e a e r o s o l
mass, e s p e c i a l l y on h i g h l y p o l l u t e d d a y s (Ref. 2 ) .
S i n c e t h e carbonaceous a e r o s o l
i s s u s p e c t e d t o have a l a r g e impact on human h e a l t h and i t o f t e n makes such a s i g n i f i c a n t c o n t r i b u t i o n t o t h e t o t a l r e s p i r a b l e p a r t i c u l a t e mass, i t i s important t o examine t h i s a e r o s o l f r a c t i o n i n more d e t a i l . have
applied
a
thermal-evolved
gas
analysis
With t h i s o b j e c t i v e i n mind, we technique
for
carbon
as
a
rapid
s c r e e n i n g p r o c e d u r e t o i d e n t i f y a e r o s o l samples f o r more i n - d e p t h o r g a n i c s p e c i a tion
analyses.
This
technique
could
a l s o provide
the
means
to
differentiate
between primary and s e c o n d a r y o r g a n i c s i n t h e Los Angeles a e r o s o l . Thermal a n a l y s i s methods such as Thermogravimetric A n a l y s i s (TGA), D i f f e r e n t i a l Scanning
Calorimetry
(DSC),
and
Effluent
Gas A n a l y s i s
a p p l i c a t i o n s f o r materials c h a r a c t e r i z a t i o n .
Out of
(EGA)
these,
have
found wide
TGA (Ref.
3 ) and EGA
(Refs. 4 - 5 ) have been a p p l i e d t o t h e c h a r a c t e r i z a t i o n of t h e carbon-, nitrogen-containing
s p e c i e s of
ambient and s o u r c e p a r t i c l e s .
In
sulfur-,
and
t h i s paper we
d e s c r i b e t h e a p p l i c a t i o n o f EGA t o t h e c h a r a c t e r i z a t i o n of t h e carbonaceous aeros o l p a r t i c l e s i n t h e S o u t h e r n C a l i f o r n i a A i r Basin. I n EGA t h e sample i s h e a t e d a t a p r e d e t e r m i n e d rate i n a n o x i d i z i n g o r n e u t r a l atmosphere.
The e v o l v e d g a s e s r e s u l t i n g from v o l a t i l i z a t i o n ,
sition
combustion
and
are
monitored
by
one
Depending on t h e purpose of
the analysis,
nitrogen.
carbonaceous
For
a n a l y s i s of
more
p y r o l y s i s , decompo-
gas-specific
detectors.
t h e carrier g a s i s u s u a l l y oxygen o r
materials
oxygen and t h e e v o l v e d g a s d e t e c t e d i s C02. a s s u r e complete c o n v e r s i o n of CO,
or
the
carrier gas
is u s u a l l y
An o x i d i z i n g c a t a l y s t i s used
to
hydrocarbons and o t h e r o r g a n i c vapors t o C02.
When a p p l i e d t o a e r o s o l samples t h e EGA can be used t o o b t a i n t h e t o t a l carbon, o r g a n i c c a r b o n , b l a c k carbon and c a r b o n a t e carbon. method, however,
The g r e a t e s t s t r e n g t h of
i s its "fingerprinting" capability.
(Cog
VS.
that
correspond t o v o l a t i l i z a t i o n ,
temperature
carbonaceous material.
plot)
c o n s i s t s of
distinct
o x i d a t i o n and
Namely,
peaks
the
t h e EGA thermogram
and/or
decomposition
groups of
the
of
peaks complex
I t h a s a l r e a d y been shown t h a t thermograms are d i f f e r e n t
f o r d i f f e r e n t s o u r c e s , and f o r ambient p a r t i c l e s c o l l e c t e d a t d i f f e r e n t l o c a t i o n s (Ref. 6 ) .
SAMPLING AND ANALYTICAL METHOD A e r o s o l samples were c o l l e c t e d a t two l o c a t i o n s i n t h e Los Angeles A i r Basin:
1.
Lennox,
near
the
Pacific
Coast,
primary e m i s s i o n p a r t i c l e s ; and
that
represents
a
site
dominated
by
229 2.
D u a r t e , l o c a t e d a b o u t 35 m i l e s i n l a n d t o t h e e a s t and downwind of metrop o l i t a n Los Angeles which i s impacted by b o t h primary and aged secondary particles.
High volume f i l t e r s a m p l e r s equipped w i t h cascade impactor p l a t e s t o r e s t r i c t t h e c o l l e c t e d p a r t i c l e s t o l e s s t h a n 3.5 each site.
( P a l l f l e x QASD). May,
micrometer d i a m e t e r were
The c o l l e c t i o n medium was acid-washed, P a r t i c u l a t e samples were
operated a t
prefired quartz fiber f i l t e r s
c o l l e c t e d between J u l y 25,
1980 and
1981 w i t h t h e b u l k c o l l e c t e d d u r i n g t h e summer smog p e r i o d of J u l y through The sampling p e r i o d w a s t y p i c a l l y f o r e i g h t h o u r s d u r a t i o n between
O c t o b e r , 1980.
noon and 8 : O O i n t h e evening.
On s i x days,
low volume t o t a l p a r t i c u l a t e samplers
f i t t e d w i t h 37 m i l l i m e t e r q u a r t z f i l t e r s were c o - l o c a t e d samplers.
The
low
volume
7:OO a.m. and 7:OO p.m.
sampler
two-hour
with
aerosol
t h e h i g h volume samples
t h e EGA a p p a r a t u s used i n t h e work i s shown i n
T h i s a p p a r a t u s i s s i m i l a r t o t h e one d e s c r i b e d by Dod e t a l .
The main components of grammed f u r n a c e .
between
f o r a d i u r n a l p r o f i l e of t h e carbonaceous a e r o s o l .
A s c h e m a t i c r e p r e s e n t a t i o n of
F i g u r e 1.
provided
(Ref.
5).
t h i s a p p a r a t u s a r e a q u a r t z tube and a temperature-pro-
The t u b e i s mounted a x i a l l y i n s i d e t h e f u r n a c e .
The p a r t i c u l a t e
sample, c o l l e c t e d on a p r e f i r e d q u a r t z f i l t e r , is p l a c e d i n t h e q u a r t z t u b e so i t s s u r f a c e i s perpendicular t o t h e tube a x i s . oxygen. tube,
The tube i s c o n s t a n t l y s u p p l i e d w i t h
The e x c e s s oxygen e s c a p e s through a n a x i a l opening a t
w h i l e t h e remainder of
h e a t i n g p a s s through a n o n d i s p e r s i v e i n f r a r e d a n a l y z e r s t a n t flow.
t h e end of
(Beckman 215B) a t a con-
I n a d d i t i o n t o t h e v a r i a b l e t e m p e r a t u r e f u r n a c e , t h e a p p a r a t u s also
c o n t a i n s a c o n s t a n t t e m p e r a t u r e f u r n a c e , u s u a l l y k e p t a t about 800'C. of
g a s e s evolved
The purpose of
t h e c a t a l y s t i s t o e n s u r e t h a t carbon-containing
from t h e sample a r e c o m p l e t e l y c o n v e r t e d t o C02.
important a t
The segment
t e m p e r a t u r e f u r n a c e i s f i l l e d w i t h a copper
quartz tube i n s i d e the constant
oxide c a t a l y s t .
cially
the
t h e oxygen and o t h e r g a s e s evolved d u r i n g sample
T h i s i s espe-
r e l a t i v e l y low t e m p e r a t u r e s when complete o x i d a t i o n
t o C02
does n o t o c c u r .
- i
Ouartz Tube
/
'Light Guide
Temp Rcqmrned Furnace
Fig.
1.
~
~ Filter
~
I
~
Recorder
f
~
~
1
Schematic r e p r e s e n t a t i o n of EGA a p p a r a t u s used i n t h i s study.
r
;
~
~
230 The
actual
measurement
consists
f u n c t i o n of
t h e sample t e m p e r a t u r e .
of t h e
concentration
C02
of
monitoring
The r e s u l t i s a
temperature.
VS.
the
p r o p o r t i o n a l t o t h e carbon c o n t e n t of
"thermogram,"
area
The
t h e sample.
concentration
CC2
under
i.e.,
the
as
a
a plot
thermogram
is
The carbon c o n t e n t i s q u a n t i -
t a t e d w i t h a c a l i b r a t i o n g a s ( C 0 2 i n oxygen) and by measuring t h e g a s flow r a t e through
the
system.
calibration is
This
crosschecked
by
analyzing
samples of
known c a r b o n c o n t e n t . One
important
component
of
the
carbonaceous
aerosol
the
is
"graphitic"
" b l a c k " c a r b o n , which i s known t o cause t h e b l a c k o r g r e y c o l o r a t i o n of and p a r t i c u l a t e samples. corresponds
to
concentration,
this the
In order
carbon,
intensity
to
d e t e r m i n e which
simultaneously of
the
light
with beam
the
of
the
thermogram peaks
measurement
produced
by
monitored by a photodiode and d i s p l a y e d by t h e second pen of
or
ambient
a
of
He-Ne
the
C02
laser
is
the c h a r t recorder.
I n a c t u a l e x p e r i m e n t s t h e l i g h t p e n e t r a t i n g t h e f i l t e r i s c o l l e c t e d by a q u a r t z l i g h t g u i d e and f i l t e r e d by a narrow band i n t e r f e r e n c e f i l t e r t o e l i m i n a t e t h e e f f e c t of t h e glow of
the furnaces.
An e x a m i n a t i o n of
t h e C 0 2 and l i g h t i n t e n -
s i t y t r a c e s e n a b l e s t h e assignment of t h e peak o r peaks i n t h e thermograms c o r r e sponding t o t h e b l a c k c a r b o n because
they a p p e a r c o n c o m i t a n t l y w i t h t h e d e c r e a s e
i n sample a b s o r p t i v i t y .
RESULTS AND DISCUSSION
As
an
i l l u s t r a t i o n of
t h e EGA method,
Figure
ambient sample c o l l e c t e d a t Duarte on September 1 2 , p o r t i o n of
0
100
the
f i g u r e r e p r e s e n t s t h e COL vs.
200 ma 400 Temperature, t
500
2
shows 1Y80.
the
thermogram of
an
The t r a c e i n t h e lower
temperature p l o t ,
while
the
curve
600
Fig. L. An example of t h e EGA o u t p u t - thermogram of a sample c o l l e c t e d a t Duarte on September 1 2 , 1980. Four p r i n c i p a l f e a t u r e s of t h e thermogram are i n d i c a t e d by a , 0 , Y and C The 6 peak c o r r e s p o n d s t o t h e combustion of b l a c k ( e l e m e n t a l ) carbon. T h i s i s evidenced by t h e change i n l i g h t i n t e n s i t y from I t o I,.
.
231 i n t h e upper p a r t o f t h e f i g u r e shows t h e dependence of t h e l i g h t i n t e n s i t y penet r a t i n g t h e sample a s a f u n c t i o n of t h e sample temperature. The area under t h e C02-temperature
c u r v e i s p r o p o r t i o n a l t o t h e t o t a l combus-
t i b l e p a r t i c u l a t e c a r b o n l o a d i n g on t h e f i l t e r punch used f o r a n a l y s i s . measurement 2 cm2 o f t h e exposed f i l t e r were used.
In t h i s
The t o t a l carbon w a s d e t e r -
mined t o be 33.9 p e r cm2 of t h e f i l t e r , which c o r r e s p o n d s t o 32.2 ug/m3 of a i r .
18 ambient samples c o l l e c t -
I n o r d e r t o a s s e s s t h e q u a n t i t a t i v e a s p e c t s of EGA,
ed a t b o t h s i t e s and 9 blank q u a r t z f i l t e r s were a n a l y z e d by EGA by more c o n v e n t i o n a l combustion-volumetric
method by Global Geochemistry C o r p o r a t i o n
The samples used f o r a n a l y s i s were 1 ) as c o l l e c t e d on
of Canoga P a r k , C a l i f o r n i a .
q u a r t z f i l t e r s and 2 ) a f t e r s o n i c a t i o n i n s o l v e n t s . c a r b o n c o n c e n t r a t i o n s i n a wide range
c m 2 were used f o r a n a l y s i s .
from 2-8
and by a
US
from 0.24
These samples c o n t a i n e d t o t a l 2 Sample punches
t o 47 ug/cm
The mean v a l u e of
.
t o t a l carbon f o r a l l
samples as d e t e r m i n e d by t h e two methods d i f f e r s by o n l y 3%.
We conclude from
t h e s e r e s u l t s t h a t EGA i s a v a l i d method f o r d e t e r m i n i n g t o t a l p a r t i c u l a t e carbon. The g r e a t e s t s t r e n g t h o f t h e EGA method i s i t s a b i l i t y t o p r o v i d e a chemical f i n g e r p r i n t o f t h e carbonaceous m a t e r i a l and t o assess t h e c o n t r i b u t i o n of primary p a r t i c l e s t o t h e ambient a e r o s o l .
The remainder of
t h i s section discusses t h i s
t h e method and i t s a p p l i c a t i o n t o ambient p a r t i c l e s c o l l e c t e d a t t h e
a s p e c t of
D u a r t e and Lennox s i t e s . A thermogram of a n ambient sample, s u c h as t h e one shown i n F i g u r e 2 , e x h i b i t s c h a r a c t e r i s t i c f e a t u r e s i n t h e form of peaks o r groups of peaks. thermograms t h a t w e have examined show a low-temperature
as a
i n the
temperatures.
f i g u r e and t h r e e peaks The a
seen
only with
the
oxidation
correspond
Y
,
and 6
--
appearing a t higher
group o b s e r v e d between a p p r o x i m a t e l y 100°C and 23OOC c o r r e -
sponds t o t h e v o l a t i l i z a t i o n of apparent
-- p ,
In general the
group of peaks denoted
lower m o l e c u l a r weight o r g a n i c s .
post-oxidation to
C02.
Peaks
t o decomposition and
catalyst,
indicating
B and 7'
at
o x i d a t i o n of
T h i s group i s
volatilization
approximately 3OOOC
higher
without
and
m o l e c u l a r weight
375°C
species,
w h i l e t h e 6 peak a t a p p r o x i m a t e l y 450°C i s due t o t h e combustion of t h e e l e m e n t a l o r black p a r t i c u l a t e
carbon.
That
this
l a t t e r peak
does
correspond t o
black
c a r b o n i s e v i d e n t from t h e c o r r e s p o n d i n g change i n t h e l i g h t i n t e n s i t y t r a n s m i t t e d t h r o u g h t h e f i l t e r due t o t h e combustion of cles.
light-absorbing
b l a c k carbon p a r t i -
Based on a n a l y s i s of more t h a n 70 f i l t e r samples c o l l e c t e d i n 1980, we
found t h a t t h e p o s i t i o n of t h e 6 enables thermal a n a l y s i s measurements.
The Y
for
peak i s p r a c t i c a l l y c o n s t a n t a t 450 +15'C.
b l a c k c a r b o n t o be performed w i t h o u t
peak a p p e a r s a t 75 +lO°C
lower t h a n t h e
This
the o p t i c a l
6 peak f o r most
samples a n a l y z e d . To i l l u s t r a t e t h e v a r i e t y of s i t u a t i o n s o b s e r v e d a t t h e Duarte s i t e , F i g u r e 3 shows thermograms of f o u r 8-hour t o t a l carbon content,
(noon-8:OO
p.m.1
samples a r r a n g e d by i n c r e a s i n g
c o l l e c t e d on f o u r d i f f e r e n t days.
T o t a l carbon and black
232 carbon c o n c e n t r a t i o n s a r e i n d i c a t e d i n t h e f i g u r e . these
thermograms
the increase
is
r a t i o which g o e s w i t h a n i n c r e a s e i n t o t a l carbon. and t h e v o l a t i l e
a
The most n o t a b l e f e a t u r e of
Y peak i n t e n s i t y and t h e Y : 8
i n the
The b l a c k carbon c o n c e n t r a t i o n
group a l s o show an i n c r e a s e w i t h t o t a l carbon.
r e l a t i v e and a b s o l u t e Y
peak
However, t h e
peak i n t e n s i t y shows t h e most d r a m a t i c change from sample
t o sample. The thermograms of samples c o l l e c t e d on t h e same days and d u r i n g t h e same time i n t e r v a l s a t t h e Lennox s i t e a r e shown i n F i g u r e 4.
A number of f e a t u r e s of these
thermograms are d i s t i n c t l y d i f f e r e n t from t h o s e shown i n F i g u r e 3. Duarte samples where t h e Y
peak i s t h e most i n t e n s e ,
carbon peak i s most prominent.
I n contrast to
i n Lennox samples t h e black
A s t h e t o t a l carbon i n c r e a s e s ,
a l l components of
DUARTE. CA Y Oct 23.1980
July 29,1980
Aug 12, 1980
7
-r
I
l
l
400
200
4
1
601 Temperoture. “C
Fig. 3 . Thermograms of samples w i t h i n c r e a s i n g t o t a l carbon c o n t e n t c o l l e c t e d a t D u a r t e on f o u r d i f f e r e n t days.
LENNOX. CA Auq 12.1980
I
Fig.
4.
I O c t 23.1980
Julv 29. 1980
Sept 24.1980 %
230
400
600 Temperature, ‘C
Thermograms of f o u r c o r r e s p o n d i n g samples c o l l e c t e d a t Lennox.
233 the
Lennox
thermograms
increase
a p p r o x i m a t e l y by
same amount,
the
o v e r a l l a p p e a r a n c e of t h e thermograms e s s e n t i a l l y unchanged,
leaving
the
i n sharp contrast t o
t h e D u a r t e samples, where t h e changes in t h e a b s o l u t e and r e l a t i v e i n t e n s i t i e s o f components a s a f u n c t i o n of
t o t a l carbon c o n c e n t r a t i o n s are obvious.
Also,
both
t h e t o t a l c a r b o n and t h e b l a c k carbon a r e s y s t e m a t i c a l l y h i g h e r a t Duarte f o r a l l I t i s e v i d e n t from F i g u r e s 3 and 4 t h a t t h e d i f f e r e n c e s i n thermo-
days s t u d i e d .
gram f e a t u r e s are more pronounced among t h e Duarte t h a n t h e Lennox samples.
This
is t o be e x p e c t e d because t h e l a t t e r are from a source-dominated r e g i o n , and t h e s e s o u r c e s a r e n o t e x p e c t e d t o vary s i g n i f i c a n t l y from day t o day. During smog e p i s o d e s t o t a l p a r t i c u l a t e c a r b o n l o a d i n g s are h i g h e r d u r i n g t h e day
than during t h e night.
samples were
collected
An
midnight-8:00
a.m.
and
subsequent night-day p.m.
noon-8:OO
at
both
The r e s u l t s of EGA f o r September 4 , 1980 are shown i n F i g u r e s 5
sampling sites. and 6.
During s e v e r a l such e p i s o d e s ,
between
i n s p e c t i o n of
t h i s f i g u r e shows t h a t t h e t o t a l carbon c o n c e n t r a t i o n
d u r i n g t h e day a t D u a r t e was h i g h e r by a b o u t a f a c t o r of 2 . 5 t h a n t h e concentration during the night.
The
black
carbon,
however,
was
only
about
10% h i g h e r
I t i s o b v i o u s from F i g u r e 5 t h a t most of t h e i n c r e a s e i n carbon
d u r i n g t h e day.
Lennox Sept 4. 1980
J , 0
00
1
I
200
l
330
1
1
1
400
Temperoture.
"C
1
500
,
I
600
I
I00
1
1
I
200
I
300
1
1
400
I
I
500
1
\
I
600
Temperature, *C
F i g s . 5 and 6 . Thermograms of daytime and n i g h t t i m e samples c o l l e c t e d a t Duarte and Lennox on September 4 , 1980.
234 c o n c e n t r a t i o n was due t o s p e c i e s t h a t c o r r e s p o n d t o @
and Y
peaks.
The r e s u l t s
of EGA a n a l y s i s of samples c o l l e c t e d d u r i n g t h e same i n t e r v a l s a t Lennox are shown i n F i g u r e 6.
I n t h e s e samples t o t a l carbon and b l a c k carbon are h i g h e r by about
In c o n t r a s t t o t h e D u a r t e thermograms,
15% f o r t h e daytime sample. a p p e a r a n c e of
t h e Lennox thermograms
daytime and n i g h t t i m e samples.
did not
change
the overall
s i g n i f i c a n t l y between
the
S i m i l a r d i f f e r e n c e s between daytime and n i g h t t i m e
samples a t Duarte and Lennox were observed on o t h e r days.
One such example is
shown i n F i g u r e s 7 and 8, where d a t a from sampling on October 9, 1980, are shown.
I n o r d e r t o f o l l o w t h e changes i n chemical composition of carbonaceous a e r o s o l s
a series of 2-hour
d u r i n g t h e day,
samples was c o l l e c t e d a t D u a r t e and Lennox.
The sampling spanned t h e i n t e r v a l from 7 : O O a.m. f i l t e r s were used w i t h o u t s i z e s e g r e g a t i o n .
t o 7 : O O p.m.
g u s t 13, 1980, a r e shown i n F i g u r e s 9 t h r o u g h 1 2 . b e r 24 ( F i g u r e 9 ) c l e a r l y d e m o n s t r a t e t h a t
Open-face
47-mm
R e s u l t s from September 24 and AuThe Duarte r e s u l t s from Septem-
t h e midday i n c r e a s e i n t o t a l carbon,
t y p i c a l of Los Angeles smog e p i s o d e s , i s due p r i m a r i l y t o t h e i n c r e a s e i n s p e c i e s corresponding t o
0 and
t i o n s d e s c r i b e d above,
Y
peaks i n thermograms.
t h e Lennox r e s u l t s
C o n s i s t e n t w i t h o t h e r observa-
show a much
less
pronounced
diurnal
variation. There are days when no
Such d i u r n a l b e h a v i o r , however, does n o t always occur.
Duorle OcI 9.1980
I
7
Lennox O c l 9 . 1980
s
I
s
A
A
NIGHT
I I I J l l ( l l l j j l I00
230 300 400 Tempernlure, F
500
600
NIGHT
, M L
I
L
I
100
I
I
D
200
I
300
8
I
400
I
I
m
i
I
600
Temperoture. *C
F i g s . 7 and 8. Daytime and n i g h t t i m e sample thermograms f o r D u a r t e and Lennox on October 9, 1980.
235 DUARTE Sept 24, 1980
0700- 0900
0900- 1100
AA 400
200
200
600
7
600
1700- I900
1500-1700
I
200
400
600
200 400 Temperoture, "C
200
600
400
600
Fig. 9. Thermograms of a series of two-hour samples c o l l e c t e d between 0700 and 1900 h o u r s a t Duarte on September 24, 1980. The dashed peak i n t h i s and t h e f o l l o w i n g f i g u r e s i s an e s t i m a t e o f t h e b l a c k carbon peak, l'
.
c l e a r d i u r n a l v a r i a t i o n s a r e observed. t h e r e s u l t s of a s e t of 2-hour
A s an example i n F i g u r e s 11 and 1 2 w e show
samples c o l l e c t e d on August
13,
1980.
No c l e a r
t r e n d s i n t h e thermogram f e a t u r e s were observed a t e i t h e r s i t e on t h a t day. o v e r a l l f e a t u r e s of
the
thermograms a s w e l l a s t h e
The
t o t a l carbon l o a d i n g s were
s i m i l a r t h r o u g h o u t t h e sampling p e r i o d a t b o t h Duarte and Lennox. An e x a m i n a t i o n of important
thermograms of a l l samples c o l l e c t e d i n
regularities.
sampling days.
Their
1980 r e v e a l s some
Lennox thermograms on t h e a v e r a g e are s i m i l a r principal
component i s
the
black
carbon
peak,
for a l l which
is
236
LENNOX Sept. 24, 1980
1300 - 1500
400
200
1700 - 1900
1500- 1700
Fig. 10. Thermograms September 2 4 , 1980.
600
of
200 403 T e m p e r a t u r e , "C
a s e r i e s of
trast,
200
400
samples c o l l e c t e d a t
two-hour
h i g h e r i n i n t e n s i t y t h a n t h e two o r g a n i c peaks, nighttime
603
0
and Y
samples a r e q u i t e s i m i l a r t o thermograms of
.
600
Lennox on
Thermograms of Duarte
Lennox samples.
In con-
t h e daytime (and e a r l y a f t e r n o o n samples i n a d i u r n a l sequence) of Duarte
show pronounced
0
and Y peaks, w i t h t h e Y
peak being t h e most i n t e n s e .
These r e g u l a r i t i e s can be used t o d e v i s e a procedure t o e m p i r i c a l l y determine t h e amounts of emissions;
primary and secondary o r g a n i c a e r o s o l material w i t h t h e primary
assuming t h a t
t h e Lennox a e r o s o l can be
s o u r c e emissons i n t h e b a s i n ,
c o n s t r u c t e d and used as a f i n g e r p r i n t o r s i g n a t u r e of ticles.
used
a n a v e r a g e thermogram of
as
representative
of
Lennox samples could be primary carbonaceous par-
J u s t i f i c a t i o n of t h i s a p p r o a c h i s c o r r o b o r a t e d by t h e f a c t t h a t n i g h t t i m e
D u a r t e thermograms are s i m i l a r t o t h o s e of Lennox.
T h i s would s u g g e s t t h a t d u r i n g
t h e n i g h t , under low wind c o n d i t i o n s , t h e p a r t i c l e s sampled are m o s t l y from l o c a l s o u r c e s and from aged a e r o s o l .
237
DUARTE Aug. 13, 1980
x
m
200
m
400
o
,
600
200
400
200
600
4oom
A 1500 a
1300-I500
200 Fig. 11. 1980.
1700- 1900
400
600
200 400 600 Temperature, "C
D i u r n a l sequence of two-hour
200
400
600
s a m p l e thermograms f o r D u a r t e on August 13,
LENNOX A u q 13, 1980
0900 - I100
Al AHA
0700-0900
m
400
200
600
1300-1500
400
600
1500- I700
200
400
600
400
600
1700-1900
I
200
Fig.
12.
400
600
200
400 600 Temperoture, "C
Diurnal sequence f o r Lennox on August 13, 1980.
200
238 Because t h e b l a c k carbon peak i s due o n l y t o primary e m i s s i o n s ,
t h e primary
thermogram s i g n a t u r e can be normalized t o t h e b l a c k carbon peak i n t h e thermograms of r e c e p t o r s i t e s s u c h as Duarte.
By t h i s procedure we c o u l d d e f i n e t h e secondary
o r g a n i c s a s t h e d i f f e r e n c e o b t a i n e d between t h e normalized primary s i g n a t u r e and Because t h i s d i f f e r e n c e i s due mainly t o t h e
t h e ambient thermogram. peaks,
a
simple determination
of
t h e Y : 6 peak
ratio
can be
used
0 to
and Y assess
whether a sample c o n t a i n s m o s t l y primary m a t e r i a l o r whether i t i s e n r i c h e d w i t h a secondary component.
CONCLUSIONS
The r e s u l t s d e s c r i b e d above i l l u s t r a t e t h e p o t e n t i a l of EGA f o r t h e c h a r a c t e r i zation
of
thermograms
carbonaceous can be
source-dominated
aerosol
used
particles.
t o provide
a
It
chemical
(Lennox) ambient p a r t i c l e s .
has
been
demonstrated
s i g n a t u r e of
aged
that
the
(Duarte)
and
The f i n d i n g s can be summarized a s
follows : o
The D u a r t e a e r o s o l samples produced thermograms t h a t a r e d i s t i n c t l y d i f -
o
The thermograms of daytime Duarte samples a r e d i f f e r e n t from t h o s e of t h e
o
The d i f f e r e n c e s between daytime and n i g h t t i m e samples a r e minimal a t t h e
o
D i u r n a l v a r i a t i o n s i n thermogram f e a t u r e s are pronounced
f e r e n t from c o r r e s p o n d i n g samples c o l l e c t e d a t Lennox.
n i g h t t i m e samples.
Lennox s i t e . a t Duarte when
t h e r e i s a s i g n i f i c a n t d i u r n a l v a r i a t i o n i n t o t a l p a r t i c u l a t e carbon. o o
D i u r n a l v a r i a t i o n i n thermogram f e a t u r e s i s much l e s s pronounced a t Lennox. D i f f e r e n c e s between samples c o l l e c t e d a t t h e two s i t e s and d u r i n g d i f f e r e n t times of day a r e p r i n c i p a l l y c o n f i n e d t o twa thermogram peaks,
@
and
Y , which p r o b a b l y c o r r e s p o n d t o t h e secondary o r g a n i c s p e c i e s .
REFERENCES
The C h a r a c t e r and O r i g i n of Smog A e r o s o l , e d i t e d by G.M. Hidy, P.K. M u e l l e r , D. G r o s j e a n , B.R. Appel and J. Wesolowski, John Wiley & Sons Ltd., New York, 1980. S.L. Heisler, R.C. Henry, P.K. M u e l l e r , G.M. Hidy and D. G r o s j e a n , Environm e n t a l Research and Technology, I n c . , Westlake V i l l a g e , C a l i f o r n i a , Document #P-A085-1, O c t o b e r , 1980. T. Meisel, "Thermal A n a l y s i s " i n A n a l y s i s of Airborne P a r t i c l e s by P h y s i c a l Methods, H. M a l i s s a , ed. p. 237, CRC-Press, Palm Beach, 1978. H. Malissa, H. Puxbaum and E. P e l l , "Zur s i m u l t a n e n relativkonduktometrischen K o h l e n s t o f f - und Schwetelbestimmung i n Stauben, F r e s e n i u s 2. a n a l . Chem., 282, lOY(1976); H. Puxbaum, I n t e r n . J. Environ. Anal. Chem., 10,1(1981). R.L. Dad, H. Rosen and T. Novakov, Lawrence Berkeley Report LBL-8696(1979). T. Novakov, "Microchemical C h a r a c t e r i z a t i o n of A e r o s o l s " i n Nature, A i m and Methods of Microchemistry, H. M a l i s s a , M. G r a s s e r b a u e r and R. B e l c h e r , e d s . , p. 141, Springer-Verlag, Wein-New York, 1981.
239
ON THE PROBLEM OF MEASURING AND ANALYSIS OF CHEMICALLY CHANGED MINERAL FIBERS IN THE ENVIRONMENT AND IN BIOLOGICAL MATEIZIALS K.R. Spurny Fraunhofer-Institut fur Toxikologie und Aerosolforschunq, 5948 Schmallenberg 1 1 - Grafschaft (G.F.R.)
ABSTRACT Chemical and physical microanalysis of asbestos and glass fibers obtained by environmental sampling (air, water), and from human and animal tissue have shown chemical and crystalline changes in these particles. Scanning electron microscopy, electron microprobe analysis and mass spectroscopic analysis were used in these investigations. Also chemical and physical changes of asbestos and glass fibers after application of different milling procedures were observed A partial or a total leakage could be assessed. The leakage of elements in fibers is of statistical nature. Some fibers rested chemically unchanged, in some fibers elements were partially leached and in some fibers the majority of metalic elements were leached.
INTRODUCTION It is well known that asbestos fibers (AF) as well as man-made mineral fibers (MMMF) of a defined size range (concerning fiber lengths as well as fiber diameter) - although mechanically stable and insoluble in water - are biologically rather active in producing fibrosis and/or cancer (ref. 1 ) . Publications (ref. 2-4) over the last 5 years have convincingly demontrated the primary importance of fiber geometry on the carcinogenic effect. However, this does not exclude chemical properties as well as chemical reactivity of such fibers to be of considerable pathogenetic importance (ref. 5 , 6 ) . Chemical instabilities of chrysotile
-
and of some amphiboles-
have been demontrated in acidic and alkaline solutions as wee1
240
as in living organisms by several researchers (ref. 2 , 3 ) . Also some chemical instabilities of glas fibers has been published recently (ref. 7). Chrysotile is also chemically unstable in different environments (air - corrosion and weathering, water leaching etc.) (ref. 8). We have tried in this investigations to prove the ability of some analytical procedures for determining such chemicals changes in fibers, and we have done some preliminary analyses of different types of AF and MMMF.
MATERIAL AND ANALYTICAL PROCEDURES UICC standard asbestos -chrysotile and crocidolite -and MMYF (glass fibers types JX and rock wool fibers) were used for these analytical investigations. halysis were carried out before and after leaching. Acids and bases, water, blood serum, animal tissues (rabbits, rats and hamsters), human lung tissue, weathering in atmospheric environment, etc., were used as leaching solutions and environments. Qualitative changes in the surface structure of AF and MMMF were observed by scanning electron microscopy (SEM). For the chemical analysis of bulk fibers and of single fibers, followinq methods were applied: SEM and microprobe analysis (EDXA), transmission electron microscopy (TEM) with EDXA and SAED (selected area electron diffraction analysis), x-ray fluorescence spectroscopy (XRF), x-ray diffraction, Auger-spectroscopy (ESCA) and mass spectroscopy (LAMMA) (ref. 9 , l O ) . qualitative changes in the surface structure of AF and MMMF could be observed from SEM and from gas adsorption studies (BET). The chemical and crystallographical changes of fibers in different environments (bulk samples) were studied by means of XRF- and x-ray diffraction methods.
ESCA were used for surficial fiber analysis and the other procedures (EDXA, SAED and LAMMA) were sensitive enough for the analysis and for studies of chemical changes in single individual fibers.
RESULTS AND DISCUSSIONS In inorganic and organic solutions as well as in tissue of living organism, partially also by weathering, chrysotile decomposes by removal MgO nad H 2 0 . A complete breakdown of the chrysotile
241
structure can appear after Mg-ions were fully leached. The remaining fiber fragments appear to be of colloidal nature. In agreement with the results of other publications (ref. 2 , 3 ) a significant chemical instability of chrysotile fibers in environmental samples, in acids and in living orqanism (human lung tissue and animal tissues of lung, spleen, liver, etc.) was found. Also by mechanical comminution, physical and chemical changes in single fibers were found. In some solutions magnesium was relatively quickly leached out, but leaching of iron and silicon ions were also observed. In strong acids, the entire (Mg0H)-sheets of chrysotile were stripped away leaving a silica skeleton. Analysis of single fibers in human lung tissue could be done using SEM
+ EDXA directly in the dried lung samples (Fiqure
1 and
2).
Fig. 1. Micrograph (SEX) of a broken asbestos fiber in the dried sample of the human lung tissue (alveolar region)
After low temperature ashing or after a "wet" dissolution of tissues in Na-hypochloride, analysis of single fibers can be also done by TEM + EDXA + SAED as well as by LAMMA (Figures 3 and 4). Bulk fiber analysis by XRF was also succesfully applied for the demonstration of fast chemical changes of chrysotile fibers in strong H C 1 solutions (Figure 5). In fig. 2 the analysis of a sinqle fiber in human lung tissue shows a complete leaching of M g after the long time exposition to biological liquids. Fig. 3 is an example of the analysis of a
242
single chrysotile fiber by means of TEM + E D X A + S A E D and of the morphological properties by single fibrills. LAMMA - spectra of
Fig. 2. Scanning electron micrograph of one asbestos fiber in the human tissue with its element spectrum (EDXA)
asbestos fibers are well reproducible (Figure 4) and characteristic for each type of asbestos. For instance, a clearcut differentiation between serpentines and amphiboles or also between crocidolite and
243
amosite is well possible. The LAMMA spectra can clearly discriminate different asbestos minerals on the basis of single fiber analysis. The method is also sensitive enough to indicate any changes in the chemical composition in single AF and MMMF.
Si
CU
Fe 3. TEM-microqraph of one sinqle chrysotile fibril of the caiacteristic tub;la; morphology with an-element spectrum (EDXA) and an electron diffraction pattern (SAED).
Fiq.
Results of analysis of 100 chrysotile fibers (human lung tissue) examined by LAMMA indicated that deqree of corrosion (leaching of Mq, Fe and Si) in sinqle fibers is statistically distributed in a
larger fiber population. While some fibers remained chemically unchanged, in the majority of fibers, only Si could be estimated. In some fibers a partially leachinq was observed. Analytical measurements have shown that the leaching was faster in thin fibers than in fibers with a diameter > 1.5 urn. In some favourable cases, where analytical profiling along an extended fiber was possible, LAMMA analysis revealed that the
244
Nq-leaching was rather nonhomogeneous along the fiber axis. Very similar results could be obtained also by the application
Fig. 4. LAMMA spectra (mass spectra) for positive ions obtained from standard UICC asbestos fibers
(+)
and negative
Fig. 5. Element spectra obtained by bukl analysis of chrysotile and crocidolite fibers.Virgine material ( 1 ) and after extraction in H C 1 solution (2).
245
Yi
: A BINDINC ENERGY. EV
PROBE 2 UTE ERHCILTEN DETRIL
183.5 EV IKORRIGIERTI
ISILIKRT, 5102 U.RC.1
02s
B 0
-225
-200
-175
-150
-125
-108
-75
-58
-2s
e
BIHDIHC EHERCY, EV
6. Analyses of small amounts of chrysotile fibers by ESCA: standard UICC chrysotile before (A) and after ( B ) extraction in HC1 solution. Differences in the element composition are evident.
Fig.
246
Fiq. 7. Scanninq electron microqraph of fine q l a s s fibers (type JM 104) used in animal experiments.
23
2a
LO
No
dl
Ca
15L
00 G
HH Sr
157
d Fiq. 8. LAMMA spectrum for positiv ions of one single fiber. The method is very sensitive (ppm and ppb range).
Pig. 9. SEM-micrographs and element spectra of single glass fibers: XRF analyses of original fibers ( I ) , EDXA analysis of single fibers ( 2 - 4 ) after an exposition (5 years) in rabbit lungs.
Fig. 10. XRF bulk analysis of glass and slag fibers: original probe ( 1 ) and after exposition in H C 1 solutions (2). The leaching effect is very evident.
248
of TEM + EDXA + SAED or also in some cases of SEM + EDXA. TEY can be used for the observation and analysis of very thin (fiber diameter < 0.1 urn) fibers, while the LAMMA-method is limited for fibers with a diameter of with a diameter
>
0.2 pm. Also SEM
+
EDXA is limited for fibers 0.2 urn. A fast extraction of Yg and other elements >
from chrysotile in acids can be also followed by XRF (Figure 5.: bulk analyses). Not only AF, but also PDDlF, primarily qlass fibers, can be changed chemically under different environmental conditions and after long residence in animal tissue. Our experimental results with glass fibers have shown that these inorganic fibers undergo similar chemical and physical changes as do chrysotile fibers. They are not resistant to basic solutions, they lose some elements (e. g. Na, K, Ca, Zn) upon exposure to acids and their surface becomes corroded. Changes of chemical composition have been found in glass fibers after 5 years deposition in animal tissue (instillation experiments done on rabbits). Analysis by LAMMA revealed that also in glass fibers a preferential leachinq of elements occur. But also the original chemical composition as well as the leaching of elements in glass fibers are inhomogeneous. Analyses done along the fiber axis demontrate that their chemical composition was different at different locations of the same fiber. Similarly, the chemical leaching of glass fibers was not constant for all fibers, but differed from one fiber to another. These conclusions are also documented by some examples of analyses done by LAMMA, SEM + EDXA and XRF (Figures 7-10.).
CONCLUSION Both AF and MYMF are chemically not inert when subjected to different environmental conditions or when measured in biological liquids. The proved analytical methods seem to be suitable for the analyses of fiber bulks as well as for the analyses of single fibers.
249
REFERENCES F. Pott, Staub-Reinhalt.Luft 38(1979)490-494. M.C. Jaurand, J. Bignon, P. Sgbastien and J. Goni, Environ.Res. 14(1977)245-251. 3 N. Kohyama, K. Kawai, S. Aita, M. Suzuki and H. Hayashi, Ind.Health (Japan)15 (1977)159-1 68. 4 A. Morgan, P. Davies, J.C. Wagner, G . Berry and A. Holmes, Brit.J.Exp.Pathol.58(1977)465-479 5 J. Harrington, A.G. Allison and D. Badami, Adv.Pharmacol.Chemother.12(1975)291-403. L.D. Palekar, C.M. Spooner and D.C. Coffin: Ann.N.Y.Acad.Sci.330 (1979)673-687 H. Tiesler, Glastechn.Ber.54(1981)136-143 and 369-381. K.R. Spurny, W. Stober, G . Weiss and H. Opiela, Atmos.Pollution 8 (1980)31 5-322 9 K.R. Spurny, J. Schormann and R . Kaufmann, Fresenius 2.Anal.Chem. 308(1981)274-279. 10 H. Malissa and J.W. Robinson, Analysis of Airborne Particles by Physical Methods. CRC Press 1nc.Palm Beach,FL,USA(1978) 1 2
This Page Intentionally Left Blank
251
FORMATION O F MONODISPERSE L E A D AEROSOLS AND IDENTIFICATION O F P A R T I C L E NUMBER CONCENTRATION BY I C E NUCLEATION
YASUO UENO* a n d DANIEL E . ROSNER D e p a r t m e n t of E n g i n e e r i n g a n d Applied S c i e n c e , Y a l e U n i v e r s i t y , 9 H i l l h o u s e Avenue, New Haven, Connecticut 06511, U . S. A. ROSA G . d e P E N A D e p a r t m e n t of M e t e o r o l o g y , T h e P e n n s y l v a n i a S t a t e U n i v e r s i t y , U n i v e r s i t y P a r k , P e n n s y l v a n i a 1 6 8 0 2 , U . S. A. JULIAN P. HEICKLEN D e p a r t m e n t of C h e m i s t r y a n d A e r o c e n t e r f o r E n v i r o n m e n t , 152 Davey L a b o r a t o r y , The Pennsylvania State University, U n i v e r s i t y P a r k , P e n n s y l v a n i a 16802, U. S. A.
ABSTRACT L e a d a e r o s o l s w e r e g e n e r a t e d t o i n v e s t i g a t e the conditions f o r the f o r m a t i o n of m o n o d i s p e r s e a e r o s o l s in n i t r o g e n s t r e a m . A e r o s o l s of high m o n o d i s p e r s i t y could b e o b t a i n e d by v a p o r i z i n g l e a d a t a t e m p e r a t u r e i n the r a n g e of 1000° t o 1150°C a n d by flowing n i t r o g e n at a r a t e of 1. 5 l l m i n . In o r d e r to p r o d u c e "lead iodide a e r o s o l s " p o r t i o n s of the l e a d a e r o s o l s w e r e conducted into a t e s t c h a m b e r i n which the a t m o s p h e r e of iodine vapor had previously been p r e p a r e d . T h i s m i x t u r e containing the a e r o s o l s with low c o n c e n t r a t i o n w a s m o d e r a t e l y s t i r r e d u n d e r d i f f e r e n t t e m p e r a t u r e s . "The l e a d iodide a e r o s o l s " w e r e s a m p l e d with a s y r i n g e to be i n j e c t e d T h e a e r o s o l s injected into a m o d i f i e d B i g g ' s t e s t d e v i c e f o r i c e nucleation. r a p i d l y changed into i c e c r y s t a l s , which could g r o w in s i z e . A s the n u m b e r of i c e c r y s t a l s could give t h a t of l e a d iodide a e r o s o l s , the r e a c t i v i t y of l e a d a e r o s o l s with iodine v a p o r w a s i n v e s t i g a t e d u n d e r v a r i o u s t e m p e r a t u r e s . An i n c r e a s e in t e m p e r a t u r e d u r i n g the a g e i n g of l e a d a e r o s o l s with iodine vapor promoted t h e i r reactivity.
INTRODUCTION F o r m a t i o n of h e a v y m e t a l a e r o s o l s ( l e a d e. g. ) with m o n o d i s p e r s e s i z e d i s t r i b u t i o n is of g r e a t i m p o r t a n c e to inhalation toxicology e x p e r i m e n t s or air pollutionlaerosol studies. In t h i s p a p e r , p h y s i c o - c h e m i c a l c o n s i d e r a t i o n i s given on the m e c h a n i s m of l e a d a e r o s o l f o r m a t i o n a n d t h e conditions f o r the f o r m a t i o n of m o n o d i s p e r s e a e r o s o l s a r e experimentally investigated. F u r t h e r e x p e r i m e n t s h a v e a l s o b e e n p e r f o r m e d o n the f o r m a t i o n of "lead iodide a e r o s o l s " b y u s i n g g a s - s o l i d i n t e r f a c e r e a c t i o n between iodine vapor 'KPresent a d d r e s s : D e p a r t m e n t of C h e m i s t r y , T e x a s A & M U n i v e r s i t y , C o l l e g e S t a t i o n , T e x a s 77840.
252
and lead a e r o s o l s obtained. The e x p e r i m e n t a l r e s u l t s of t h e i r reactivity u n d e r v a r i o u s t e m p e r a t u r e s a r e evaluated by a n ice nucleation method.
EXPERIMENTAL PROCEDURES L e a d a e r o s o l s w e r e g e n e r a t e d by a condensation method. The operating t e m p e r a t u r e s and flow r a t e s for a e r o s o l generation ranged f r o m 9500 to 1150°C and f r o m 1 . 0 l i m i n to 4 . 5 l / m i n , respectively. The a e r o s o l s w e r e collected with a n e l e c t r i c a l p r e c i p i t a t o r ( r e f . 1) and thoroughly washed away with a known amount of distilled w a t e r containing a s m a l l amount of n i t r i c acid. The amount of l e a d i n the washed solution was t i t r a t e d with EDTA. The mass concentration was calculated f r o m the a e r o s o l volume having passed through the e l e c t r i c a l p r e c i p i t a t o r and the t i t r a t e d amount of l e a d ( r e f . 2 ) . P a r t i c l e s i z e distribution was a l s o m e a s u r e d by sizing and counting l o t s of p a r t i c l e s in the photos taken by e l e c t r o n m i c r o s c o p e to d e t e r m i n e a v e r a g e particle size. P a r t i c l e number concentration could be known by calculating f r o m m a s s concentration and p a r t i c l e s i z e . "Lead iodide a e r o s o l s " w e r e obtained b y introducing a s m a l l amount of l e a d a e r o s o l s for 30 seconds into a t e s t c h a m b e r , in which the a t m o s p h e r e of iodine vapor had a l r e a d y been p r e p a r e d ( r e f . 3 ) . After lead a e r o s o l s r e a c t e d with iodine vapor under m o d e r a t e s t i r r i n g , s m a l l portions of the
2 \
0 ZE
15-
z
0
2
K I-
z
10-
z 0
0 u) u)
a
5-
FLOW RATE, L/MIN
Fig.
1. Influence of flow r a t e on m a s s concentration.
253 a e r o s o l s w e r e s a m p l e d f r o m t h e c h a m b e r to b e f u r t h e r d i l u t e d i n a n o t h e r c h a m b e r , t h e i n s i d e of w h i c h w a s u n i f o r m l y s t i r r e d . T h e f i n a l dilution f a c t o r i n e a c h e x p e r i m e n t w a s 1:12000 o r m o r e by u s i n g c l e a n n i t r o g e n . A small a m o u n t of t h e a e r o s o l s t h u s d i l u t e d w a s slowly i n j e c t e d into t h e In a d v a n c e , t h e m o d i f i e d B i g g ' s a p p a r a t u s which i s shown i n F i g . 5. a t m o s p h e r e of a cold c h a m b e r i n i t w a s m a i n t a i n e d at a t e m p e r a t u r e of -10. 5' o r -7OC by s t i r r i n g c o o l t a n t i n t h e o u t e r c e l l s ( e t h y l e n e g l y c o l t d r y The t e m p e r a t u r e s of t h e c e l l s a n d t h e c h a m b e r w e r e i c e o r ethyleneglycol). frequently examined, T h e t e m p e r a t u r e s of t h e c h a m b e r w e r e c h e c k e d a t t h r e e d i f f e r e n t p o i n t s i n h e i g h t (top, c e n t e r a n d b o t t o m ) . The temperature of t h e c h a m b e r w a s d e f i n e d a t the c e n t e r w h i c h is shown i n t h e f i g u r e . About o n e m i n u t e l a t e r a f t e r i n j e c t i n g t h e a e r o s o l s , t h e y u s u a l l y s e t t l e d down onto t h e c o l d s u r f a c e of a q u e o u s s u g a r solution. T h e a p p a r e n c e of t i n y i c e c r y s t a l s a s w e l l a s t h e i r g r o w t h i n s i z e could b e o b s e r v e d t h r o u g h a t r a n s p a r e n t t h i c k window f r o m t h e c e i l i n g .
R E S U L T S AND DISCUSSION T h e i n f l u e n c e s of the flow r a t e of n i t r o g e n s t r e a m o n mass c o n c e n t r a t i o n and M a s s c o n c e n t r a t i o n and p a r t i c l e o n p a r t i c l e s i z e a r e g i v e n i n F i g s . 1 a n d 2. s i z e v a r y w i t h t h e flow r a t e of n i t r o g e n a n d t h e t e m p e r a t u r e of l e a d v a p o r . Both of t h e m r e a c h a p e a k a t a c e r t a i n flow r a t e u n d e r a n y of t h e t e m p e r a t u r e s
%
5-0.20 IW
-5
n W
0152 t U
U
a
:W
0.10
>
U
FLOW RATE, L/MIN
Fig.
2. I n f l u e n c e of flow r a t e o n p a r t i c l e s i z e .
254
f r o m 950° to 115OoC, making a c o n t r a s t to the n u m b e r concentration passing through a t r o u g h ( F i g . 3 ) . In o r d e r to calculate the h e a t of evaporation f o r f u s e d l e a d f r o m t h e s e e x p e r i m e n t a l r e s u l t s , p r o p e r a s s u m p t i o n s w e r e m a d e and Clausius -Clapeyron's Equation was applied to e x p e r i m e n t a l data in both regions of slower flow r a t e s ( 1 . 0 and 1. 5 l / m i n ) and f a s t e r flow r a t e s ( 3 . 5 and 4. 5 l / m i n ) . Table 1 In f a c t , indicates the a v e r a g e values of heat of evaporation for fused lead. The values in the table do a l i t e r a t u r e shows the value of 47 k c a l / m o l e . not always m a k e a n a g r e e m e n t with this value a s a h e a t of evaporation. T h i s i s why the calculation was m a d e on b a s i s of the a s s u m p t i o n that the efficiency of t h e r m a l precipitation of the a e r o s o l s i s constant, r e g a r d l e s s of the t e m p e r a t u r e s of f u s e d lead. In f a c t , it m a y possibly be r e a s o n a b l e that the a e r o s o l m a s s concentration in the region of s l o w e r flow r a t e s cannot always be controlled by only t h e r m a l precipitation. The t e m p e r a t u r e s f o r nuclei formation w e r e calculated u n d e r the condition of s u p e r s a t u r a t i o n r a t i o of 5 o r 10. Table 2 shows the t e m p e r a t u r e s f o r A s we can e a s i l y observe from the a p p a r e n c e of the nuclei formation. p a r t i c l e s in the photo shown in Fig. the p a r t i c l e s look round. A S the
50001
s, 0
-
0
I
I
I
1
1000 500
.
-
2-
0 + a
U
I-
2
W
50 -
100
0 2 0
0 U
10-
m
5-
W
3z W
A
0 I-
a
d
10.5
FLOW R A T E , LIMIN
Fig.
3 . Influence of flow r a t e on p a r t i c l e n u m b e r concentration.
255 TABLE 1 A v e r a g e e v a p o r a t i o n heat of f u s e d l e a d f r o m e x p e r i m e n t a l d a t a Flow r a t e ( l / m i n )
H e a t of e v a p o r a t i o n ( k c a l / m o l e )
1.0 1. 5 3.5 4. 5
31. 3 25. 1 33.4 31. 1
TABLE 2 T e m p e r a t u r e s f o r n u c l e i f o r m a t i o n b y t h e s u p e r s a t u r a t i o n r a t i o s of 5 a n d 10 T e m p e r a t u r e (OC)
Supersaturation ratio
F o r lead vapor formation
1150
5 950
10 1150
10 950
F o r nuclei formation
1020
860
980
820
5
r).
Fig.
7. L e a d p a r t i c l e s i n n i t r o g e n ( a v e r a g e d i a m e t e r 0. 11
Fig.
8. A p p a r e n c e of i c e c r y s t a l s i n a modified B i g g ' s a p p a r a t u s .
256 melting point of l e a d i s 327OC, it may be suggested that the p a r t i c l e s w e r e actually in a liquid s t a t e while they w e r e s t i l l growing by mutual collision o r coagulation a f t e r fir s t p a r t i c l e formation. L e t us a s s u m e t h a t p a r t i c l e s i z e m a y be influenced by mutual collision while the a e r o s o l s a r e in a liquid s t a t e a t high t e m p e r a t u r e s , the following equation can ba obtained.
k: rl:
p:
71
:
K:
Boltzmann constant v i s c o s i t y coefficient of nitrogen gas vapor p r e s s u r e of fused l e a d a v e r a g e t e m p e r a t u r e while p a r t i c l e formation, coagulation and growth of p a r t i c l e s a r e undergoing constant
Assuming that nitrogen i s a n i d e a l g a s , the viscosity coefficient i s i n
4
5
5
4
4
F i g . 5. Modified Bigg's t e s t device f o r i c e nucleation. 1. T h e r m a l l y insultaing m a t e r i a l , 2. Ethyleneglycol and d r y i c e , 3. Ethyleneglycol, 4. S t i r r e r , 5. Thermocouple, 6. Inlet for t e s t a e r o s o l s , 7 . Aqueous s u g a r solution, 8 , T r a n s p a r e n t window.
257
- 112 The v a p o r p r e s s u r e of fused lead i s a l s o in proportion proportion to T . to the t e r m of exp (-AH/RT)!/' T h e s e t e r m s c a n be introduced into Eq. ( 1 -112 d 3 = K ' T
( e
- b H I R T 112
1
( 2 )
i s obtained and futher t r a n s f o r m e d .
E q . ( 3 ) c a n finally be derived.
In c a s e In ( K ' 'i: ' I 2 ) is constant, t h e r e m a y be a l i n e a r relationship between In d and 1/T. The slope of s t r a i g h t line can give the value of h e a t of evaporation. Applying Eq. ( 3 ) to e x p e r i m e n t a l r e s u l t s , a plot of In d against 1 / T should be l i n e a r and this i s found to bP actually the c a s e , a s i s shown i n F i g . 4. T h e s e plots a r e a l l s t r a i g h t lines p a r a l l e l with one another a s might be expected of Eq.( 3 1. The heat of evaporation f o r fused lead has been obtained a s the value of 47 k c a l / m o l e . T h e r e h a s been a good a g r e e m e n t between the values calculated f r o m e x p e r i m e n t a l data and the l i t e r a t u r e value with r e s p e c t to heat of evaporation f o r fused lead.
I
I
I
-4.
-4
I k t3 0 -5. J
- 5. 0 2.5
/'
0 3.5 0 4.5
"
7.0
.
/,
1
I
7.5
8.0
I/T,
10-4/0~
F i g . 4. P l o t of log d a g a i n s t 1 / T .
1.
258
Fig. 6 shows the influence of t e m p e r a t u r e and flow r a t e on a e r o s o l monodispersity. T h e n u m b e r s in the f i g u r e show the m o n o d i s p e r s i t y of l e a d aerosols. A e r o s o l s of high m o n o d i s p e r s i t y could be obtained by vaporizing l e a d a t a t e m p e r a t u r e i n the r a n g e of 1000° t o 115OOC and by flowing nitrogen s t r e a m a t a r a t e of 1. 5 l / m i n . A s s o m e e x p e r i m e n t s w e r e p e r f o r m e d on i c e nucleation by using r e a l l e a d iodide a e r o s o l s g e n e r a t e d f r o m fused l e a d iodide ( r e f . 41, this p r e s e n t e x p e r i m e n t i s c a r r i e d out by u s i n g two different l e a d a e r o s o l s : d = 0. I l p ( t e m p e r a t u r e 95OoC, flow r a t e 4. 5 l / m i n , m o n o d i s p e r s i t y 0. 31) and d = 0. 78,&(temperature 1000°C, flow r a t e 1. 5 l / m i n , m o n o d i s p e r s i t y 0. 17). As a r e s u l t , i t s e e m s t h a t the c o a r s e r l e a d a e r o s o l s r e a c t with iodine to produce l e a d iodide a e r o s o l s m o r e r e a d i l y than f i n e r ones. The reactivity i s T h e a p p a r e n t h e a t of activation a c c e l e r a t e d by the t e m p e r a t u r e of reaction. could a l s o be e s t i m a t e d . F u r t h e r d i s c u s s i o n will be d e m o s t r a t e d on the effect of r e a c t i o n t e m p e r a t u r e o n t h e r e a c t i v i t y of l e a d a e r o s o l s with iodine v a p o r and t h e i c e nucleation t e m p e r a t u r e s . F i g s . 7 and 8. show t h e photos of l e a d a e r o s o l s and i c e c r y s t a l s in the modified B i g g ' s a p p a r a t u s , r e s p e c t i v e l y .
1150
-
.
1100-
036
Y 10503
I-
4
.
a w
2w
1000-
+ 951
o;. "' ;o 1 0.27
1.0 1.5
25
35
4.5
FLOW RATE, L/MIN
Fig.
6. Influence of t e m p e r a t u r e and flow r a t e on a e r o s o l m o n o d i s p e r s i t y .
REFERENCES 1. Y . 2 Y. 3 Y. 4 Y.
Ueno Ueno Ueno, Ueno,
and I. Sano, Bull. C h e m . SOC.Japan, 44(1971) 908-911. and I. Sano, Bull. Chem. SOC.J a p a n , 45(1972) 975-980. Atmos. E n v i r o n . , lO(1976) 409-413. the 56th Colloid & I n t e r f a c e Sci. S y m p . , Virginia, in J u n e ,
1982.
259
OPTICAL OBSERVATIONS DURING CHDTICAL REACTIONS
H. STRAUBEL Vorderhindelang (G.F.R.
)
AE S TRACT Droplets or solids freely suspended in a three-plate-capacitor and illuminated by a laser beam yield a characteristic diffraction pattern. Assumed an exactly shaped sphere, this diffraction pattern consists in a system of concentric equidistant fringes of equal intensity. Each deviation from geometry or/and intensity in this system indicates a change of the refractive index n. This may be effected by impurities, by a mixture of two components, by an evaporating gradient, by crystalization of solutions or by chemical reactions. Using the electrical voltages connected with the capacitor and by optical evaluating the diffraction patterns, the whole running off can be investigated.
INTRODUCTION In the atmosphere chemical reactions occur between aerosol particles f.e. NaC1, NH C1, Pe 0 in presence of anthropogenic gases such as 4 2 3 C1, SO2, NOx and H2S. Due to these very diluted gases, the reactions run off in minutes to many hours. Therefore it is impossible to investigate such reactions with usual light scattering instruments, as their retention time is shorter (ca 1/100 s) than the time required for the chemical reaction. Besides this the particle is lost having passed the device. Possible reactions are known, however, they could not yet be observed on single particles at any state. Only integral measurement with a big number of particles was possible until now. In a three-plate-capacitor, described by the author previously, droplets or single solid particles can be freely suspended for more than 100 hours, undisturbed by boundaries except the surrounding air (ref. 1 ) Illuminated by a laser beam ( A = O , 6 3 2 8 / u m ) , radii of
.
260
the droplets can be calculated by the distance of the interference fringes, provided the droplet’s shape is exact spherical. The voltages a.c. and d.c., connected with the capacitor, work as a balance. Through it changes of mass are recorded at any time. To evaluate the optical data during the chemical reaction, the process under investigation must ~ n c elead to a spherical shape of the product. (ref. 2). Only in this state it is possible to calculate the radius r of the particle. By using the spheres data as starting point, now all changes during the process can be derived forward and backward at each time. If the specific weight of the sphere is unknown, it can be determined by two different voltages at the cahacitor (ref. 3 ) .
EXPERIMENTS 1). Disturbed ring system Droplets consisting of uniform substances as f.e. water, benzene, glycerine, yield as diffraction pattern a system of concentric, equidistant fringes, easy to evaluate. Fig. 1 shows the possible interferences between the beams 1 and 2 for a transparent sphere. The path difference between 1 and 2 is defined by equation (1) with the radius r and refractive index n: n A = 2r sin Y If the sphere is containing some small impurities (non transparent, monodisperse) the fringes become disturbed and dissimilar, dependent from number and size of these impurities. Fig. 2.
Fig. 1. Possible path difference between beams 1 and 2 for a transparent sphere.
Fig. 2. Disturbed fringes by small particles inside a sphere. Diameter 1 7 , l p .
261
The particles composition was 5% MoS2 ( d< l w ) in 95 % oil. For the particles inside the droplet Rayleigh-scattering can be assumed. The same phenomena will be observed if a frozen homogeneous sphere with a shrinked surface is illuminated by a laser beam. In this case essentially the reflected beam 2 of the surface is influenced.
2). Optical inhomogeneities By suspending a clear transparent droplet in the beam, another appearence can be seen. The fringes are very fine smoothened, however, a series of different diameter, thickness and intensity spreads out in radial direction, indicating a I1modulation1lof the whole system. Fig. 3. Such a phenomenon cannot be explained by Fig. 1, as the relation between reflected and permeating beam is only valid for a uniform refractive index n. This relation is also valid during evaporation o r condensation of the droplet (diminution o r growing). However, smallest deviations of n inside the sphere lead to optical inhomogeneities which appear in the diffraction pattern.,The droplet under research was a mixture of 80% oil with 20% benzene. As the vapour pressure of benzene is higher than that Fig. 3. Modulated interference of oil, the benzene evaporates fringes due to evaporation at the surface and effects a of one component in a mixture. radial gradient of the mixture Diameter 4 2 p . inside the sphere. (noil>nbenzene). This produces a modulation of the system. By evaporation o r condensation of one component of a mixture o r by a more or less concentration of a salt solution, the same phenomenon is developped. Generally, each change inside a particle will be visible as a change of refractive index n.
3).
Chemical reaction Chemical reactions lead always to changes of n. To irivestigate this relation, fixing salt (Na2S203 5 H20) was chosen. A dry crystal freely suspended in the capacitor, is dissolved by increasing relative
262
humidity (r.h.) of the surrounding air. Pig. 4a shows the dry crystal, 4b the initial water film on the crystal's surface. Gradually the crystal is dissolved, deviations in the ring diameters 4c indicate still undissolved small crystal particles (d< 1 w ) within the droplet (d = 2 9 , 3 6 m ) . Now injecting HC1-vapour in the capacitor leads to the reaction, Fig. 4d. The fringes of the diffraction pattern break open, 4e, forming a structure like llcellslt. We detect bright and dark spots, quickly traveling. New formed products NaCl and S are separated. Electrical control of the particle's weight shows that the whole portion of H2S03 5 H20 is expelled from the droplet, Fig. 5. At last a zone of preferred forward scattering appears in the middle of the pattern, and the contours of a NaC1-crystal emerges Fig. 4f During and after the reaction we see a strong turbidity of the NaC1-solution, due to the liberated S-molecules. After a few minutes, however, the pattern is cleared, as the S-molecules have formed greater agglomerates with smaller light scattering.
.
Fig. 4 a-f. Reaction between Na S 0 2 2 3 Compare Fig. 5 and 6
5 H20 + 2 HC1
263
/ i
L
:loo "
( H,O +SO,) .5H,O
(Y
8 0,
Fig. 5. Weight changes during the reaction
4). Fluid crystals Fluid crystals are organicsubstances with a temperature-dependent opacity, but without chemical change. They are used for displays, controled by temperature or electric fields (ref.$). The so called 0 Wf3BAtf substance is solid and turbid below 21 C, however, it becomes clear above 44 OC. In this interval the molecules have only degrees of freedom for translation and rotation. They arrange in domains of 105 molecules. Due to the walls between these regions, differences in refractive index n arise. Fig. 7a shows a droplet's ring system above 44 O C . Below this temperature there are confused regions and fringes of unequal distances in droplets with 2 0 0 . This may be due to the rotational sywnetric diameters d whirling of the molecules and simultaneous changes of refractive index n.
Fig. 7.
a
above 44
OC
b
between 21 and 44
OC
264
CONCLUSIONS The described method enables the observation of smallest optical deviations in solids o r fluids, freely suspended in electric fields. By two-beam-interference it is possible to differentiate between the properties of clear o r mixed fluid-droplets and of evaporating solutions.
x
tW3BAlf N-(p-Methoxy-bemyliden)-p-n-butylanilin
REFERENCES 1 H,Straubel, in Atmospheric Pollution 1978, Proceedings of the 13th International Colloquium, Paris, France, April 25-28, 1978, M.M.Benarie (Ed.), Studies in Environmental Science, Volume 1 Elsevier Scientific Publishing Company, Amsterdam 2
H.Straube1, in Atmospheric Pollution 1980, Proceedings of the 14 International Colloquium, Paris, France, May 5-8, 1980, M.M.Benarie (Ed.), Studies in Environmental Science, Volume 8 Elsevier Scientific Publishing Company, Amsterdam
3
H.Straube1, “Elektro-optische Messung von Aerosolen” Technisches Messen 48.Jahrgang 1981 Heft 6 tm 199-210 Verlag Oldenbourg, Miinchen
4. H.Kelker, “History of Liquid Crystals”, in: Molecular Crystals and Liquid Crystals, 1973, Vol. 21, pp. 1-48, Copyright 1973 Gordon and Breach Science Fublishers, Printed in Great Britain
265
COMPARISON BETWEEN S I X DIFFERENT INSTRUMENTS TO DETERMINE SUSPENDED PARTICULATE MATTER LEVELS IN AMBIENT AIR
J.G. KRETZSCS.MAR and J.B. PAUWELS
Studiccer.trum voor Kernenergie, B-2400 Mol, Belgium
ABSTRACT Over a period of six months simultaneous suspended particulate matter measurements with two different high volume samplers, two different low volume samplers, an automated dichotomous particulate system and an integrating Nephelometer were carried out at the same semi-rural monitoring site in the vicinity of the Nuclear Energy Research Centre, Mol, Belgium.
Except for the nephelometer all SPY-deter-
minations were done gravimetrically. The entire experiment was based on the comparison of daily averages. A reasonable to good correlation was found between the different instruments although the daily levels as well as the overall statistics of the SPM-situation over a period of six months showed large deviations.
For certain instruments the
deviations seemed to be systematic. The experiment will be repeated over another period of six months in order to control the present findings.
INTRODUCTION During the past years suspended particulate matter (SPM) levels in ambient air were determined with many different systems in a rather impressive number of short term projects or more permanent monitoring networks.
This paper reports the pre-
liminary results of the intercomparison under field conditions of six different systems used or in use under the previously mentioned conditions for the determination of SPM-levels in Belgium. comparison
The aims of the project are first of all the
of individual short-term (daily averages) measurements, simultaeously
obtained under field conditions with each of the systems, and secondly the analysis of the possible influence of the choice of a specific measuring system upon the evaluation of the actual SPM-situation when collectinq a sufficient number of individual measurements, and comparing some specific statistical parameters (means, percentiles or maxima) with the specifications of air quality guidelines, recommendations or standards.
266
DESCRIPTION OF THE MONITORING SITE AND SYSTEMS Figure 1 shows the semi-rural monitoring site in the vicinity of the Nuclear Energy Centre, Mol (SCK/CEN) with the following measuring systems
1 and 1'
:
:
two versions of the high volume LIB-Filterverfahren (LIB-HI1 and LIB-HI1' as described in ref. 1).
Fig. 1. Monitoring site (SCK/CEN, Mol) with different sampling systems.
2
:
the low-volume sequential sampler of the Instituut voor Hygiene en Epidemiologie, Brussel (IHE-LO, ref. 2).
3
:
the Beckman Dichotomous Particulate Sampler (DVI-LO, refs. 3-5). ment separates the collected dust in a fine and coarse fraction.
This instru-
267 The concentration corresponding to the sum of both fractions is used in the comparison with the other systems.
4 : a low-volume version of the LIB-Verfahren (LIB-LO). 5 :the SCK/CEN high volume sampler (SCK-HI, ref. 6).
6 :the MRI Integrating Nephelometer (NEPH, not represented on fig. 1 ) .
The main characteristics of the sampling systems for the gravimetric determination of the SPM-levels are summarized in Table 1.
done on conditioned filters (20 "C, 54 averages.
% RH).
All gravimetric determinations are Reported SPM-levels are daily
For the Nephelometer analogue recording was used.
TABLE 1 Main Characteristics of the sampling systems for gravimetric determination of SPM System
Fig. 1
filter
filtered volume/day
loaden surface LIB-HI1 LIB-HI 1 ' IHE-LO DVI-LO LIB-LO SCK-HI
450 500 15 24 80 550
m3 m3 m3 m3 m3 m3
Whatman 41, Whatman 41, Sartorius, Sartorius, Whatman 41, Whatman 41,
87 cm2 77 cm2 12,6 cm2 6,6 cm2 15 cm2 104 cm2
cellulose cellulose membrane 0,45 !Jm membrane 0,80 Um cellulose cellulose
1 1' 2 3 4 5
COMPARISON OF THE SIMULTANEOUS MEASUREMENTS Over a period of six months 77 simultaneous valid determinations of the SPMlevels were obtained. day-by-day LIB-LO.
Of the six systems three showed a very good agreement on a
base namely the SCK-HI, the LIB-HI (in bath versions 1 and 1') and the
The IHE-LO sampling system Predominantly followed the pattern of these
three systems although some prolonged deviations in both directions (lower or higher) were noted during the experiment.
The dichotomous virtual impactor (DVI-LO)
systematically gave lower levels than all the other instruments while the Nephelometer (NEPH) recorded the hiqhestpeak values.
Full details of the time series of
the simultaneous measurements are given in reference 7. The results of a linear regression analysis on the simultaneous measurements of each time two different systems are summarized in Table 2 (r cient, to the left of the diagonal
;
a/b
=
=
correlation coeffi-
coefficients of the equation y = a x + b ,
to the right), while Figure 2 gives the correspondinq scatter diagrams with respect to the SCK-HI sampler.
268
0 0 N
L
I
2 _J
R=O. 95 0
0
100
0
200
100
200
SCK-HI lug/rn31
SCK-HI ( ~ g / m ~ I
7
0
0
0
100
100
0
200
SCK-HI (ug/m31 0 0
0 0
N
N
I
u
0
I
200
SCK-HI h g / m 3 1
N=77 A=O. u B=2 R = O . 66
R=O. 86 0
0
1 0
100
SCK-HI
200 (4m31
0
100
200
SCK-HI [ ~ ~ g / m ~ 1
Fig. 2. Scatter diagrams of the simultaneous measurements with respect to the SCK-HI system.
269
TABLE 2 Correlation between the different measuring systems
SCK-HI LIB-HI 1 LIB-HI 1 ' LIn-Lo IHE-LO DVI-LO NEPH
SCK-HI
LIB-HI1
LIB-HI1'
LIB-LO
IHE-LO
DVI-LO
NEPH
-
0.9/10
0.94 0.95 0.94 0.71 0.66 0.86
-
1.0/-2 1.0,'-9
0.6/44 0.7/40 0.7/47
0.4/2 0.5/-3
-
1.0/1 1.1/-8 1.0/4
0.97
-
0.6/47
0.4/0
0.76 0.77
0.73 0.74 0.90
-
0.4/-11
0.96 0.97 0.71 0.71 0.89
0.92
0.67
-
1.4,'-24 1.6/-38 1.4/-17 1.4/-22 1.3,'-45 2.0/11
0.73
0.76
-
0.5/0
Table 2 and Figure 2 confirm the very good agreement between the SCK-HI, the LIB-HI'S and the LIB-LO samplers. The Nephelometer has a good correlation with these devices too but the regression equations confirm the tendacy of the Nephelometer for too hi.gh readinqs once the SPM-levels exceed a certain value. shows an acceptable correlation (r
=
The ME-LO
0 . 7 1 to 0 . 7 6 for n = 77) with the previous
systems. With respect to SCK and LIB the regression equations show a tendacy for overestimation of the lower SPM-levels measured in this test.
The SPM-levels given
by the dichotomous virtual impact are systematically too small over the entire SPMrange, and the correlation varies between 0.66 and 0.77.
COMPARISON OF THE GLOBAL STATISTICS Cumulative frequency distributions of the 77 simultaneously obtained daily averages are given on Figure 3 for each of the systems. The main statistical parameters are summarized in Table 3. in very good agreement.
As before the LIB'S and the SCK-HI sampler are
The IHE-LO device gives a significantly larger arithmetic
average, 87 1.1g/m3 against 6 1 to 6 7 ug/m3, and larger percentiles except above P90 where the SPM-levels are within the range of the LIB'S and the SCK-HI device. This results in a smaller u
9
( 1 . 4 against 1 . 6 to 1 . 8 ) for IHE-LO.
The Nephelo-
meter gives the inverse picture namely arithmetic average and lower percentiles (beneath P80) are comparable with the LIB'S and the SCK-HI but the higher percentiles, and consequently the geometric standard deviation,are larger ( u = 2 . 4 against 9
1 . 6 to 1 . 8 ) .
On the average the results of the dichotomous virtual impactor are a
factor 2 to 2 . 5 smaller than the corresponding results of the LIB-HI, the LIB-LO and the SCK-HI.
270
/ 1.;.
SC K - H,I,,, .. ..
................ .. .. .. .. .. .. ... ... ... ... ... ... . . . . . .
. . ... ...
i..i..i...l..i..l.... .. .. .. .. .. .. I . ... .I ..
LIB-HI 1
200
100
i . .
GO 50 40
.?.H E.
.. .. . . . . . .. .. ...................... ... . ... . ... . . . . . . . . .... . . ... .. .. . . . . . . . .. .. ,............ . .......... .. ... .. . .. . .. . .. ... ... ..................... .. .. . .. ... .. . . .. .. .. . . . .... , .. . .. . ... . . ......... .. .. .. .. .. . . . . . .. .. . . . . . .. .. . . ., . .. . . ,. ..... ,. ...... .. .. ,........ .. .. .. .. .. ... ... .. . .. . .. . .. ... ... . . . . . . ;..: .: . : :.. : , . i . . I ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... . . . . . . .
' ?
30
20
:
. . .. . .. .. . . . . . .. ...; . ..
"E
100
GO
50
z
ti0 30
GO 50 UO
-
:lo 50 70 85 9598 PROBRBILITY . . . .
Fig. 3.
. . . . .. . . .. . .. . . .. . . .. . .. ... . .... .. .. . .. .. .. .. .. . ... . . .. . . . . . . . .
60 50
' 7
20
:
.
l
j
110 30 20
10
I
200
) . . _ ...........
. . . . . .
100
,.:.
i
.. ... .. ... . ... .. ,:
50 70 85 9598 PROBRBILITY
Cumulative Frequency Distributions.
.I 1 0 0
.....
.....
30 .. .. .. .. .. .. .. . . , . , . , .. ...................... . . . . . . .. ... ... ... ... ... ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . j
,
m~
....... . . . . ... . .. .. .. .. .. .. .. .. .. . . . . . . . .
UO
j
.
50 70 85 9598 PROBRBILITY
50
j
.
.. .. . . . . . .. .. .. . . . . . . . . .....................
G O "e
"E
I
.
NEPH.?
.. .. . . . . . . . . . . .:..;..;.. . . . . .. . . .;. ..: .. .. .. :..;..: .. .. .. .. .. ... ... . .. . .. . .. . .. .. .. . . . . . . i. N. 4 7 3 i 1 .. .. .. .. . . . . . . . ... . . .... . . ... . . ... . . .. . . ... . . . . . . . . .. .. .. .. .. .. .. .. , ...... ,......, . . . . . . . . . . . . . . . . .
30
20
100
... ... ... ... ... ... ... ... .. .. .. . . . . . . . . :..:..: . :. :...:. . . .:. . . . ; ... ... . . . . . .. . . . . .. .. ... ... ... ... ... ... ... ... ... ... ... ... . .. . .. . .. .. ... ... ... ... ... ... ... ... .. .. . . . . . .. ..
DVI-LO
100
.
. , ,
i i
. . , ..... ............. .. .. .........., ............. .. .. .. .. .......................... .. .. .. .. .. .. .. .. ,. ........................... .. ... ... ... ... ... ... ... ......................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .,. ..,.... ,........ . , ........... . . . . .. .. .. ... ... ... ... ... ., ......................... . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . ;..:...;...:..;..: .. .. .. .. .. . . ... .; ... . i.. .. .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. .. . . . . . . .
.
.. .. .. .. .. .. .. ..
PROBRBILITY
200
.
.. . ... . ... . .. . . . . .. . . . ... . ... . .. . .. .. . . . . . . . .. . ... ... . . . . .. . . .. . .. . . . ......................... .
"!
50 70 85 9598
LO
. . . . -.. . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . .:,.:..;,..:.:..: . . . . . .. .. .. .. .. . . ... .; .... . .j.. . . . . . . . .
.
m10
10
50 70 85 9598 PROBRBILITY ,,
//
N s77
%... . . . . . . .
. . . . . . . .. .. .. . ... ... ... ... ... .. .~. . ... . ... . ... . ... . ... . ... 200 .. .. .. .. .. .. .. ..
200
:. N. =77 : I . . .. .. ..
.......................... .. . . . . . . . . . . .. .. .. .. .. .. .. .. . . . .. .. .. .. .. .. ........................ .. .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... ......................... .. .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. ..... .,. ....... . /................. . . . . . .. .. .. ... ... ... ... ... .. .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... . . . . . . .
L I.. B. . -. .L.9.. . . . .
....... . ... ... . .
20
10
' 7
. . . . . . . .:
.. .. .. .. . .:. ... .
:.
.. .. .. .
60 "E
. . . . . . . .. .. ... . . . . . . . . . .,.... ,. ....... , ..... ;. . . j . . . . . . . .. .. .. . . . . . . :. i .. . . !.. i . .. I . ... .I .. . . ..I 30 ... ... ... ... . .. . .. .. .. .. .. .. .. .. .. :,. :...:..;..: . . . .:. . . . .: 20 . .. .. .. .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... . . . . . . . .. .. .. .. .. .. .. .. .. .. .. . . . . . : 10
uo
.. ..
.
50 70 85 9598 PROBRBILITY
271
TABLE 3 Global statistics of the 7 7 simultaneous daily averages System
m
P50
P60
P70
SCK-HI LIB-HI1 LIB-HII' LIB-LO IHE-LO DVI-LO NEPH
66 67 61 64 87 28 69
59 59 54 58 80 24 51
65 68 58 61 89 30 63
73 72 63 67 96 33 73
with
P80 77 78 72 77 110 37 83
P90 92 98 91 90 124 47 128
m
:
arithmetic average
P50...P98
:
percentiles
max .
:
maximum value
U
:
geometric standard deviation
9
P95
P98
max
0
125 132 137 140 141 73 214
164 148 149 158 155 80 221
180 162 172 171 164 87 227
1.6 1.6 1.8 1.6 1.4 2.0 2.4
g
based on P98 and P50
These ratios are even larger than the 1.2 and the 1.8 reported for two different sites in reference 8.
It's obvious that more detailed studies of the DVI are
needed.
CONCLUSIONS The first phase of an intercomparison under field conditions of several commonly used methods for the determination of SPM-levels in ambient air leads to the following preliminary conclusions. Simultaneously determined daily SPM-levels are systematically in excellent agreement for certain sampling systems while others show random or systematic deviations.
Correlations ranged from acceptable to excellent while linear regression
techniques confirmed functional differences over the entire measured concentration range or over parts of it. Taking into account that normally the main purpose of measuring SPM-levels is to make a statement with respect to air quality recommendations, guidelines or standards, the obtained data sets of 77 simultaneous daily averages were analized from this point of view too.
If the WHO-Guidelines of 60 to 90 ug/m3 for the year-
ly average, and 150 to 230 ug/m3 for the 98-percentile of the gravimetrically determined daily average SPM-levels (ref. 9) are taken as reference this leads to the following observations. One system (DVI) gave results significantly smaller than the reference levels (approx. a factor 2).
The statistics of all the other systems
were within the specified range for respectively the mean and the 98-percentile level.
The results of the LIB'S and SCK-HI were rather around the lower limit of
the specified ranges while IHE-LO was high for the mean, low for the 98-percentile and vice versa for NEPH.
212
ACKNOWLEDGMENT This research was carried out under contract with the Ministry of Public Health.
REFERENCES 1 VDI-Richtlinien, Messen der Massenkoncentration von Partikelen in der Aussenluft, VDI 2463, August 1974. 2 IHE, Jaarrapport 1980. IHE Meetnet Zware Metalen, Brussel, 1981. 3 B.W. Loo, J . M . Jaklevic and F.S. Gouldinq, in B.Y.M. Lin (Ed.), Fine Particles, Aerosol Generation, Measurement, Sampling and Analysis, Academic Press Inc. N.Y., 1976, pp. 311-350. 4 W. John, G.P. Reisahl and J. Wesolowski, PB 80-113731, NTIS, 1978. 5 H. van Duuren, Kema 6792-79, 1979. 6 J.G. Kretzschmar, I. Delespaul and Th. De Rijck, The Science of the Total Env., 14 (1980) 85-97. 7 SCK, Onderzoek naar de niveaus van de luchtverontreiniging door Zware Metalen in Belgie, Mol, 1981. 8 R.K. Stevens et al., Atm. Env., 1 2 (1978) 55-68. 9 WHO, Environmental Health Criteria 8, Geneva, 1979.
213
SOME USES OF A DILUTER FOR AEROSOLS J.C. GUICHARD I n s t i t u t N a t i o n a l de Recherche Chimique Appliquee
-
I R C H A - VERT-le-PETIT - ( F r a n c e )
AB ST RA CT To d i l u t e an a e r o s o l i s a u n i t o p e r a t i o n which i s m m a n d n n r e f r e q u e n t i n the everyday work o f a l a b o r a t o r y o f p h y s i c s o f a e r o s o l s . We proposed a s o l u t i o n and have been d e v e l o p i n g i t s i n c e 1966. The I R C H A d i l u t i o n system i s h e r e d e s c r i b e d , and i t s main c h a r a c t e r i s t i c s are g i v e n . P r e s e n t l y commercialized, i t has p r o v e d e f f i c i e n t i n v a r i e d a p p l i c a t i o n s - a choice o f which i s h e r e o r e s e n t e d .
INTRODUCTION
To d i l u t e an a e r o s o l i s a u n i t o p e r a t i o n o f p h y s i c e n g i n e e r i n g which r e q u i r e s t o be more c a r e f u l t h a n i n t h e case o f t h e simDle m i x i n g gas-gas. T h i s s p e c i f i c c h a r a c t e r of t h e p r o b l e m o f t h e d i l u t i o n o f an a e r o s o l was d e f i n e d i n t h e l a t e 1 9 5 0 ' s and t h e c o m m e r c i a l i z a t i o n o f t h e o p t i c a l c o u n t e r s o f p a r t i c l e s has l e d t o t h e s t u d y o f o r a t i c a l systems, o a r t i c u l a r l y a t t h e I R C H A . We d e s c r i b e d t h e f i r s t " d i l u t i o n system" i n
1966 ( 1 ) and o r e s e n t e d i t t o t h e general o u b l i c t h e same y e a r ( 2 ) . That i n s t r u m e n t has r a o i d l y become an e s s e n t i a l t o o l which i s mentioned i n q u i t e a number o f o u r p u b l i c a t i o n s , f o r i n s t a n c e i n ( 3 ) where we show how u s e f u l i t can be f o r t e s t i n g a i r
f i 1 t e r s . O t h e r teams have a l s o worked on such r e a l i s a t i o n s w i t h o u t always o u b l i s h i n g t h e i r r e s u l t s . The l a t e s t s t u d i e s seem t o be those o f F e l i x and h i s colleagues ( 4 ) . F o r many y e a r s t h e p r o d u c t development o f these d i l u t i o n systems has been n u r e l y e m p i r i c which l i m i t e d t h e i r d i f f u s i o n . But, i n 1976 we managed t o work c u t a semiq u a n t i t a t i v e t h e o r y w h i c h now enables us t o c a l c u l a t e these anparatus a c c o r d i n g t o each p a r t i c u l a r case. A system o f c o m m e r c i a l i z a t i o n has t h e n been s e t t l e d i n s a t i s f a c t o r y c o n d i t i o n s , t h e r e s u l t o f which was t o show us t h a t these d i l u t i o n systems had o t h e r a p p l i c a t i o n s t h a n t h e ones o r i g i n a l l y t h o u g h t o f , as we s h a l l see now.
P r i n c i p l e s o f t h e I R C H A d i l u t i o n ' systems and d i f f e r e n t types o f r e a l i s a t i o n P r i n c i p l e s . Because o f t h e l a r g e dynamic o f usual c o n c e n t r a t i o n s i n t h e f i e l d o f a e r o s o l ( l o 4 and beyond) t h e system must reach d i l u t i o n r a t i o s o f
and beyond,
which imposes t o d i l u t e a s m a l l q u a n t i t y o f a e r o s o l i n a l a r g e volume o f c l e a n a i r .
274
The p r i n c i p l e of resolution chosen c o n s i s t s i n making a progressive d i l u t i o n i n a t u r bulent medium i n a dynamic system ( s e e f i g u r e 1 ) . For t h a t we use a cone perforated with rings of blowing holes which are supplied with clean a i r . The aerosol i s s e n t t o the top of the cone and finds i t s ' way out by d i l u t i n g i t s e l f gradually. There e x i s t two types of apparatus whether the mean airflow velocity in the cone i s constant o r
n o t . I t i s the constant tyoe apparatus t h a t we s h a l l now study.
clean air
porous media FIGURE 1 : General schema of the d i l u t e r model A The p r i n c i p l e above mentioned must come i n t o operation in a p r a c t i c a l system answering a c e r t a i n number of c r i t e r i o n s which define the ideal d i l u t i o n . There are three c r i t e r i o n s : - the aerosol should be homogeneous i n concentration and p a r t i c l e s i z e d i s t r i b u t i o n a t the output.
-
the system should be " l i n e a r " t h a t i s t o say the concentrations of aerosol a t the
e n t r y Co and a t the way-out C should be linked by q c = c0 Q + q Q clean a i r flow '
q aerosol flow
c
dilution ratio
CO
Whatever be Q and q between the ooerational l i m i t s appropriate f o r each d i l u t e r . - The l o s s e s i n the cone, which a r e i n e v i t a b l e s i n c e we have t o go through a t u r b u l e n t phase, should be, as much as p o s s i b l e , reduced. The theory a t our disposal enables us t o cone e n t i r e l y with the f i r s t two problems B u t the losses cannot be q u a n t i t a t i v e l y delimited a p r i o r i . Experience showed us
275 which types o f c o n s t r u c t i o n c o u l d g i v e r a t i o s g o i n g beyond 10 %.So we know how t o a v o i d t h a t problem b u t , f a c e d w i t h a new c o n s t r u c t i o n f o r which we p r e c i s e l y want t o know t h a t r a t i o , we must r e s o r t t o a d i r e c t d e t e r m i n a t i o n through a s i m p l e enough experiment. E v e n t u a l l y , l e t us m e n t i o n t h a t , uo t o now, o u r systems have been used w i t h a continuous a e r o s o l f e e d i n g . We a r e D r e s e n t l y s t u d y i n g t h e i r r e a c t i o n under an impuls i o n a l f e e d i n g i n o t h e r words we a r e t r y i n g t o q u a n t i f y t h e d e f o r m a t i o n which a s h o r t a e r o s o l p u f f undergoes d u r i n g i t s d i l u t i o n . B u i l d i n g o f d i l u t i o n systems. The d i l u t i o n system i s e s s e n t i a l l y d e f i n e d by i t s i n t e r n a l cone ( t h e o u t p u t d u c t i s meant t o smooth down t h e t u r b u l e n t f l o w coming o u t from t h e cone). The b u i l d i n g parameters a r e t h e a n g l e o f t h e cone and i t s o u t p u t diameter, t h e number and p o s i t i o n o f t h e r i n g s o f b l o w i n g h o l e s , t h e number o f h o l e s i n a r i n g and t h e i r own d i a m e t e r s . I t f o l l o w s t h a t t h e number o f p o s s i b l e cones i s v e r y l a r g e , b u t t h e t h e o r y enables t o s e l e c t s o l u t i o n s which answer t h e c r i t e r i o n s above mentionned ( s e e p r i n c i p l e s ) . Faced w i t h a problem which we a r e asked t o s o l v e , we can t h u s propose an apparatus t h e p e r f e c t f u n c t i o n i n g o f which we can a s c e r t a i n , b u t we do n o t p r e t e n d t o d i s c o v e r a l l t h e p o s s i b l e s o l u t i o n s . Indeed we happened t o c r e a t e systems d i v e r g i n g f r o m t h e t h e o r e t i c a l s o l u t i o n b u t we had t o check t h e i r good f u n c t i o n i n g by r a t h e r c o s t l y experiments, f o l l o w i n a procedures t h e g e n e r a l l i n e o f which has a l r e a d y been mentioned i n ( 1 ) . Another i m p o r t a n t p o i n t i s t h e area s u r r o u n d i n g t h e cone and which c o n s t i t u t e s a plenum where t h e f l o w s h o u l d be s u f f i c i e n t l y u n i f o r m so as t o have t h e same f l o w i n g speed f o r each o f t h e h o l e s i n t h e cone. There a r e two main ways t o s o l v e t h e problem; t h e y a r e governed by t h e acceptance o r n o t o f a s t r a i g h t f o n v a r d e n t r y l e n g t h f o r t h e aerosol p i p e . I n model A ( f i g u r e 1) t h e c l e a n a i r i s blown t a n g e n t i a l l y i n t o a f i r s t compartment t h e n t h e f l o w i s s t a b i l i z e d by p a s s i n g t h r o u g h a porous l a y e r b e f o r e p e n e t r a t i n g i n t o t h e plenum s u r r o u n d i n g t h e cone. T h a t d i s p o s i t i o n which g i v e s D a r t i c u l a r l y cheap c o n s t r u c t i o n s n e c e s s i t a t e s t h a t t h e f i r s t compartment s h o u l d have a p i g e g o i n g across i t and l e a d i n g t h e a e r o s o l . T h i s s t r a i g h t f o r w a r d l e n g t h i s n o t a c c e p t a b l e f o r c e r t a i n problems, because o f t h e l o s s e s i t may provoke ( f o r i n s t a n c e an a e r o s o l o f s m a l l drops t o be d r i e d ) . We t h e n use model B ( f i g u r e 2 ) i n which t h e a i r i s i n t r o d u c e d i n t o a compartment s u r r o u n d i n g t h e o u t p u t p i p e b e f o r e i t be blown towards t h e cone t h r o u g h a f i n e g r i d o f d i f f u s i o n . T h a t s o l u t i o n which p e r m i t s t h e i n t r o d u c t i o n o f t h e a e r o s o l p r a c t i c a l l y a t t h e l e v e l o f t h e f i r s t b l o w i n g r i n g , gives apparatus much more c o s t l y and b u l k y .
276
clean air
FIGURE 2 : General schema of the d i l u t e r model B General c h a r a c t e r i s t i c s of d i l u t i o n systems. A f i r s t p r a c t i c a l apnroach consists i n
giving t h e i r dimensions. The smallest d i l u t i o n system which i s t h e o r e t i c a l l y possible to conceive i s 7 cm i n diameter a n d t r e a t s 100 l/mn and more of clean a i r . I t i s f e a s i b l e t h a t systems 5 cm i n diameter should function b u t t h e i r perfecting will have
t o be made through an experimental approach. Picture 1 shows asystma little 1-r
which i s of a model B type and whichis special i n t h a t i t was devised t o sample aerosols a t
high temperature. There are no t h e o r e t i c a l l i m i t s t o l a r g e s i z e s b u t we have never had the occasion t o check i t beyond 1 m in diameter. The l a r g e s t we a r e personally using i s 60 cm i n diameter and i t s t o t a l length i s 3 m . I t can be seen o n p i c t u r e 2 . There e x i s t , of course, a l l the intermediary s i z e s w i t h a model of output diameter measuring 20 cm which i s often requested by the laboratory o f ohysics of aerosols f o r i t covers most of t h e needs. The next parameter t o be considered i s the airflow through the d i l u t i o n system o r the mean airflow velocity a t the output. I n general the minimal airflow corresponds t o an output velocity i n f e r i o r t o 1 m/s ( t e c h n i c a l reasons). The maximum airflow i s limited t o the value which gives a pressure drop i n the cone o f 60 mm of water (pract i c a l reason); the corresponding output velocity i s then 8,5 times the minimal veloc i t y . This r a t i o 8,5 a l s o represents the dynamic of the flows currently used. The pressure drop o f the cone i s given by
2 = 0,1326 V P in which V i s , i n m/s, the output airflow velocity common t o every hole. A A
P
t h e pressure drop i n mm o f water
217
A more c o n v e n i e n t f o r m u l a i s = 0,1326 ( K Us)’ where Us i s , i n m/s, t h e a i r f l o w v e l o c i t y a t the P o u t p u t and K a c o n s t a n t c h a r a c t e r i s t i c o f t h e cone. T h a t c o n s t a n t , g i v e n w i t h each
h
system, i s always > 2,5 Another i m p o r t a n t c h a r a c t e r i s t i c i s t h e c a o a c i t y o f d i l u t i o n . F o r an o r d i n a r y system o p e r a t i n g a t a g i v e n a i r f l o w , t h e r e i s a maximum v a l u e o f t h e aerosol a i r f l o w which can be a d m i t t e d . T h i s v a l u e depends on t h e c o n s t r u c t i o n c h a r a c t e r i s t i c s ; i t can be a d e t e r m i n a n t element f o r c e r t a i n a p p l i c a t i o n s such as t h e p r o d u c t i o n o f d u s t l a d e n f l o w s . I n o t h e r i n s t a n c e s ( t o measure a e r o s o l s f o r i n s t a n c e ) i t can be
gnored.
F i g u r e 3 i l l u s t r a t e s t h i s p o i n t f o r systems 23 cm i n diameter designed f o r d i f e r e n t a p p l i c a t i o n s . On t h e c o n t r a r y t h e r e i s no i n f e r i o r l i m i t t o t h e a i r f l o w t o d i Ute;
dilution ratio x
lo-*
I/mn 100
1000
clean air flow
FIGURE 3 : Examples o f t h e maximum r a t i o f o r two d i l u t e r s o f t h e same d i a m e t e r (pi 23 cm)
however, i n t h e case o f an a e r o s o l , p r a c t i c a l l i m i t s can be found, f o r i f t h e a i r f l o w i s too low
t h e l o s s e s , i n t h e c a r r y i n g p i p e s , b e f o r e r e a c h i n g t h e d i l u t i o n system
become s i g n i f i c a n t . T h a t i s why t h e g e n e r a l r u l e i s t o work on as much aerosol as p o s s i b l e so as t o o b t a i n e v e n t u a l l y a qood p r e c i s i o n . T h i s leads t o use i m p o r t a n t a i r f l o w o f c l e a n a i r f e e d i n g s e r i a l l y disposed systems (we s h a l l see an example of
t h a t application t o medical n e b u l i z e r s ) . Finally another c h a r a c t e r i s t i c , with which we s h a l l deal b r i e f l y , concerns the l i m i t a t i o n s of the s i z e s of the p a r t i c l e s which can be t r e a t e d . A few common sense recommendations, which our experience taught us as w e l l , are here very useful t o know. The d i l u t i o n operation i t s e l f can function without problems f o r n a r t i c l e s of 100 u ( d e n s i t y 2 ) b u t losses with local concentration decreases can be the consequence of thc natural sedimentation o r of centrifugation e f f e c t s due t o the turbulence in the cone and i n the straightforward length a t the outout. I n a l l the cases, when the s i z e s are s u p e r i o r t o 10 p ( d e n s i t y l ) , i t i s b e t t e r t o work with systems equipped with a v e r t i c a l a x i s , which prevents l o s s e s i f we do not go beyond 20 p . Beyond t h a t p o i n t , according to the model of the d i l u t e r and i t s operating flow, we can come across problems which i t i s b e t t e r t o discover and quantify during an i n i t i a l study o f q u a l i f i c a t i o n from which t a b l e s of correction of t h e observed defects may be drawn. Examples of a p p l i c a t i o n of d i l u t i o n systems Measuring aerosols. A d i l u t i o n system i s an often indispensable i n t e r f a c e between the real aerosols, o r the ones made i n l a b o r a t o r i e s , and the various o p t i c a l counters (Royco, S a r t o r i u s e t c . . ) , b u t we a l s o happened t o use i t f o r l e s s recent instruments, such as the cascade impactor, when the smoke t o be studied was highly concentrated. I t would seem cheaper t o use small models b u t , as we already noticed, the d i l u t i o n c o e f f i c i e n t s sought being and below, we would then t r e a t small airflows of aerosols and losses would a l t e r the measuring accuracy. That i s why we generally recommend t o use d i l u t e r s 20 t o 23 cm i n diameters and operating around 1000 l/mn. There a r e , however, cases i n which high d i l u t i o n r a t i o s a r e sought and we have a permanent apparatus which c l e a r l y i l l u s t r a t e s t h i s point ( s e e p i c t u r e 2 ) . I t i s used t o study the clouds produced by medical nebulizers. (pneumatic nebulizers, u l t r a s o n i c nebulizers o r "spray cans") The i n i t i a l concentrations a r e usually of some millions of p a r t i c l e s per cm3 and they must be reduced t o r a t i o s i n f e r i o r t o 50/cm3 which n e c e s s i t a t e s d i l u t i o n s of 105 times and more. I n the i n s t a l l a t i o n presented, the nebulizer i s enclosed i n a t i g h t box i n t o which s t a i n l e s s s t e e l ( p = 10 cm) The whole of the droplets aerosol i s s e n t i n t o t h a t f i r s t s t a g e where i t i s mixed with 300 l/mn of hot a i r (temperature of 120°C) so a s t o dry i t up t o obtain a penetrates the e n t r y of a d i l u t i o n system model B made of
cloud of nuclei which will be the o b j e c t of the measuring. The output of the d i l u t e r i s p u t under pressure thanks t o a g r i d , so t h a t one p a r t of the airflow should be send towards a second stage (@=60cm)through an o r i f i c e p l a t e . This d i l u t e r operates around 10.000 l/mn and i s followed by a terminal level (@=23cm)i n which the airflow of clean a i r i s 1000 l/mn.
219
The r e a l i s a t i o n of dust laden flows. We had t h e occasion t o present such a n applic a t i o n a t the 1 2 t h colloquium of the I R C H A ( 5 ) . Since then the same basic principles have been applied t o the r e a l i s a t i o n of flows a t a g r e a t e r velocity ( 2 0 m/s) obtained i n i n s t a l l a t i o n s t h a t we f i t out when asked, according t o a common scheme. A fluidized bed aerosol generator of the " n u l d o u l i t " tyne model B sends a concentrated aerosol i n t o the e n t r y of a special d i l u t e r capable of operating a t a high airflow velocity. A t the output, the homogeneous phase obtained a t t a c k s a second f l u i d i z e d bed where the aerosol undergoes i f necessary a f u r t h e r disnersion and where the flow acquires turbulence c h a r a c t e r i s t i c s which can be regulated a t will ( f l a t velocity c h a r t , uniform turbulence r a t i o e t c . .) Another obvious application i s in the f i e l d of a i r - f i l t e r s t e s t i n g f a c i l i t y . The d i l u t e r , j o i n t l y operating with a f l u i d i z e d bed aerosol generator enables t o create an "entry s e c t i o n " which can be very e f f i c i e n t and whose reduced s i z e i f compared t o the straightforward lengths necessary t o have a c o r r e c t aerosol i n c l a s s i c a l i n s t a l l a t i o n s (ASHRAE t e s t , Na C1 t e s t e t c . . . ) T h a t disposition proves p a r t i c u l a r l y e f f i c i e n t when we want t o s e t u p a permanent i n s t a l l a t i o n enabling t o measure the f r a c tional e f f i c i e n c y of f i l t e r s and of f i l t e r i n g l a y e r s . Moreoverin the domaine of f i l t e r s , t h a t same technology enabled us t o find a good s o l u t i o n to the t r i c k y problem of t e s t i n g c a r t r i d g e f i l t e r s with c i r c u l a r l y opened s u c t i o n . I t i s well known t h a t we generally have t o deal with cylindrical nleated paper i n a housing where polluted a i r i s admitted t h r o u g h a c i r c u l a r s l o t opened near the top of the housing. The nroblem of t e s t i n g i s t o make the aerosol penetrate uniformly i n t o the s l o t , while avoiding as much as possible the deposits on the housing i t s e l f . We have b u i l t and studied a n i n s t a l l a t i o n accordinq t o the diagram in figure 4. The f i l t e r t o be t e s t e d i s s e t t l e d on the f l o o r of a c y l i n d r i c tank in which i s f i t t e d the outnut of a d i l u t i o n system which sends the t e s t aerosol uniformly dispersed i n a flow representing, on a n average, half of the one aspirated by the f i l t e r being t e s t e d . The complementary flow comes from the outside and goes t h r o u g h the ring s i t u a t e d between the two cylinders where i t i s transformed i n t o a p r o t e c t i v e flow meant t o minimize the dust l o s s e s . With t h a t system, the quantity of dust which penetrates i s exactly i d e n t i c a l i n a l l points of the a s p i r a t i n g s l o t and the deposits ( t h a t can be released i n suspension a t the end of the t e s t ) do n o t exceed 10 % of the q u a n t i t y s e n t . Applications i n the f i e l d of the mixinq of gases. The homogeneous mixing of two o r more gases can be done by methods well known in chemical engineering and practised i n apparatus which may be simpler than those here described. That i s why we did n o t think a t f i r s t t h a t our d i l u t e r s could have an onening in t h a t f i e l d and y e t they
280
dust .-c
.-- clean air
ambiant air
FIGURE 4 : Schema o f a f a c i l i t y t o t e s t c a r t r i d g e f i l t e r have n o t ceased t o develo? i n t h a t a p p l i c a t i o n . The reasons a r e many b u t v e r y o f t e n
i t i s t h e i r c h a r a c t e r i s t i c o f b e i n g a b l e t o make r a p i d l y , i n a reduced space, a p e r f e c t m i x i n g w h i c h i s p a r t i c u l a r l y a p p r e c i a t e d as p r o v e d by t h e two f o l l o w i n g examples The f a b r i c a t i o n o f g r e a t f l o w s o f gaz o n l y s l i g h t l y p o l l u t e d , f o r i n s t a n c e by t o x i c s , can be done almost c o r r e c t l y i n v e s s e l s which a r e expensive because o f t h e i r volume. The d i l u t i o n system i s a v e r s a t i l e and cheap s o l u t i o n . Thus, i t was p o s s i b l e t o m i x 50 cc/mn o f gas i n 15.000 l/mn o f c l e a n a i r , g i v i n g c o n c e n t r a t i o n s o f 3 ppm i n volume. The c l e a n i n g o f gases and noxious vapours by making them r e a c t w i t h a n o t h e r gas which t r a n s f o r m s them i n t o aerosol i s a o o s s i b i l i t y which arouses g r e a t i n t e r e s t . We have made a d e m o n s t r a t i o n i n t h e case o f t h e phosgen. I t i s a dangerous t o x i c which chemical i n d u s t r i e s r e j e c t , more and more f r e q u e n t l y , under t h e f o r m o f d i l u t e d e f f l u e n t s , which l i m i t s p u r i f y i n g e f f i c i e n c y and makes i t expensive t o use c l a s s i c a l systems such as t h e washers ( w i t h a l i m e s o l u t i o n t h e b e s t ones reach an e f f i c i e n c y o f 90 % on c o n d i t i o n o f t o l e r a t i n g 200 t o 300 mm o f w a t e r o f p r e s s u r e d r o p ) . B u t t h e phosphogene can r e a c t w i t h t h e ammoniac by g i v i n g an aerosol o f u r e a . Thus, f o r
281
e f f l u e n t s a t 650 ppm, i n t r o d u c e d i n t h e main c i r c u i t o f t h e d i l u t e r ( f l o w o f 2500 l / m ) a f l o w o f ammoniac o f 8 l/mn s e n t by t h e a e r o s o l c i r c u i t enables t o p u r i f y a t 95 % whereas t h e p r e s s u r e drop accepted w i t h t h e c i r c u i t o f e f f l u e n t s i s o f 40 mm o f w a t e r . Even i f t h e a e r o s o l produced must t h e n be stopped, t h i s means o f o u r i f i c a t i o n seems t o be cheaply c o m p e t i t i v e . L e t us m e n t i o n t h a t t h e c o m m e r c i a l i z a t i o n o f d i l u t e r s f o r t h a t t y p e o f a p p l i c a t i o n i s c a r r i e d o u t by EUROPOLL l t d ( 6 ) . Sampling h o t a e r o s o l s . The g r e a t m a j o r i t y o f t h e measuring apparatus f o r a e r o s o l s p a r t i c u l a r l y t h e most e l a b o r a t e ones, h a r d l y e v e r f u n c t i o n beyond 50 o r 6 0 " . I f we have t o s t u d y d u s t s u b m i t t e d t o h i g h temoeratures (400 t o 800°C),
t h e y have t o be
c o o l e d . The use o f an exchanoer i s a s o l u t i o n e n t a i l i n g heavy l o s s e s o f a e r o s o l , moreo v e r t h e a e r o s o l can a l s o be d e t e r i o r a t e s . Combining b o t h t h e c o o l i n g and t h e d i l u t i o n i n one o f o u r apparatus i s a s o l u t i o n w h i c h gave e x c e l l e n t r e s u l t s , f o r i n s t a n c e when we s t u d i e d t h e e x h a u s t fumes o f i n t e r n a l combustion e n g i n e s . I t was t h e d i l u t e r model B, i n s t a i n l e s s s t e e l , p r e s e n t e d i n p i c t u r e 2 which was used. A n o t i c e a b l e c h a r a c t e r i s t i c o f t h e method i s t h a t t h e f l o w o f h o t qas which e n t e r s i n t o t h e appar a t u s i s measured by a t h e r m i c method. F o r t h a t , thermocouples w i t h r e c o r d e r s a r e p l a c e d a t t h e e n t r y o f t h e h o t gas ( T 2 ) , a t t h e e n t r y o f t h e d i l u t i o n c i r c u i t ( T o ) and a t t h e o u t p u t o f t h e d i l u t e r (T1). I f we draw t h e e n t h a l o i c balance o f t h e system, t h e r e s u l t o b t a i n e d , i n a f i r s t a p n r o x i m a t i o n i n t h e case o f t h e a i r i s :
5
Q
=
1 ;
-
To
2_- T 1
With a d i l u t i o n r a t i o o f
lo-[,
= dilution ratio
w i t h gas a t 600°C, whereas c l e a n a i r i s a t 22°C t h e
r i s e i n temperature a t t h e o u t p u t i s 5,8"C. Thus equipped, t h e d i l u t e r i s v e r y c o n v e n i e n t f o sampling and measurinq h o t a e r o s o l s whether these be a t a s u f f i c i e n t o v e r p r e s s u r e o r whether we de-pressure t h e d i l u t e r by a s p i r a t i n g a t i t s o u t p u t . The examples o f a p p l i c a t i o n s above mentioned have been chosen among o t h e r s because t h e y a r e p a r t i c u l a r l y s i g n i f i c a n t . They show t h a t these d i l u t e r s c o n s t i t u t e an operat i o n a l s o l u t i o n f o r most o f t h e problems o f a e r o s o l d i l u t i o n and o f t h e f a b r i c a t i o n o f d u s t l a d e n f l o w s w h i c h can a r i s e i n t h e l a b o r a t o r y o r i n i n d u s t r y . REFERENCES 1 J.C. Guichard e t J.C. Ney, C o n s t r u c t i o n e t etude d'une chambre d d i l u t i o n pour a e r o s o l s . I R C H A , n o t e i n t e r i e u r e NO32 (1966) 2 J.C.
Guichard, Chambre
a
d i l u t i o n p o u r a e r o s o l s . Conference a l a s e s s i o n 1966 d
Munich de " A r b e i t k r e i s F u r Reine Riume" ( S t u g g a r t )
282
3 J.C. Guichard e t J . TGsio, Performance of a i r f i l t e r s f o r clean rooms. The t e s t f a c i l i t y of I R C H A . F i l t r a t i o n a n d se9aration Sent/Oct. 1370 n.577 B 585. 4 L.G. F e l i x , R . L . t l e r r i t t , J.D.Uc Cain e t J.W. Ragland, S a m l i n g a n d d i l u t i o n system design f o r measurement o f submicron o a r t i c l e s i z e and concentration i n stack emission a e r o s o l s . TSI q u a t e r l y Oct/Dec. 7 1 9 8 1 N O 4 D . 3 B 1 2 . 5 J . C . Guichard, A . Saint-Yrieix e t J.L. Magne, E h d e s oreliminaires a la construc
t i o n d'une cheminee d ' e s s a i . lZPme Colloque International orqanisi! par 1 ' I R C H A in Atmosoheric Pollution e d i t e d by PI. Benarie, 0 . 325 B 338. 6 EuroDoll, 2 Rue Amorteaux 78730 Saint-Arnoult-en-Yvelines - France
Picture 2
283
FORMATION AND EVOLUTION OF SULFATE AND N I T R A T E AEROSOLS I N PLUMES C h r i s t i a n Seigneur, Pradeep Saxena, and A. Be1 l e Hudischewskyj Systems A p p l i c a t i o n s , Inc.,
San R a f a e l , C a l i f o r n i a
94903
ABSTRACT A mathematical model i s p r e s e n t e d t h a t d e s c r i b e s t h e b e h a v i o r o f gaseous and a e r o s o l s p e c i e s i n plumes.
The processes r e p r e s e n t e d b y t h e model i n c l u d e
a d v e c t i v e t r a n s p o r t , t u r b u l e n t d i f f u s i o n , s u r f a c e d e p o s i t i o n , gas-phase c h e m i s t r y , a e r o s o l c o a g u l a t i o n and s e d i m e n t a t i o n , and gas-to-aerosol s i o n f o r b o t h n i t r a t e and s u l f a t e species.
conver-
The model p r e d i c t i o n s a r e compared
w i t h measurements o b t a i n e d i n t h r e e power p l a n t plumes having d i f f e r e n t environments.
INTRODUCTION The s t u d y o f secondary a e r o s o l f o r m a t i o n i n t h e atmosphere i s a s u b j e c t o f p a r t i c u l a r i n t e r e s t i n a i r p o l 1 u t i o n r e s e a r c h because secondary a e r o s o l s c o n t r i b u t e t o v i s i b i l i t y impairment, a c i d p r e c i p i t a t i o n , and p o s s i b l y a f f e c t human h e a l t h a d v e r s e l y .
Secondary a e r o s o l s a r e formed i n t h e atmosphere when
gaseous s p e c i e s e i t h e r n u c l e a t e t o form new a e r o s o l s o r condense on t h e surface o f e x i s t i n g aerosols.
Chemical s p e c i e s i n v o l v e d i n t h e s e gas-to-
a e r o s o l c o n v e r s i o n processes i n c l u d e s u l f a t e , n i t r a t e , and o r g a n i c species. The p r i m a r y p o l l u t a n t s e m i t t e d from power p l a n t s i n c l u d e SO2,
NO,
and p r i m a r y
a e r o s o l s ; s i n c e small amounts o f hydrocarbons a r e e m i t t e d , o r g a n i c a e r o s o l f o r m a t i o n i n power p l a n t plumes can be c o n s i d e r e d t o be n e g l i g i b l e .
In this
paper, we c o n s i d e r t h e f o r m a t i o n and e v o l u t i o n o f secondary s u l f a t e and n i t r a t e a e r o s o l s i n power p l a n t plumes. I n r e c e n t y e a r s , s e v e r a l e x p e r i m e n t a l programs have been undertaken t o s t u d y secondary s u l f a t e and n i t r a t e a e r o s o l f o r m a t i o n i n plumes.
Conversely,
t h e o r e t i c a l s t u d i e s have been conducted t o q u a n t i t a t i v e l y d e s c r i b e t h e processes i n v o l v e d i n aerosol f o r m a t i o n and dynamics and, u l t i m a t e l y , t o s i m u l a t e a e r o s o l b e h a v i o r i n t h e atmosphere.
To t h i s end, s e v e r a l mathematical models f o r s u l f a t e f o r m a t i o n have been developed ( r e f s . 1-2-3).
Comparisons o f model p r e d i c t i o n s w i t h a i r b o r n e
measurements performed i n power p l a n t plumes have shown s a t i s f a c t o r y agreement ( r e f s . 1-3).
N i t r a t e a e r o s o l c h e m i s t r y i n t h e atmosphere has a l s o been
s t u d i e d ( r e f s . 4-5-6-7).
However, t o o u r knowledge, t h e r e has been no a t t e m p t
t o model n i t r a t e aerosol f o r m a t i o n i n plumes.
Since t h e r e i s i n c r e a s i n g
e v i d e n c e o f i t s f o r m a t i o n i n power p l a n t plumes ( r e f s . 8 - 9 ) , i t i s c l e a r l y i m p o r t a n t t o i n c l u d e n i t r a t e aerosol dynamics i n t h e mathematical t r e a t m e n t o f plume a e r o s o l f o r m a t i o n . T h i s paper p r e s e n t s t h e e x t e n s i o n o f a s u l f a t e a e r o s o l plume model t o i n c l u d e n i t r a t e aerosol formation.
We f i r s t p r e s e n t a b r i e f d e s c r i p t i o n o f
t h e model and t h e c h e m i s t r y o f secondary aerosol f o r m a t i o n a t l o w humidities.
The f o l l o w i n g s e c t i o n d i s c u s s e s t h e model s i m u l a t i o n o f secondary
a e r o s o l f o r m a t i o n i n power p l a n t plumes f o r t y p i c a l cases i n v o l v i n g d i f f e r e n t background c h e m i s t r y and compares model s i m u l a t i o n s w i t h e x p e r i m e n t a l data. F i n a l l y , t h e s t u d y r e s u l t s a r e d i s c u s s e d i n terms o f model a p p l i c a t i o n s and o f a d d i t i o n a l work needed t o understand and s i m u l a t e atmospheric aerosol formation.
D E S C R I P T I O N OF THE MODEL
Formation o f s u l f a t e a e r o s o l s S u l f a t e a e r o s o l s a r e formed i n t h e atmosphere from t h e o x i d a t i o n o f SO2
on soot aerosol s u r f a c e s o r i n l i q u i d c o a t e d a e r o s o l s o r l i q u i d d r o p l e t s . A r e v i e w o f t h e v a r i o u s chemical pathways ( w h i c h can o c c u r i n t h e gas phase)
t h a t l e a d t o t h e f o r m a t i o n o f s u l f a t e s i n t h e atmosphere has been presented by B u r t o n e t a l . ( r e f . 10).
A f t e r a b r i e f o v e r v i e w o f t h e s e processes, we
address i n more d e t a i l t h o s e chemical processes o f i n t e r e s t t o t h e p r e s e n t study. The most i m p o r t a n t chemical pathways o f gas-phase o x i d a t i o n o f SO2 i n t h e
A
atmosphere i n v o l v e t h e r e a c t i o n o f SO2 w i t h OH, CH3O2, and H02 r a d i c a l s . r e v i e w o f t h e k i n e t i c d a t a a v a i l a b l e f o r t h e s e r e a c t i o n s suggests t h a t t h e
r e a c t i o n w i t h OH i s t h e most s i g n i f i c a n t gas-phase o x i d a t i o n pathway f o r SO2 ( r e f . 1 1 ) ; t h e r e f o r e , i n t h i s s t u d y , i t w i l l be t h e o n l y pathway c o n s i d e r e d ( r e f s . 3-12):
SO2
+
OH
----+
HS03
----+
H SO
2 4
k = 1320 ppm-' m i n - l
(11
285
Because t h e vapor p r e s s u r e o f H2SO4 i s low, i t w i l l condense i n t h e presence o f H20 ( r e f . 13).
Another g a s - t o - p a r t i c l e c o n v e r s i o n process f o r H2SO4
i n v o l v e s t h e r e a c t i o n o f H2SO4 w i t h NH3 t o form NH4HS04 and (NH4)2S04.
This
process i s b e l i e v e d t o p r e v a i l o v e r t h e f o r m a t i o n o f H2SO4 s o l u t i o n a e r o s o l s i n t h e t r o p o s p h e r e ( r e f s . 14-15-16).
The f o r m a t i o n o f ammonium s u l f a t e s i s
i n v e s t i g a t e d i n g r e a t e r d e t a i l a t t h e end o f t h i s s e c t i o n . The o x i d a t i o n o f SO2 a l s o o c c u r s on t h e s u r f a c e o f soot a e r o s o l s and i n t h e l i q u i d phase o f l i q u i d - c o a t e d a e r o s o l s o r l i q u i d d r o p l e t s .
The l i q u i d -
phase o x i d a t i o n processes i n c l u d e o x i d a t i o n by 02, 03, and H202, and o x i d a t i o n b y O 2 c a t a l y z e d by t r a n s i t i o n metal i o n s ( r e f . 10).
Liquid-phase o x i d a t i o n o f
SO2 has been i n c l u d e d i n aerosol plume models e i t h e r as a parameterized
process ( r e f . 3 ) o r as a m e c h a n i s t i c component ( r e f . 2 ) .
The model s i m u l a t i o n
p r e s e n t e d here i n v o l v e d cases w i t h l o w r e l a t i v e h u m i d i t i e s (below 60 p e r c e n t ) f o r which l i q u i d - p h a s e o x i d a t i o n o f SO2 i s u n i m p o r t a n t ( r e f .
17); therefore,
we c o n s i d e r o n l y gas-phase o x i d a t i o n o f SO2. An i m p o r t a n t component o f an aerosol model i s t h e g a s - t o - p a r t i c l e convers i o n process.
It d e t e r m i n e s t h e k i n e t i c s o f a e r o s o l f o r m a t i o n , as w e l l as t h e
chemical c o m p o s i t i o n o f t h e a e r o s o l s .
F i r s t l e t us c o n s i d e r t h e case o f H2SO4
and NH3 i n e q u i l i b r i u m w i t h a d r y a e r o s o l .
The f o l l o w i n g e q u i l i b r i u m
r e l a t i o n s h i p s hold:
“H31[H2SO41 NH3(g) + H2S04(g)=NH4HS04(s)
= 2.0
K1 =
“H31 NH3(g) + NHqHSO4(S)=(NH
) SO 4 ( S )
4 2
ppm2
(2)
x
K 2 = ___ - 3.8 x
Y
x
ppm
(3)
when ( 9 ) and ( s ) r e f e r t o t h e gas phase and s o l i d phase, r e s p e c t i v e l y , and K1 and K2 a r e t h e e q u i l i b r i u m constants.
The chemical c o m p o s i t i o n o f t h e aerosol i s charac-
t e r i z e d b y t h e mole f r a c t i o n s x and y o f NH4HS04 and (NH4)2S04, r e s p e c t i v e l y . We can c a l c u l a t e t h e c o m p o s i t i o n o f t h e a e r o s o l f o r a c l o s e d chemical system i f
t h e i n i t i a l gas-phase c o n c e n t r a t i o n s [NH31° and [H2SO4I0 a r e known. t i o n leads t o t h e f o l l o w i n g r e l a t i o n s h i p s :
Mass conserva-
286 x + y = l [ N H 3 I 0 = [NH31 + (2x + Y) M [H2S04]0
= CH2S041 + ( x + Y) M
where M i s t h e t o t a l c o n c e n t r a t i o n o f aerosol s u l f a t e and b i s u l f a t e . This system o f equations can be solved t o g i v e t h e e q u i l i b r i u m composition o f t h e aerosol f o r v a r i o u s gas-phase concentrations.
Several s i m u l a t i o n s were
performed f o r an i n i t i a l c o n c e n t r a t i o n o f H2SO4 o f 5 x c o n c e n t r a t i o n s o f NH3 r a n g i n g from 10-1 ppm t o
ppm.
ppm, and i n i t i a l The r e s u l t s showed t h a t
t h e mole f r a c t i o n y o f NH4HS04 was always l e s s than 0.01. Alternatively,
we can c a l c u l a t e t h e gas-phase c o n c e n t r a t i o n o f H2SO4 and NH3,
f o r which an a p p r e c i a b l e amount o f NH4HS04 w i l l be present. percent o f NH4HS04 and 90 percent o f (NH4)$04 t i o n s o f 3.4 x
lo-'
For instance,
ppm f o r NH3 and H2SO4, r e s p e c t i v e l y .
and 5.8 x
10
would r e q u i r e gas-phase concentraThe
s u l f u r i c a c i d c o n c e n t r a t i o n t h a t i s r e q u i r e d t o produce an appreciable amount o f ammonium b i s u l f a t e i s f a i r l y h i g h and such c o n c e n t r a t i o n s have n o t been observed i n t h e atmosphere, except p o s s i b l y i n t h e f l u e gases c l o s e t o t h e stack.
Thus,
i t i s safe t o assume t h a t i n atmospheric plumes, H2S04 and NH3 w i l l l e a d t o t h e
f o r m a t i o n o f (NH4)2S04,
and t h a t n e g l i g i b l e amounts o f NH4HS04 w i l l be formed.
I n t h i s model, we t h e r e f o r e assume t h a t H2SO4 condenses w i t h NH3 t o form (NH4)2S04,
which i s s o l i d a t r e l a t i v e h u m i d i t i e s below 80 percent.
Formation o f n i t r a t e a e r o s o l s N i t r i c a c i d and n i t r a t e are formed i n t h e atmosphere m a i n l y by t h e o x i d a t i o n
o f NO2.
The most i m p o r t a n t chemical pathways i n v o l v e d i n t h e f o r m a t i o n o f HNO3
a r e t h e gas-phase o x i d a t i o n o f NO2 by OH r a d i c a l s , which occurs d u r i n g t h e daytime, and t h e gas-phase o x i d a t i o n o f NO2 by NO3 r a d i c a l s t o form N2O5, which then r e a c t s on wetted aerosol surfaces t o heterogeneously form HNO3.
This second
process occurs m a i n l y a t n i g h t because d u r i n g t h e daytime NO3 i s r a p i d l y photolyzed t o NO2 and 0 ( r e f . 18).
Since t h e s i m u l a t i o n s t h a t were conducted
correspond t o daytime c o n d i t i o n s , t h i s chemical pathway i s unimportant and i s n o t considered i n t h e model; however, t h e model c o u l d e a s i l y t a k e i n t o account t h i s heterogeneous r e a c t i o n i f necessary. o x i d a t i o n o f NO2 b y
For t h e study simulations,
OH i s t h e main pathway t o HN03 formation.
therefore, the (Some n i t r i c a c i d
i s a l s o formed when HS04 r e a c t s w i t h NO2 t o form H2S04 and HNO3): NO2 + OH - - - - +
HN03
k = 1.4 x
lo4
ppm-' min-'
(7)
287
The s a t u r a t i o n vapor p r e s s u r e o f HN03 i s h i g h , so t h a t HN03 does n o t condense i n a p p r e c i a b l e amounts and remains m a i n l y i n t h e gas phase.
The main process
l e a d i n g t o t h e f o r m a t i o n o f i n o r g a n i c n i t r a t e a e r o s o l s i n daytime i s t h e r e a c t i o n o f NH3 w i t h HN03 a t r e l a t i v e h u m i d i t i e s below 62 p e r c e n t when t h e r e a c t i o n p r o d u c t NH4N03 is s o l i d . NH3(g) + HN03(g)=NH
4 NO 3 ( s )
(8)
The e q u i l i b r i u m parameters f o r t h i s two-phase e q u i l i b r i u m have been e v a l u a t e d u s i n g thermodynamic and e x p e r i m e n t a l d a t a ( r e f s . 6-7) and depend on t h e ambient temperature.
I n t h i s study, t h e f o l l o w i n g e q u i l i b r i u m parameter was chosen ( r e f .
6) :
K3 = [NH3][HN03]
= 70.68
-
--,--24090
-
6.04
in
T
m
(9)
where t h e t e m p e r a t u r e T i s expressed i n K, and K j i n ppm2. T h i s e q u i l i b r i u m between gaseous ammonia and n i t r i c a c i d and aerosol ammonium n i t r a t e constitutes the gas-to-particle f o r m a t i o n i n t h i s model.
c o n v e r s i o n process f o r aerosol n i t r a t e
U n l i k e t h e c o n v e r s i o n o f H2S04 t o aerosol s u l f a t e ,
which can be c o n s i d e r e d t o be i r r e v e r s i b l e i n a power p l a n t plume because o f t h e l o w vapor p r e s s u r e o f H2SO4, t h e f o r m a t i o n o f ammonium n i t r a t e i s a r e v e r s i b l e process; ammonium n i t r a t e w i l l decompose i n t o i t s p r e c u r s o r s i f t h e i r c o n c e n t r a t i o n p r o d u c t i s below t h e s a t u r a t i o n v a l u e g i v e n by Equation ( 9 ) . F o r m u l a t i o n o f t h e aerosol plume model The mathematical model t h a t has been developed t o d e s c r i b e t h e f o r m a t i o n o f s u l f a t e and n i t r a t e a e r o s o l s and t h e e v o l u t i o n o f t h e aerosol s i z e d i s t r i b u t i o n i n plumes i n c l u d e s t h r e e components: c h e m i s t r y , and a e r o s o l dynamics.
plume t r a n s p o r t and d i s p e r s i o n , gas-phase
These components have been d e s c r i b e d i n d e t a i l
elsewhere ( r e f . 3). The plume i s d e s c r i b e d i n a Lagrangian frame o f r e f e r e n c e .
It c o n s i s t s o f
s i x c o n t i g u o u s p u f f c e l l s t h a t a r e v e r t i c a l l y w e l l mixed and t h a t expand as t h e plume i s d i s p e r s e d by t h e atmospheric t u r b u l e n t eddies.
I n e r t species a r e
d i s p e r s e d a c c o r d i n g t o a Gaussian c o n c e n t r a t i o n d i s t r i b u t i o n , whereas t h e d i f f u s i o n o f c h e m i c a l l y r e a c t i n g s p e c i e s i s t r e a t e d by means o f a K-theory formulation.
The plume model t a k e s i n t o account t i m e - v a r y i n g wind speed, m i x i n g depth,
288
e n t r a i n m e n t o f gaseous chemical s p e c i e s and a e r o s o l s from t h e background i n t o t h e plume, and d e p o s i t i o n o f gases and a e r o s o l s on t h e ground ( r e f . 19). The gas-phase c h e m i s t r y mechanism uses t h e Carbon-Bond Mechanism developed by Whitten, K i l l u s , and Hog0 ( r e f . 20).
M o d i f i c a t i o n s t o t h e mechanism t o make i t
s u i t a b l e f o r plume c h e m i s t r y have been d i s c u s s e d by Seigneur ( r e f . 3 ) and t h e c h e m i s t r y o f ammonium s u l f a t e and ammonium n i t r a t e f o r m a t i o n has been d i s c u s s e d i n t h e previous sections.
The mechanisms c o n s i s t o f 7 5 r e a c t i o n s among 37
chemical species. The a e r o s o l dynamics component d e s c r i b e s t h e c o a g u l a t i o n o f a e r o s o l s , t h e gas-to-particle
c o n v e r s i o n processes t h a t govern t h e f o r m a t i o n o f ammonium
s u l f a t e and n i t r a t e , and t h e thermodynamic e q u i l i b r i u m between NH3, HN03, and NH4N03.
The aerosol s i z e d i s t r i b u t i o n i s r e p r e s e n t e d by a s e c t i o n a l d i s t r i b u t i o n
t h a t c o n s i s t s here o f 7 s e c t i o n s i n t h e a e r o s o l d i a m e t e r s i z e range o f 0.01 t o 2.15
@I. This
d i s t r i b u t i o n corresponds t o t h e a c c u m u l a t i o n mode where most o f
t h e secondary a e r o s o l mass i s formed.
L a r g e r aerosol s i z e s (coarse-mode
a e r o s o l s ) can a l s o be t r e a t e d by t h e model as i n e r t a e r o s o l s .
The e v o l u t i o n of
t h e a e r o s o l s i z e d i s t r i b u t i o n i s governed b y t h e s e c t i o n a l General Dynamic Equation t h a t i s presented elsewhere ( r e f s . 3-21). t o c o n d e n s a t i o n o f H2SO4 and HN03 as (NH4),S04
Condensational growth i s due
and NH4N03 monomers.
If the
c o n c e n t r a t i o n p r o d u c t o f NH3 and HNO3 i s below i t s s a t u r a t i o n value, NH4N03 decomposes and l e a v e s t h e a e r o s o l phase. The model i s a p p l i e d i n cases f o r which (NH4)$04 f o r r e l a t i v e h u m i d i t i e s below 62 p e r c e n t .
and NH4NO3 a r e s o l i d , i.e.,
It i s assumed t h a t (NH4)2S04 and
NH4N03 e x i s t as an e x t e r n a l m i x t u r e i n t h e a e r o s o l phase. MODEL APPLICATIONS The model s i m u l a t e d t h e f o r m a t i o n o f s u l f a t e and n i t r a t e a e r o s o l s i n power p l a n t plumes i n t h r e e d i f f e r e n t environments:
a c l e a n background w i t h l o w NH3
c o n c e n t r a t i o n s , a c l e a n background w i t h h i g h NH3 c o n c e n t r a t i o n s , and a p o l l u t e d background w i t h h i g h NH3 c o n c e n t r a t i o n s . Clean environment w i t h l o w NH2 c o n c e n t r a t i o n s The 1979 VISTTA f i e l d programs were conducted, i n p a r t , t o s t u d y t h e p h y s i c s , c h e m i s t r y , and o p t i c a l p r o p e r t i e s o f t h e plume o f t h e Navajo power p l a n t l o c a t e d i n n o r t h e r n A r i z o n a ( r e f . 22).
A t t h i s l o c a t i o n , t h e background a i r i s g e n e r a l l y
v e r y c l e a n , w i t h l o w NH3 c o n c e n t r a t i o n s ( r e f . 16).
The s i m u l a t i o n s o f plume
c h e m i s t r y , s u l f a t e a e r o s o l f o r m a t i o n , and t h e e v o l u t i o n o f t h e aerosol s i z e
289
d i s t r i b u t i o n on f o u r d i f f e r e n t days o f t h e VISTTA programs have been presented elsewhere ( r e f . 3).
The p o s s i b l e f o r m a t i o n o f a e r o s o l n i t r a t e was i n v e s t i g a t e d
w i t h t h i s model and
t appeared t h a t background NH3 c o n c e n t r a t i o n s and plume HN03
c o n c e n t r a t i o n s were t o o l o w t o l e a d t o t h e f o r m a t i o n o f NH4N03 a e r o s o l s .
This
f i n d i n g i s i n agreement w i t h t h e a i r b o r n e plume measurements, which showed l i t t l e f o r m a t i o n o f NH4N03 i n t h e plume.
These r e s u l t s a r e shown i n t a b l e 1.
I n two
cases o n l y - - 9 and 13 December 1979--the measured gas-phase c o n c e n t r a t i o n s o f NH3 and HN03 a r e above t h e s a t u r a t i o n v a l u e ; f o r one o f t h e cases--9 December--some n i t r a t e a e r o s o l was measured i n t h e plume. t h a t K3
>
[HN03][NH3].
I n a l l cases, t h e model p r e d i c t e d
The r e s u l t s o f t h e plume s i m u l a t i o n s a r e t h e r e f o r e
i d e n t i c a l t o t h o s e a l r e a d y presented.
The reader i s r e f e r r e d t o Seigneur ( r e f .
3 ) f o r a d e t a i l e d p r e s e n t a t i o n o f t h e comparison o f model p r e d i c t i o n s and measurements f o r s u l f a t e a e r o s o l c o n c e n t r a t i o n s and a e r o s o l s i z e d i s t r i b u t i o n s . TABLE 1 C o n c e n t r a t i o n Product o f NH3 and HN03 i n t h e Navajo power p l a n t plume
P1 ume S i m u l a t i o n
Measured
13 J u l y 1979, 58 km downwind 13 J u l y 1979, 88 km downwind 5 December 1979, 33 km downwind 5 December 1979, 80 km downwind 9 December 1979, 30 km downwind 13 December, 25 km downwind
2.1 2.8 5.4 5.9 8.3 5.0
10-5 x 10-5 x x loe8 x lom7 x
Predicted
(ppm‘)
4.7 1.1 2.0 5.3 1.3 2.0
3.0 5.0 4.2 7.3 2.3 4.0
10-6 10-5
x x x x
lom8
10-5 10-5
x x x x
Clean environment w i t h h i g h NH3 c o n c e n t r a t i o n s The K i n c a i d power p l a n t i n I l l i n o i s i s l o c a t e d i n an area where background NH3 c o n c e n t r a t i o n s a r e h i g h e r t h a n t h o s e i n n o r t h e r n Arizona.
The February 1981
VISTTA f i e l d program was conducted t o s t u d y t h e chemical and p h y s i c a l processes and t h e v i s u a l e f f e c t s o f t h e K i n c a i d power p l a n t plume ( r e f . 9).
On 25 February
1981, t h e Meteorology Research, Inc. a i r c r a f t performed one-hour sampling o r b i t s i n t h e plume a t 60 km downwind, and i n t h e background.
A plume s i m u l a t i o n was
performed w i t h t h i s model f o r a p u f f r e l e a s e d a t 1150 CST f r o m t h e stacks. a wind speed o f 6.25 m.sec-l,
t h i s p u f f t r a v e l e d 60 km i n 160 minutes, which
With
290 corresponds t o t h e a i r b o r n e measurement p e r i o d o f 1400-1500 CST.
I n p u t d a t a were
deduced from t h e VISTTA d a t a base and t y p i c a l v a l u e s were assumed f o r t h e background hydrocarbon c o n c e n t r a t i o n s . plume SO2 c o n c e n t r a t i o n s . t e m p e r a t u r e was 10°C.
Plume d i s p e r s i o n was determined from t h e
The r e l a t i v e h u m i d i t y was about 60 p e r c e n t and t h e
Measured and p r e d i c t e d c o n c e n t r a t i o n s o f secondary aero-
sols a r e p r e s e n t e d i n t a b l e 2, where plume excess c o n c e n t r a t i o n r e p r e s e n t s t h e plume c o n c e n t r a t i o n minus t h e background c o n c e n t r a t i o n .
The model u n d e r p r e d i c t s
t h e amount o f a e r o s o l s u l f a t e and n i t r a t e formed, p o s s i b l y because t h e background OH c o n c e n t r a t i o n s o r t h e plume t r a v e l t i m e a r e underestimated.
However, t h e
model p r e d i c t s w e l l t h e r e l a t i v e amounts o f s u l f a t e , n i t r a t e , and ammonium. TABLE 2 P r e d i c t e d and measured c o n c e n t r a t i o n i n t h e K i n c a i d power p l a n t plume
Chemical Species
Background C o n c e n t r a t i o n (Pg m-3) Measured
P1 ume Excess C o n c e n t r a t i o n (!4 m-31 Measured Predicted
so42-
2.26
2.22
0.39
NO3-
0.47
1.54
0.25
NH~+
1.06
1.19
0.22
Pol 1 u t e d environment The c h e m i s t r y and d i s p e r s i o n o f t h e common plume o f t h e Haynes steam p l a n t and t h e A l a m i t o s power p l a n t i n t h e Los Angeles b a s i n were s t u d i e d on s e v e r a l days i n t h e w i n t e r o f 1974 ( r e f s 2-3).
The plume model s i m u l a t e d t h e case s t u d y
o f 7 November 1974, f o r which g r o u n d - l e v e l measurements o f plume c o n c e n t r a t i o n s were conducted a t 18 km downwind between 1400 and 1500 PST. were o b t a i n e d from Richards e t a1 ( r e f .
23).
Model i n p u t d a t a
T y p i c a l v a l u e s were assumed f o r t h e
background c o n c e n t r a t i o n s o f gaseous s p e c i e s t h a t were n o t a v a i l a b l e .
Plume
d i s p e r s i o n was determined from t h e plume c o n c e n t r a t i o n of t h e i n e r t t r a c e r SF6. The wind speed was 5 m.sec-l, t e m p e r a t u r e was 23OC.
t h e r e l a t i v e h u m i d i t y was 34 p e r c e n t , and t h e
The p r e d i c t e d and measured s u l f a t e and n i t r a t e c o n c e n t r a -
t i o n s a r e compared i n t a b l e 3.
291
TABLE 3 P r e d i c t e d and measured c o n c e n t r a t i o n i n t h e HayneslAlamitos p l a n t s plume
Chemical Species
Background C o n c e n t r a t i o n (ug m-3) Mea s u red
P1 ume Excess C o n c e n t r a t i o n (ug m-3) Measured Predicted
so42-
3.0
+6.2
+2.8
NO3-
8.0
-3.3
-0.8
The s u l f u r i c a c i d e m i t t e d from t h e s t a c k s i s c o n v e r t e d t o (NH4)2S04 as i t r e a c t s w i t h t h e background NH3 e n t r a i n e d i n t o t h e plume.
The p r e d i c t e d concen-
t r a t i o n o f s u l f a t e i s l e s s t h a n t h e measured v a l u e ; t h i s d i s c r e p a n c y i s p o s s i b l y due t o u n c e r t a i n t i e s i n t h e measurements, s i n c e t h e model p r e d i c t i o n s correspond w e l l w i t h t h e t o t a l c o n v e r s i o n o f e m i t t e d H2SO4 t o (NH4)2S04, and s i n c e l i t t l e
SO2 o x i d a t i o n t o o k p l a c e i n t h e plume.
The d e p l e t i o n o f NH3 i n t h e plume due t o
(NH4)2S04 f o r m a t i o n l e a d s t o t h e displacement o f t h e NH3-HN03-NH4N03 e q u i l i brium.
Thus, NH4N03 decomposes i n t o NH3 and HNO3 i n t h e plume t o r e e s t a b l i s h t h e
equilibrium.
T h i s e f f e c t appears i n b o t h t h e measurements and t h e model p r e d i c -
tions. CONCLUSION
A model has been p r e s e n t e d t h a t d e s c r i b e s t h e f o r m a t i o n o f ammonium s u l f a t e and n i t r a t e a e r o s o l s and t h e e v o l u t i o n o f t h e aerosol d i s t r i b u t i o n i n plumes a t h u m i d i t i e s below 6 2 percent.
The model was a p p l i e d t o t h e s i m u l a t i o n o f aerosol
f o r m a t i o n i n power p l a n t plumes f o r t h r e e d i f f e r e n t t y p e s o f background e n v i r o n ments and appeared t o reproduce w e l l t h e p r i m a r y c h a r a c t e r i s t i c s o f aerosol plume c h e m i s t r y under v a r i o u s c o n d i t i o n s .
F u r t h e r work should be d i r e c t e d toward t h e
s t u d y o f a e r o s o l f o r m a t i o n a t h i g h r e l a t i v e h u m i d i t i e s f o r which t h e c h e m i s t r y o f t h e l i q u i d - c o a t e d a e r o s o l s must be t a k e n i n t o account. ACKNOWLEDGMENTS Thanks a r e due t o Dr. L. W. Richards f o r p r o v i d i n g v a l u a b l e i n f o r m a t i o n r e g a r d i n g t h e e x p e r i m e n t a l d a t a and t o C.
J. Lawson f o r e d i t o r i a l a s s i s t a n c e .
REFERENCES
1 M.W. E l t g r o t h and P.V. Hobbs, Atmos. Environ., 13(1979)953-975. 2 M. Basset, F. Gelbard and J.H. S e i n f e l d , Atmos. Environ., 15 ( 1981 ) 2395-2406. 3 C. Seigneur, Atmos. Environ., i n press. 4 A.E. Ore1 and J.H. S e i n f e l d , Environ. Sci. Techol., ll(1977)lOOO1007. 5 T.W. Peterson and J.H. S e i n f e l d , Am. I n s t . Chem. Eng. J., 25( 1979)831-838. 6 A.W. S t e l s o n , S.K. F r i e d l a n d e r and J.H. S e i n f e l d , Atmos. Environ.. 13 (1979)369-371. Doyle, E.C. Tuazon, R.A. Graham, T.M. Mischke, A.M. Wine and J.N. P i t t s , Jr., Atmos. Environ. Sci. Techno1 13(1979)1416-1419. 8 D.A. Hegg and P.V. Hobbs, Atmos. Environ., 13(1979)1715-1716. 9 L.W. R i c h a r d s , J.A. Anderson, D.L. Blumenthal, A.A. Brandt, S.Z. Hynek, J.A. McDonald, and N. Waters, Report 81-DV-1806, 1981 Meteorology Research, Inc., Santa Rosa, C a l i f o r n i a . 10 C.S. B u r t o n , M.K. L i u , P.M. Roth, C. Seigneur and G.Z. Whitten, Proc. 1 2 t h NATO/CCMS I n t . Techn. Meeting A i r P o l l u t i o n Modeling and I t s A p p l i c a t i o n s , Palo A l t o , C a l i f o r n i a , August 25-28, 1981. 11 R. A t k i n s o n and A. C. L l o y d , J. Phys. Chem. Ref. Data, lO(1981) i n press. 12 0.0. Davis, A.R. Ravishankara and S. F i s c h e r , Geophys. Res. L e t t . ,
7 G.J.
.,
6(1979)113-116. 13 J.I. R n i t r o and T. Vermeulen, Am. I n s t . Chem. Eng. J., 10(1969)740746. C a t t e l l , Atmos. Environ., 13( 1979)307-317. 14 W.D. S c o t t and F.C.R. 15 P.K. Dasgupta, Atmos. Environ., 14(1980)267. 16 L.W. R i c h a r d s , J.A. Anderson, D.L. Blumenthal, A.A. Brandt, J. A. 17
McDonald, N. Waters, E.S. Macias, and P.A. Bhardwaja, Atmos. Environ., 15(1981)2111-2134. P.H. McMurry, D.J. Rader and J.L. S t i t h , Atmos. Environ.,
15( 1981)2315-2328 18 L.W. R i c h a r d s , s u b m i t t e d t o Atmos. Environ., 1982. 19 D.A. Stewart and M.K. L i u , Atmos. Environ., 15(1981)2377-2394. 20 G.Z. W h i t t e n , J.P. K i l l u s and H. Hogo, Report EF79-129, Systems A p p l i c a t i o n s , Inc., San R a f a e l , C a l i f o r n i a , 1980. 21 F. Gelbard and J.H. S e i n f e l d , J. C o l l o i d I n t e r f . Sci., 78(1980)485501. 22 D.L. Blumenthal, L.W. Richards, E.S. Macias, R.W. Bergstrom, W.E. Wilson and P.S. Bhardwaja, Atmos. Environ., 15(1981)1955-1970. 23 L.W. Richards, E.L. Avol, and A. B. Marker, Report SC593-5 FRD, 1976, Rockwell I n t e r n a t i o n a l , A i r M o n i t o r i n g Center, Newbury Park, California.
293
PHOTOGRAPHY AS A TECHNIQUE FOR STUDYING VISUAL RANGE
T.E.
HOFFER, D.E.
SCHORRAN
Desert R e s e a r c h I n s t i t u t e , U n i v e r s i t y of Nevada System R. J. FARBER
S o u t h e r n C a l i f o r n i a E d i s o n Company
ABSTRACT
A t e c h n i q u e i s d e s c r i b e d t h a t u s e s b l a c k and w h i t e a n d c o l o r photography t o s t u d y v i s u a l r a n g e , a n d t h e e f f e c t s o f c l o u d s and h a z e on a s c e n e . w h i t e f i l m i s u s e d f o r q u a n t i t a t i v e measurement of v i s u a l r a n g e .
Black and
Film density
measurements are d i g i t i z e d u s i n g a f l y i n g s p o t s c a n n e r t o a s s u r e t h a t t h e meas u r e m e n t , a n a l y s i s a n d i n t e r p r e t a t i o n are r e p r o d u c i b l e and a c c u r a t e .
The p r o c e d u r e and a n example are
s i t y wedges a n d t h e n e g a t i v e s are d i g i t i z e d . presented.
Color f i l m is used t o q u a l i f y
The den-
t h e b l a c k a n d w h i t e measuremenw.
The t e c h n i q u e s a p p l i e d i n a n a l y s i s and some r e s u l t s of
t h e f i e l d measurement
program a r e p r e s e n t e d .
INTRODUCTION
Koscmeider ( r e f . y e a r s ago.
1) p u b l i s h e d a p i o n e e r i n g work on v i s i b i l i t y a l m o s t s i x t y
I n t h i s p a p e r , h e d e r i v e d t h e f u n d a m e n t a l r e l a t i o n s h i p between t h e
v i s u a l range,
contrast,
and t h e b a c k s c a t t e r i n g c o e f f i c i e n t ,
t h e p a r t i c l e number a n d s i z e .
a term r e l a t e d t o
U n t i l 1977, o b j e c t i v e r e p r o d u c i b l e measurement
t e c h n i q u e s f o r v i s u a l r a n g e a n d c o l o r c o n t r a s t were n o t mandated. t h e United
S t a t e s Congress
p a s s e d amendments t o
Under a new s e c t i o n of t h a t A c t ;
areas
was
to
be
protected.
In t h a t y e a r
t h e C l e a n A i r Act of
1970.
v i s i b i l i t y i n n a t i o n a l p a r k s and w i l d e r n e s s
The
act
also
specified
that
the
scientific
294
community was t o d e v e l o p methods of a c c u r a t e l y measuring v i s i b i l i t y . perception
s t u d i e s were s t a r t e d t o c o r r e l a t e i n s t r u m e n t measurements o f v i s u a l
range w i t h how p a r k v i s i t o r s p e r c e i v e v i s i b i l i t y . have
Recently,
tried
to
Furthermore,
these
studies
a s s e s s t h e r o l e of v i s i b i l i t y on a e s t h e t i c a p p r e c i a t i o n of t h e
wilderness. I n a recent experimental visibility
conditions
in
work,
hydrosols
have
demonstrated
p e r c e p t i o n of d e t a i l .
that
simulated
atmospheric
and showed t h a t t h e r e l a t i o n s h i p between
c l a r i t y and v i s u a l range i s n o t l i n e a r . (ref. 4 )
(ref. 2 )
Stankunas
A l l a r d and Tombach ( r e f . 3 )
color
the
is
dominant
and
parameter
These f a c t o r s must b e c o n s i d e r e d i n t h e
Malm i n the
measurement
of
v i s u a l range. Measurement
techniques
can
b e c l a s s i f i e d i n t o two broad c a t e g o r i e s ; t h o s e
t h a t m o n i t o r v i s u a l r a n g e a t a p o i n t and t h o s e t h a t i n t e g r a t e over a l o n g p a t h . Point source techniques include various nephelometers,
and
samplers
for
measurements
include
techniques.
Transmissometers,
measuring
transmissometers,
measure p a r a m e t e r s r e l a t e d t o techniques
types
integrate
of
particle
particle
sizing
counters,
absorption.
Long p a t h
telephotometers
nephelometers extinction.
and
and
photographic
p a r t i c l e s i z e counters a l l
Telephotometers
and
photographic
t h e v a r i a b l e s o f sun a n g l e and t h e s t a t e o f t h e sky i n t o
t h e measurement. A
photographic
simultaneously paper.
technique
exposed
black
for
assessing
and
white
visibility
that
makes
which
of
and c o l o r f i l m i s d e s c r i b e d i n t h i s
The t e c h n i q u e i n c o r p o r a t e s a q u a n t i t a t i v e a n a l y s e s o f b l a c k
negatives
use
and
white
y i e l d s v i s u a l r a n g e measurements and a q u a l i t a t i v e assessment
of c o l o r s l i d e s t o c a t e g o r i z e and q u a l i f y v i s u a l r a n g e measurements.
PHOTOGRAPHIC ASSESSMENT OF VISIBILITY The d e s e r t a r e a s o f t h e s o u t h w e s t e r n United S t a t e s are an i d e a l e v a l u a t i n g d i f f e r e n t methods of measuring v i s i b i l i t y . region
varies
from
locale
for
The v i s u a l r a n g e i n t h i s
i n e x c e s s o f 200 k i l o m e t e r s i n t h e w i n t e r t o l e s s t h a n 7 5
k i l o m e t e r s d u r i n g t h e summer.
The t o p o g r a p h i c r e l i e f
provides
many
mountain
295 targets
at
varying
distances.
Some
of
the
valleys
have
small
s e t t l e m e n t s , which can be t h e s o u r c e o f s p a t i a l inhomogenities i n
A
distribution.
the
urban aerosol
p a t h measurement w i l l b e s t r e p r e s e n t t h e v i s i b i l i t y i n
long
such a n environment. A f t e r c o n s i d e r i n g many f a c t o r s , photography measuring
technique
for
characterizing
was
visibility
selected in
as
our
primary
t h e r e g i o n 100 miles
southwest of t h e Grand Canyon.
. .
.
D t m i z a t i o n o f t h e Dhotonrabhic t e c h n i q u e The p h o t o g r a p h i c d e t e r m i n a t i o n of v i s u a l r a n g e and a t m o s p h e r i c
clarity
has
been o p t i m i z e d i n t h r e e ways. F i r s t , a b l a c k and w h i t e f i l m was chosen t h a t y i e l d s a l a r g e change i n f i l m density
for
a s m a l l change i n e x p o s u r e .
The v i s u a l r a n g e c a l c u l a t i o n s remain
t h e same a s d e s c r i b e d by S t e f f e n s ( r e f . 5 ) . Second, a f t e r development, t h e b l a c k and w h i t e n e g a t i v e s a r e d i g i t i z e d film
density.
This
minimizes
handling
o f t h e f i l m and e l i m i n a t e s o p e r a t o r
e r r o r i n p o s i t i o n i n g t h e n e g a t i v e on a manual d e n s i t o m e t e r . resolution
is
increased
because
than those permitted
using
densitometers.
resolution
The
the
for
In
addition,
the
t a r g e t areas a r e d i g i t i z e d t h a t a r e smaller apertures acheived
commonly
associated
with
manual
with t h i s technique i s g r e a t e r than
t h a t of t h e human e y e . T h i r d , s i m u l t a n e o u s l y exposed c o l o r s l i d e s o f t h e same v i s t a qualify
and
categorize
the
black
and
white
are
used
c o n t r a s t measurements.
p r o v i d e background i n f o r m a t i o n about sky and t a r g e t c o l o r a t i o n , c l o u d i n e s s
to
These and
shadow o r i e n t a t i o n .
Camera system A
range
two
camera
adjacent
i s l o c a t e d on t o p of a mountain peak i n t h e Newberry
system to
the
Lake
Mead
National
Recreation
Area.
t o p o g r a p h i c f e a t u r e s a t s e v e r a l azimuth a n g l e s a r e used f o r t a r g e t s . white
exposures
are
made
with
a
35
Discernible Black and
mm camera equipped w i t h a 600 mm l e n s
296 Color e x p o s u r e s a r e made w i t h a 35 mm camera equipped w i t h
system. lens.
Both
cameras
feature
automatic
exposure
control
100 mm
a
and f i l m advance.
Exposures a r e made i n t h e morning, a t midday, and d u r i n g t h e a f t e r n o o n .
.
Black and w h i t e f i l m
The b l a c k and w h i t e f i l m s e l e c t e d i s Kodak Linagraph
S h e l l b u r s t 2476.
A t y p i c a l exposure v e r s u s d e n s i t y p l o t i s shown i n
and
the
illustrates
large
change
s e n s i t i v i t y p e r m i t s t h e r e s o l u t i o n o f s m a l l changes i n v i s u a l r a n g e . r e p r e s e n t a t i v e o f Plus-X
film
.
1
i n d e n s i t y o b t a i n e d f o r a s m a l l change i n
The p l o t i s f o r f i l m exposed a t ASA 200 and developed n o r m a l l y .
exposure.
Color
Figure
A
The curve
f i l m i s a l s o shown f o r comparison.
The c o l o r f i l m i s Eastman 5 2 4 7 , a c o l o r n e g a t i v e f i l m t h a t i s
p r o c e s s e d commercially.
A c o l o r c h a r t i s photographed a t t h e b e g i n n i n g o f each
r o l l t o p r o v i d e f o r c o r r e c t i o n o f t h e f i l m p o s i t i v e by f i l t r a t i o n t o
the
true
c o l o r of t h e s c e n e .
Film d i g i t i z a t i o n We have developed t h e f o l l o w i n g t e c h n i q u e t o d e t e r m i n e t h e v i s u a l r a n g e from
the
black
and
white
photographs.
On
each r o l l o f f i l m a d e n s i t y wedge is
d i g i t i z e d u s i n g a s p o t s i z e o f 0 . 1 mm i n x by 0.4 mm i n y, measurement
parallel
t o the film breadth.
Where x
refers
to
t o t h e f i l m l e n g t h and y r e f e r s t o measurements p a r a l l e l Two s i d e by s i d e s c a n s are averaged f o r
precision.
The
s m a l l s p o t s are averaged over a s u i t a b l e increment i n x , u s u a l l y 20 v a l u e s , and tabulated
by
a
computer.
The d e n s i t y v a l u e s a s r e l a t e d t o exposure a r e t h e n
g r a p h e d , a s shown i n F i g u r e 1. I n p r a c t i c e t h e f i l m i s exposed so t h a t t h e d e n s i t y is i n t h e l i n e a r p o r t i o n of t h e c u r v e .
The exposure can t h e n b e d e t e r m i n e d from an e q u a t i o n of t h e form
297
Step Number 3.0
I
I
I
I
I
I
1
1
I
August 5, 1980 I
0
2.5
2 .a
c .-
u)
f
1.5
0
.-E -
LL.
I.a
-----
Plus X Film Linogroph Shellburst Film, Monuol Densitometer Linograph Shellburst Film, Digitized
--
0.5
/r
0
/' I
0.3
I
I
1
1
I
1
I
I
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
:
Log E
Fig. L Film characteristic curves for Linagraph Shellburst and Plus-X hlack and white f i l m s . D a t a from manually reduced densitometer measurements and digitized measure ments are shown f a a w e roll of Linagraph Shellburst. where d i s t h e f i l m
density,
m
is
the
slope
and
a
is
the
extrapolated
intercept. Photographs of each v i s t a a r e d i g i t i z e d w i t h a s p o t s i z e of 0 . 1 mm by 0.lmm. For
35
mm f i l m 360 v a l u e s would b e d i g i t i z e d p e r s c a n in t h e x d i r e c t i o n , and
240 in t h e y d i r e c t i o n .
can
be
averaged
The d e n s i t y v a l u e s o b t a i n e d w i t h t h i s s m a l l s p o t
over i n t e g r a l v a l u e s of x and y.
and y v a l u e s are a v e r a g e d .
(60,40).
This reduces t h e
matrix
size
In p r a c t i c e six a d j a c e n t x size
from
(360,240)
to
298
Coordinates
o f t h e t a r g e t and background a r e a s a r e d e t e r m i n e d by p r o j e c t i n g
t h e n e g a t i v e on a l i n e d s c r e e n .
These c o o r d i n a t e s are
used
as
inputs
to
a
program t h a t c a l c u l a t e s t h e v i s u a l r a n g e . In
routine
measurements,
t h e c o o r d i n a t e s o f t h e t a r g e t and an a r e a i n t h e
sky a d j a c e n t t o i t a r e used.
A f t e r t h e exposure i s
calculated,
the
contrast
between sky and t a r g e t i s found from t h e e x p r e s s i o n
(2)
C’E(tar)-E(back)/E(back) where
E(tar)
is
the
exposure
similar quantitity for calculated
using
a
the
a s s o c i a t e d w i t h t h e t a r g e t and E(back) i s t h e
background.
suitable
The
threshold
value
visual and
range
is
subsequently
an assumed v a l u e f o r t h e
inherent contrast of the t a r g e t . T h i s p r o c e d u r e p e r m i t s comparison o f any a r e a on t h e t a r g e t w i t h any element of t h e background, F i g u r e 2 shows an example; h e r e a s i n g l e area on t h e was
used
background.
to
calculate
four
visual
ranges.
Four
sky
The r e s u l t s o f t h e s e c a l c u l a t i o n s a r e p r e s e n t e d
target
a r e a s were used a s in
Table
1.
A
s i m i l a r c a l c u l a t i o n i s shown f o r two o t h e r t a r g e t s .
F i g . 2 . T a r g e t and sky a r e a s u t i l i z e d i n t h e c o n t r a s t d e t e r m i n a t i o n s o f v i s u a l r a n g e shown i n Table 1.
299 TABLE 1
V i s u a l r a n g e s from d i g i t i z e d n e g a t i v e s f o r t h r e e t a r g e t s u s i n g a r e a s of s k y f o r c o n t r a s t d e t e r m i n a t i o n . I n h e r e n t c o n t r a s t = -1.
four
different
Threshoid c o n t r a s t = 0 . 0 2 .
V i s u a l Range (Km)
Sky Area
Target 1
Target 2
Target 3
1
95
85
85
2
109
106
107
3
113
101
109
4
112
103
105
is
There
a
change i n t h e c a l c u l a t e d v i s u a l range f o r d i f f e r e n t sky a r e a s .
The c a l c u l a t i o n u s i n g t h e background a r e a c l o s e s t t o t h e peak (Area 1) in
all
cases,
a
lower
visual
range.
c o n s i s t e n t l y higher v i s u a l ranges. calculations
the
results
are
yields,
The o t h e r c o n t r a s t measurements g i v e
I f d i f f e r e n t t a r g e t a r e a s a r e used
similar.
The
technique
gives
in
the
reproducible
r e s u l t s , p a r t i c u l a r l y when t h e sky and t h e h o r i z o n are c l e a r . V i s u a l range i s a f u n c t i o n o f t h e practice,
this
quantity
inherent
assumption,
several
d i s t a n c e s o r e a c h view. dark
in
increases.
color
and
of
the
target.
i s g e n e r a l l y assumed and r a r e l y measured.
c a n g r e a t l y e f f e c t t h e computed v i s u a l r a n g e . by
contrast
I n o u r work, t o
In
I t s value
minimize
error
c o n t r a s t i n g measurements a r e made a t d i f f e r e n t t a r g e t
A s t h e t a r g e t approaches t h e v i s u a l r a n g e
it
appears
t h e j u s t i f i c a t i o n f o r assuming an i n h e r e n t c o n t r a s t o f -1
T h i s i s e s p e c i a l l y i m p o r t a n t i n t h e d e s e r t southwest where much
of
the terrain i s light i n color. To
reiterate,
these
calculations
are
for
a c l e a r hor zon and sky.
The
on
the
e f f e c t of f a c t o r s such as h o r i z o n b r i g h t n e s s , c l o u d i n e s s v i s u a l range i s n o t incorporated i n t o t h e c a l c u l a t i o n .
and
shadows
300 Color f i l m a n a l y s i s Color
photographs
provide
a medium f o r i n v e s t i g a t i n g how t h e v i s u a l range
a p p e a r s t o change w i t h d i f f e r i n g e n v i r o n m e n t a l this
subjective
measurement
from
a
conditions.
To
differentiate
measurement we have c a l l e d it
physical
V i s u a l a i r q u a l i t y i s dependent upon many a s p e c t s o f t h e
"visual a i r quality".
photographed s c e n e w i t h shadows, c l o u d s , haze and
sun
angle
being
the
most
important. Color
photographs
taken
during
s p r i n g of 1980 were a n a l y z e d . of
the
p e r i o d e x t e n d i n g from w i n t e r through
The p a r a m e t e r s o f p e r c e n t
cloudiness,
presence
shadows o r h a z e , and v i s u a l a i r q u a l i t y were t a b u l a t e d f o r m u l t i p l e t a r g e t s
on e a c h photograph.
The v i s u a l a i r q u a l i t y was
catagorized
for
each
target
according t o t h e following.
1.
C l e a r , no p e r c e p t i b l e h a z e .
2.
P e r c e p t i b l e haze b u t t h e f e a t u r e s a r e d i s t i n c t .
3. Moderate h a z e w i t h many d e t a i l s o b s c u r e d . Target o u t l i n e v i s i b l e . 4 . Dense h a z e , o u t l i n e i s b a r e l y d i s c e r n i b l e . Details a r e o b s c u r e d .
5. The
Target is obscured. t h i r d c a t e g o r y w a s s e l e c t e d a s a good estimate o f t h e d i s t a n c e t h a t c a n
be e a s i l y seen.
It i s not a q u a n t i t a t i v e value of t h e threshold of perception,
b u t i t s e r v e s a s an e s t i m a t o r much reported
at
airports.
This
will
in
the be
same
manner
that
visibility
is
referred t o as the qualitative visual
range. F i g u r e 3 shows t h e q u a l i t a t i v e v i s u a l r a n g e f o r t h i s p e r i o d . d i s c u s s e d , d e g r a d a t i o n o c c u r s as t h e summer a p p r o a c h s . air
quality
is
previously
In addition, the visual
b e t t e r i n t h e morning h o u r s b e f o r e t u r b u l e n c e h a s s t i r r e d t h e
s u r f a c e l a y e r , and l i f t e d it t o t h e h e i g h t o f t h e mountain a r e located.
As
where
the
cameras
0 z
y e ZZE
a. o
$&
0 0 0 0
a : ?
0
0
g d
0
a
4 a 4
?
8 a .
4 4
o o a
0 0
0
. a .a
0
a
t
0
0
d
gg 4
d a
oa
8
0 - 0
‘3
0
80
4
4 0
a 0
a :
a 80 a.
a
a
3
-8
-w N
-8
-R m
2
a
-“g N -
- 9
0
m (0
f N
0 N
m
-R
N
-8 -5
-i? -%I
=
- s Ir V a -9
301
302
CLEAR HORIZON
WHITE CLOUD DARK CLOUD ON HORIZON
Fig. 4. The frequency of occurrence of standard and non-standard horizon conditions during the winter 1980. The region 100 m&s southwest of the Grand Canyon is represented.
ON TARGET
Fig. 5. The frequency of Occurrence of shadow conditiom on visibility tat-gets during t h e w i n t e r of 1980. The r e g h 100 miles southwest of the Grand Canyon is represented.
Fig. 6. The frequency of occurrence of dlwdiness during the winter 1980. The region u)O miles southwest of the G r a d Canyon is represented.
303
Factors affecting visual a i r quality Allard
and
(ref. 6 )
Tombach
c o n d i t i o n s on v i s i b i l i t y .
have
summarized t h e e f f e c t s o f non-standard
Our d a t a b a s e h a s been s o r t e d
into
the
conditions
l i s t e d i n Table 2 .
TABLE 2 . Sort parameters Horizon Clear Horizon White Cloud Dark Cloud
The
Shadows No Shadows Topographic Shadows Cloud Shadows
frequency
Cloudiness < 5 Percent > 5 < 30 P e r c e n t > 3 0 < 60 P e r c e n t > 6 0 <90 P e r c e n t >90 P e r c e n t
of o c c u r r e n c e of h o r i z o n , shadow, and c l o u d i n e s s c o n d i t i o n s ,
5,
which i n f l u e n c e v i s i b i l i t y p e r c e p t i o n , a r e p r e s e n t e d as F i g u r e s 4 ,
The
maximum v a l u e cannot b e found by a s i m p l e s o r t because t h e s o r t p a r a m e t e r s
can
a
non-standard
6.
c o n d i t i o n s e x i s t f o r t y p e r c e n t of t h e t i m e .
As
minimum,
and
be inter-related.
The q u a l i t a t i v e a n a l y s i s of t h i s c o l o r f i l m p r o v i d e s a means
for
the
categorizing
c o n t r a s t measurements from t h e b l a c k and w h i t e f i l m and
a s s e s s i n g t h e c l a r i t y of t h e atmosphere.
SUMMARY I n t h i s paper measurements
we
from
have
presented
photographic
a
means
photometry
for
on
optimizing
black
and
visual
range
white film.
This
t e c h n i q u e i s a p p l i c a b l e w i t h s t a n d a r d a t m o s p h e r i c c o n d i t i o n s , i . e . , a c l e a r sky and t a r g e t s o f known i n h e r e n t c o n t r a s t .
The t e c h n i q u e a l s o
feature
path
of
integrating
over
a
long
comparable
D i g i t i z a t i o n o f t h e b l a c k and w h i t e f i l m l e n d s i t s e l f measurements. the future.
to
has
positive
t o t h e v i s u a l range. repeatable
The permanency of t h e medium p e r m i t s r e - a n a l y s i s
I n a d d i t i o n , t h e method i s i n e x p e n s i v e , h a s a
the
contrast
a t any t i m e i n
variable
field
of
view, and p r o v i d e s f o r r a p i d d a t a a n a l y s i s . Yet
visual
r a n g e may b e o n l y a p a r t o f what w e a r e a t t e m p t i n g t o q u a n t i f y .
A v i s i t o r t o a N a t i o n a l Park
or
Wilderness
Area
perceives
the
visual
air
304 quality or the scenic beauty of the setting. Visual range is one attribute of visual air quality. Other attributes are general amounts
of
clouds, haze,
measurement.
types
and
foreground features, and time of day. Eventually,
color photography may be used to objective criteria by
topography, the
transform
these
subjective qualities
into
relating color contrast measurements to an extinction
The semi-quantification of our calibrated color
photographs may
be an important first step in quantifying visual air quality and scenic beauty.
ACKNOWLEDGEMENT This
research was supported by Southern California Edison as a part of its
environmental research program.
REFERENCES
1 H. Atm.
Koschmieder, Theorie der 12(1924)33-53; 171-181.
horizontalen
sichtweite, Beitr. Phys. freien
2 Alexander R. Stankunas, An initial investigation of the relationship between visual acuity and haze, Proc. View on Visibility, November 1979, Denver, 70-77. 3 Douglas Allard and Ivar Tombach, Intercomparison of visibility measurement methods, Proc. View on Visibility, November 1979, Denver, 197-221.
4 William Malm, Considerations in the measurement of visibility, J. of the Air Pol. Control Assoc.
29(10)1042-1052.
5 Carsten Steffens, Measurement of visibility by photographic photometry, Industrial and Eng. Chem. 41(1949)2396-2399. 6 Douglas Allard and Ivar Tombach, The effects of non-standard visibility measurement, Atmos. Environ. , 10(1981)1847-1857.
conditions on
305
EXPERIMENTAL STUDY ON THE VISIBILITY I N ABSORBING MEDIA
H. HORVATH, J . GORRAIZ and C. JOHNSON I n s t i t u t fiir E x p e r i m e n t a l p h y s i k d e r U n i v e r s i t a t Wien, Vienna ( A u s t r i a )
ABSTRACT An a b s o r b i n g atmosphere has been s i m u l a t e d by means o f a m i x t u r e o f a hydrosol and a p a r t i c l e f r e e dye. T h i s model a l l o w s an easy d i s t i n c t i o n between a b s o r p t i o n and s c a t t e r i n g . F o r t h i s s i m u l a t e d atmosphere t h e i n f l u e n c e o f a b s o r p t i o n o f t h e medium on t h e v i s i b i l i t y o f b l a c k and g r e y o b j e c t s was determined. The luminance o f t h e h o r i z o n and o f d i f f e r e n t g r e y t a r g e t s a s w e l l as t h e v i s i b i l i t y o f t h e t a r g e t s has been measur e d w i t h i n c r e a s i n g a b s o r p t i o n under monochromatic i l l u m i n a t i o n . The v i s i b i l i t y o f b l a c k t a r g e t s depends o n l y on t h e t o t a l e x t i n c t i o n c o e f f i c i e n t . The v i s i b i l i t y o f non b l a c k t a r g e t s decreases w i t h i n c r e a s i n g a b s o r p t i o n , and depends n o t o n l y on t h e e x t i n c t i o n c o e f f i c i e n t b u t a l s o , t h r o u g h t h e i n h e r e n t c o n t r a s t o f t h e t a r g e t , on t h e e x i s t e n t a b s o r p t i o n . ivleasurements o f t h e i n h e r e n t c o n t r a s t o f t h e o b j e c t a t t h e e x i s t e n t a b s o r p t i o n a r e necesbary i n o r d e r t o d e t e r m i n e t h e v i s i b i l i t y o f non b l a c k o b j e c t s i n a b s o r b i n g media. The r e f l e c t i v i t y o f t h e ground a l s o i n f l u e n c e s t h e v i b i b i l i t y o f non b l a c k t a r g e t > , e s p e a i a l l y a t l o w c o n c e n t r a t i o n - t h e t a r g e t beeing m a i n l y i l l u m i n a t e d by d i r e c t s u n l i g h t
-
and f o r b r i g h t o b j e c t s . Even i f t h e standard v i s i -
b i l i t y can be k e p t c o n s t a n t (e.g. due t o a d d i t i o n a l a i r p o l l u t i o n c o n t r o l ) t h e v i s i b i l i t y o f non b l a c k t a r g e t s i s s m a l l e r ; i . e . t h e o p t i c a l q u a l i t y o f t h e atmosphere decreases w i t h i n c r e a s i n g a b b o r p t i o n . O n l y when t h e t a r g e t s a r e b r i g h t e r than t h e horizon, t h e i r v i s i b i l i t y w i l l increase w i t h increasing absorption. INTRODUCTION A l t h o u g h t h e c l a b s i c works a b o u t t h e v i s i b i l i t y t h e o r y ( M i d d l e t o n 1952, McCartney 1976, K e r k e r 1969) drew t h e a t t e n t i o n t o t h e i m p o r t a n t r o l e o f a b s o r p t i o n , i t was o f t e n u n d e r e s t i m a t e d o r n e g l e c t e d : The s i m p l e v i b i b i l i t y f o r m u l a o f Koschmieder (1924) - i n v e r s e r e l a t i o n between t h e v i s i b i l i t y o f an o b j e c t and t h e e x t i n c t i o n c o e f f i c i e n t o f t h e atmospheric a e r o s o l
-
i s applied, i n s p i t e o f i t s l i m i t i n g
absdmptionb ( H o r v a t h 1971a), l e a d i n g t o c o n s i d e r a b l e e r r o r s i n d e t e r m i n a t i o n o f v i b i b i l i t y , e s p e c i a l l y i f t h e s c a t t e r i n g c o e f f i c i e n t i t used i n s t e a d o f t h e e x t i n c t i o n c o e f f i c i e n t . The e a r l i e r paper o f Dessens (1944), d e a l i n g w i t h t h e e f f e c t s o f a b s o r p t i o n on v i s i b i l i t y , seems t o have been f o r g o t t e n f o r a l o n g time. However, i n h e a v i l y p o p u l a t e d and i n d u s t r i a l i s e d r e g i o n s , t h e c o n c e n t r a t i o n o f d i e b e l and o t h e r carboneceous a e r o s o l s
-
aerosols predominantly absorbing
306
1i g h t
r a t h e r than s c a t t e r i n g v i s i b l e
-
has c o n s t a n t l y grown. T h e r e f o r e nowadays
more and more a t t e n t i o n i s focused on t h e e f f e c t o f a b s o r p t i o n on v i s i b i l i t y , as i t i s shown by t h e r e c e n t l y p u b l i s h e d papers f r o m Faxvog & R o e s s l e r (1978,1980).
They p r e s e n t formulas f o r t h e v i s i b i l i t y o f b l a c k and o t h e r o b j e c t s viewed h o r i z o n t a l y t h r o u g h a e r o s o l s which may b o t h s c a t t e r and absorb l i g h t . L a b o r a t o r y e x p e r i m e n t s t o d e t e r m i n e t h e e f f e c t o f a b s o r p t i o n on t h e h o r i z o n t a l v i s i b i l i t y o f b l a c k t a r g e t s and f u r t h e r on t h e h o r i z o n t a l v i s i b i l i t y and c o n t r a s t o f g r e y t a r g e t s had n o t been performed. Therefore, a s t u d y i n a s i m u l a t e d atmosphere w i t h a s t r o n g l y and a weakly r e f l e c t i n g ground was made and w i l l be r e p o r t e d i n t h i s paper. T h e o r e t i c a l c o n s i d e r a t i o n s o f t h e v i s i b i l i t y o f b l a c k and g r e y o b j e c t s The b r i g h t n e s s c o n t r a s t o f an o b j e c t i s d e f i n e d a s : C = (B
-
Bh)/Bh
where 6 i s t h e b r i g h t n e s s o f t h e o b j e c t and Bh t h e b r i g h t n e s s o f t h e background o r h o r i z o n . The d i s t a n c e a t which t h e c o n t r a s t o f t h e o b j e c t a g a i n s t t h e h o r i z o n j u b t e q u a l s bhe observe& c o n t r a s t t h r e s h o l d
is
E
t h e v i s i b i l i t y V . Koschmieder's
t h e o r y (1924) g i v e s t h e f o l l o w i n g e q u a t i o n : E
= Co.exp(-bext.V)
where Co i s t h e c o n t r a s t a t d i s t a n c e x = 0, o r i n h e r e n t c o n t r a s t . is : 9 I n lCoO/bext
And t h u s t h e v i s i b i l i t y o f a g r e y o b j e c t V
V = (- I n / E l + 9 F o r a p e r f e c t l y b l a c k o b j e c t Co = -1, and t h e n t h e v i s i b i l i t y Vb i s t : Vb = - I n I E l / b e x t One c a n w r i t e t h e r a t i o o f v i s i b i l i t i e s o f g r e y and b l a c k o b j e c t s as: V /V = 1 g b Laboratory simulations
-
I n ICol/ln
/El
A s c a t t e r i n g h y d r o s o l , such as a m a s t i c h y d r o s o l , has s i m i l a r p r o p e r t i e s as a n
a t m o s p h e r i c a e r o s o l . These h y d r o s o l s a r e produced b y m i x i n g a s o l u t i o n o f m a s t i c i n e t h a n o l w i t h w a t e r and t h e y a r e v e r y s t a b l e . The p a r t i c l e s a r e p o l y d i s p e r s e and have a d i a m e t e r t h e same o r d e r o f magnitude as t h e wavelength o f l i g h t ( H o r v a t h & P r e s l e 1979). F o r t h e s i m u l a t i o n of a n a b s o r b i n g a e r o s o l a m i x t u r e o f m a s t i c h y d r o s o l and a dye w h i c h c o n t a i n s no p a r t i c l e s
-
being therefore responsible o n l y f o r absorption
-
was
used. T h i s a b s o r b i n g h y d r o s o l shows o p t i c a l p r o p e r t i e s s i m i l a r t o a b s o r b i n g atmospheric a e r o s o l s and a l l o w s a n easy d i s t i n c t i o n between a b s o r p t i o n and s c a t t e r i n g . As a b s o r b i h g m a t e r i a l two brands of b l a c k i n k and a w a t e r s o l u b l e b l a c k a n i l i n e dye were used. P r e l i m i n a r y measurements showed t h a t t h e s c a t t e r i n g c o e f f i c i e n t remains c o n s t a n t w i t h t h e a d d i t i o n o f dye and t h e e x t i n t i o n c o e f f i c i e n t b e i n g t h e sum o f t h e s c a t t e r i n g c o e f f i c i e n t w i t h t h e a b s o r p t i o n c o e f f i c i e n t o f t h e employed dye c o n c e n t r a t i o n .
307
The v i s i b i l i t y observations have been performed i n a container of approximately 1,5 x 0,s x 0,15 m 3 s i,z e , f i l l e d with hydrosol. The hydrosol was illuminated by means of 5 sodium lamps of 180 W each, giving a homogeneous illumination of approximately 11000 l x . The bottom of the hydrosol container was black anodized aluminium and simulated a weakly r e f l e c t i n g ground. To obtain a strongly r e f l e c t i n g ground t h i s bottom was covered with a white sheet. Experimental resul t s f o r black t a r g e t s The v i s i b i l i t y of black t a r g e t s was measured f o r a purely s c a t t e r i n g hydrosol and f o r increasingly absorbing hydrosols by two observers. Table 1 l i s t s the average v i s i b i l i t y of the two observers a s well a s the standard deviation ( l i s t e d in
(v)
p a r e n t h e s i s ) . ,Also included a r e t h e e x t i n c t i o n c o e f f i c i e n t s determined by means of the long path photometer and v i s i b i l i t i e s calculated from these e x t i n c t i o n c o e f f i c i e n t s a t two c o n t r a s t thresholds: the standard c o n t r a s t threshold of 0,02 and the mean of the measured c o n t r a s t thresholds of the two observers
I E ~=
0,015.
The v i s i b i l i t y c a l c u l a t e d from the mean of the measured c o n t r a s t threshold i s in good agreement with the average measured v i s i b i l i t y . On the o t h e r hand, the v i s i b i l i t y calculated from t h e standard c o n t r a s t threshold i s an average of l o % smaller than the measured v i s i b i l i t y , since both observers have c o n t r a s t thresholds l e s s than 0,02. V i s i b i l i t y i s inversely proportional t o the e x t i n c t i o n c o e f f i c i e n t , independent of t h e s i z e of the absorption c o e f f i c i e n t . Thus t h e v i s i b i l i t y of ideal black t a r g e t s i n absorbing media i s experimentally proven t o depend only on the t o t a l extinction coefficient.
TABLE 1 Measured and c a l c u l a t e d v i s i b i l i t i e s f o r black t a r g e t s Dye concentration ml/l Hydrosol 0 0,5 0,lO 0,15 0,20
Measured v i s i b i l i t y V cm 60,71 49,75 41,85 37,53 34,05
(2,58) (1,71) (2,23) (1,42) (1,14)
bexf
Calculated
Visibility
cm-
IE/
/EI
0,072 0,090 0,100 0,111 0,124
= 0,02
53,8 43,4 39,l 35,l 31,5
=
0,015
58,3 46,65 42 ,O 37,8 33,9
Experimental resul t s f o r grey t a r g e t s The v i s i b i l i t y was measured by t h r e e observers f o r a purely s c a t t e r i n g hydrosol and then f o r three increasing absorbing hydrosols. First a black t a r g e t B was used, followed by four d i s t i n c t . g r e y t a r g e t s ( G 1 was d a r k e s t and 64 l i g h t e s t ) and then t h e black repeated. The r e s u l t s a r e given
in
Table 2.
The measurements f o r the t a r g e t 64 contains an additional uncertainty since the observers could see t h e dark edges of the t a r g e t b e t t e r than the l i g h t face, t h u s
308
Neawrements o f t h e r a t i o o f t h e i l l u m i n a n c e of t h e h o r i z o n t o t h e i r r a d i a n c e o f the i n c i d e n t l i g h t w i t h i n c r e a s i n g a b s o r p t i o n . The p o i n t s xx
$*.. .W
'
r e p r e s e n t t h e measurements f o r a weakly r e f l e c -
20
2: 8 . Pa
t i n g ground, t h e p o i n t s ooo t h e measurement5 f o r
ra
a s t r o n g l y r e f l e c t i n g one. The continuous and
* 3.
broken l i n e s r e p r e s e n t t h e t h e o r e t i c a l values
OQ
5
L
b-
ABSORPTION COEFFICIENT / EXTINCTION COEFFICIENT
h o r i z o n t o t h e i n c i d e n t i r r a d i a n c e was conbidered instead o f the illuminance o f the h o r i z o n . The r e s u l t s a r e p l o t t e d i n f i g .
1 for
a s t r o n g l y and a weakly r e f l e c t i n g ground. These r e s u l t s show t h e i m p o r t a n t r o l e of t h e r e f l e c t i o n o f t h e ground. The r a t i o o f t h e i n h e r e n t b r i g h t n e s s o f the observed o b j e c t t o t h a t o f the h o r i z o n was measured f o r each s e t of g r e y t a r g e t s i n each h y d r o s o l . The r e s u l t s a r e r e p r e bented f o r b o t h weakly and s t r o n g l y r e f l e c t i n g ground i n f i g u r e 2. From t h i s f i g u r e one concludes t h a t t h e d i f f e r e n c e between t h e weakly and s t r o n g l y r e f l e c t i n g ground
i b
negligible.
From t h e measured r a t i o s Bo/Bh,
t h e i n h e r e n t c o n t r a s t o f t h e g r e y t a r g e t s was
c a l c u l a t e d a t t h e bame c o n d i t i o n s as f o r the measurements of t h e v i s i b i l i t y (see t a b l e 2 ) . The r a t i o s o f t h e v i s i b i l i t y o f t h e g r e y t a r g e t s t o t h a t o f a b l a c k t a r g e t wab t h e n determined u s i n g t h e t h e o r e t i c a l formula:
V /V = 1 - I n ICol/ln I E ~ 9 b Results, c a l c u l a t e d u s i n g t h e standard c o n t r a s t t h r e s h o l d and the mean c o n t r a s t t h r e L h o l d of t h e t h r e e observers
1 ~ =1 0,018 a r e
shown i n t a b l e 2 a l o n g w i t h t h e
d i r e c t meabured r a t i o s o f v i s i b i l i t i e s . The correspondence between t h e average measured r a t i o and t h a t c a l c u l a t e d u s i n g t h e mean c o n t r a s t t h r e s h o l d o f t h e obbervers
ib
v e r y good f o r t h e f i r s t t h r e e g r e y o b j e c t s .
309 F i g . 2:
. 9. W
Behaviour o f t h e r a t i o o f t h e i n h e r e n t b r i g h t ness o f t h e o b j e c t t o t h e b r i g h t n e s s o f t h e
- theoret ica I x x x grey 1 + + + o D o
grey2
bbb
grey 3
h o r i z o n w i t h i n c r e a s i n g a b s o r p t i o n . The L A &
symbols l e f t o f " g r e y " r e p r e s e n t t h e measurements f o r a weakly r e f l e c t i n g ground, t h e symbols r i g h t o f " g r e y " t h e measurements f o r a s t r o n g l y r e f l e c t i n g one.
I n t h e case o f t h e f o u r t h g r e y t a r g e t t h e d i s agreement i s most l i k e l y caused b y t h e exa g g e r a t e d v i s i b i l i t y o f t h e t a r g e t s due t o t h e i r d a r k e r edges. I
.
.
.
. . . . 0.4 0.6 A B S O R P T ION COEFFICIENT/ E X T lN C T lO N COEFFICI E N 1 0.2
Thus t h e p r e d i c t i o n o f t h e v i s i b i l i t y o f g r e y o b j e c t s i n a b s o r b i n g media f r o m t h e t o t a l e x t i n c t i o n c o e f f i c i e n t alone i s n o t s u f f i c i e n t .
The i n h e r e n t c o n t r a s t o f t h e observed o b j e c t s as a f u n c t i o n o f a b s o r p t i o n i s a l s o necessary. A p p l i c a t i o n t o t h e atmosphere and comparison w i t h o t h e r r e w l ts The v i s i b i l i t y o f p e r f e c t l y b l a c k o b j e c t s i n a b s o r b i n g media i s i n v e r s e l y p r o p o r t i o n a l t o t h e e x t i n c t i o n c o e f f i c i e n t , independent o f t h e s i z e o f t h e absorpt i o n c o e f f i c i e n t , a s i t was t h e o r e t i c l y f o r m u l a t e d b y Foaxvog & R o e s s l e r (1978). For non-perfectly black objects, appearing o f t e n i n nature, the e f f e c t o f a b s o r p t i o n must be i n c l u d e d . I n t h i s case t h e f i r s t f a c t o r t o be t a k e n i n t o c o n s i d e r a t i o n i s t h e i l l u m i n a n c e
o f t h e horizon (see f i g . 1 ) .
The t h e o r e t i c a l r e s u l t s f r o m Faxvog & R o e s s l e r (1980)
do n o t correspond w i t h t h e performed measurements, e s p e c i a l l y n o t f o r s t r o n g a b s o r p t i o n and f o r a s t r o n g l y r e f l e c t i n g ground. The a u t h o r 5 suggest t h a t p o s s i b l e 5ource5 o f e r r o r a r e t h e n o t - c o n s i d e r a t i o n o f t h e mu1 t i p l e scattering-mu1 t i p l e s c a t t e r i n g i s i m p o r t a n t i n o p t i c a l l y t h i c k media
-
and t h e n o t - c o n s i d e r a t i o n o f
t h e r e f l e c t i o n o f t h e ground, which i n f l u e n c e s t h e decrea5es o f t h e i l l u m i n a n c e o f t h e horizon w i t h increasing absorption. The second f a c t o r t o be t a k e n i n t o c o n s i d e r a t i o n
i 5
t h e i n h e r e n t b r i g h t n e s s of
t h e observed o b j e c t . The i n h e r e n t b r i g h t n e s s o f t h e o b j e c t i s n o t a c o n s t a n t l i k e i t was assumed by Faxvog & R o e s s l e r (1980) b u t depends on t h e i l l u m i n a t i o n r e c e i v e d
by t h e o b j e c t and t h e r e f o r e depend? on t h e a b s o r p t i o n o f t h e a e r o s o l and on t h e r e f l e c t i o n o f t h e ground. To d e t e r m i n e t h e v i s i b i l i t y , t h e d e c i s i v e f a c t o r i s however t h e r a t i o o f t h e i n h e r e n t brightness o f the t a r g e t t o the brightness o f the horizon. I n our
310
TABLE 2 deasured v i s i b i l i t i e s f o r g r e y t a r g e t s and measured and c a l c u l a t e d r a t i o s o f v i s i b i l i t i e s o f g r e y and b l a c k o b j e c t s w i t h i n c r e a s i n g a b s o r p t i o n ba/bext
Target
B Gi E2
0
G3 64 B
B B1
0,27
G2 G3 G4 B B G1
0,37
62 63 G4 B
0,47
B G1 G2 G3 G4 B
Visibility cm
46,40 45,oG 44.31 42,93 38,67 46,91
V/Vb
ICo
I
E
V/Vb = 0,018
(calculated) E
= 0,02
1 0,97 0,96 0,92 o ,83 1
1 0,89 0,85 0,75 0,46 1
1 0,97 0,96 0,93
1 0,97 0,96
0,81 1
o $0 1
1 0,86
1 0,96 0,945 o,90 0,72 1
0,96 0,94 o ,89 o ,71 1
0,92
1
32,04 30,88 29,69 28,60 25,49 31,95
(1,72) (1,45) (1,77) (1,81) (2,44) (1,53)
1 0,96 0,93 o,89 1
0,675 0,325 1
27,49 25,70 25,57 24,06 20,48 27,39
(1,07) (1,64) (1,44) (2,08) (1,62) (1,78)
1 0,94 0,93 0,87 0,75 1
1 0,83 0,78 0*,625 0,225 1
1 0,95 0,94 0,88 0,63 1
o $8 o ,62 1
24,56 22,56 22,16 20,84
(1,68) (1,26) (1,49) (0,96)
1 0,91 o,90 0,81
25,63
(2,94)
1
1 0,82 0,74 0,60 0,16 1
1 0,95 0,93 0,87 0,55 1
1 0,95 0,92 o ,87 0,53 1
--
-_
0,80
--
0,80
1 0,95 0,93
e x p e r i m e n t a l s e t u p t h e r e f l e c t i o n o f t h e ground had no e f f e c t on t h i s r a t i o ( s e e f i g . 2 ) : t h e e f f e c t o f t h e r e f l e c t i o n o f t h e ground on t h e i n h e r e n t b r i g h t n e s s o f t h e t a r g e t compensates t h a t on t h e b r i g h t n e s s o f t h e h o r i z o n . A l t h o u g h t h e two assumptions, used f o r t h e t h e o r e t i c a l f o r m u l a f r o m Faxvog & K o e s s l e r , c o u l d n o t be proven e x p e r i m e n t a l l y , t h e i r f i n a l formual r e p r e s e n t s a good a p p r o x i m a t i o n , a s shown i n f i g . 2. O n l y a t s t r o n g a b s o r p t i o n t h e t h e o r e t i c a l r e s u l t s i n c r e a s e f a s t e r t h a n t h e e x p e r i m e n t a l measurements. Because o f t h e l a c k o f a good t h e o r e t i c a l l y bahed formula, w h i c h c o u l d g i v e t h e v a r i a t i o n o f t h e i n h e r e n t c o n t m s t w i t h i n c r e a s i n g a b s o r p t i o n , i t i s necessary t o measure t h e r a t i o o f t h e i n h e r e n t brightness o f t h e t a r g e t t o the brightness o f the horizon a t t h e e x i s t e n t absorption i n order t o determine t h e v i s i b i l i t y o f non-perfectly black o b j e c t s i n absorbing media ( s e e t a b l e 3 ) .
311
Table 3 shows t h e v i s i b i l i t y o f b l a c k and g r e y t a r g e t s i n a non a b s o r b i n g atmosp h e r e a n atmosphere w i t h 25 % and 50 % o f t h e e x t i n c t i o n beeing due t o a b s o r p t i o n . We have assumed two p o s s i b l e p a r t i c l e c o n c e n t r a t i o n s , h i g h c o n c e n t r a t i o n mean5 l o w v i s i b i l i t i e s and t h u s a h i g h v e r t i c a l o p t i c a l d e n s i t y and t h e r e f o r e a l a r g e p o r t i o n o f d i f f u s e l i g h t i l l u m i n a t i n g the t a r g e t ( s i m i l a r t o our simulation e x p e r i m e n t s ) ; l o w c o n c e n t r a t i o n means h i g h v i s i b i l i t y and t h e t a r g e t beeing m a i n l y i l l u m i n a t e d by d i r e c t s u n l i g h t . The d i f f e r e n t shades o f g r e y would correspond t o c o n i f e r 5 w i t h t h e sun b e h i n d t h e t a r g e t ( G l ) , c o n i f e r s 90' c o n c r e t e a t 90'
f r o m t h e sun (GZ),
(G3), c o n c r e t e i l l u m i n a t e d b y t h e sun (G4). The v i s i b i l i t y o f t h e
b l a c k t a r g e t was n o r m a l i z e d t o 1. I n p u r e s c a t t e r i n g t h e v i s i b i l i t y o f t h e g r e y t a r g e t s a r e up t o 20 % l o w e r b o t h f o r s t r o n g and w e a k l y r e f l e c t i n g grounds. W i t h i n c r e a s i n g a b s o r p t i o n t h e v i s i b i l i t y o f a l l g r e y t a r g e t s decreases, f o r d a r k t a r g e t s t h e r e f l e c t a n c e o f t h e ground has a minimal i n f l u e n c e , e x c e p t f o r 50 % a b s o r p t i o n and l o w c o n c e n t r a t i o n , where t h e a d d i t i o n a l r e f l e c t i o n o f t h e ground has a marked i n f l u e n c e on t h e luminance o f t h e h o r i z o n . F o r t h e l i g h t e r t a r g e t s (G3, 54) t h e same i s t r u e ,
t h e i n c r e a s e i n v i s i b i l i t y f o r 64 a t 50 % a b s o r p t i o n
and l o w c o n c e n t r a t i o n i s caused b y t h e t a r g e t b e e i n g b r i g h t e r t h a n t h e h o r i z o n . TABLE 3 V i s i b i l i t y i n d i f f e r e n t a b s o r b i n g atmospheres w i t h a s t a n d a r d v i s i b i l i t y o f 1. Target
Pure s c a t t e .
25 % absorp. h i b h concen. weak. s t r o n g r e f l e c t i ng
weak. s t r o n g r e f l e c t i ng Black ~~
1
1 ~
~
25 % absorp. l o w concen. weak. s t r o n g r e f l e c t i ng
50 % absorp. h i g h concen. weak. s t r o n g r e f l e c t i ng
50 % absorp. l o w concen. weak. s t r o n g r e f 1ec t ing
1
1
1
1
1
1
1
1
~~
Grey 1
0,97
0,97
0,96
0,96
0,96
0,95
0,94
0,94
0,91
0,83
Grey 2
0,96
0,96
o,94
0,94
0,94
0,92
0,92
0,91
0,86
o,70
Grey 3
0,92
0,92
o,90
0,89
0,89
0,85
0,84
0,83
0,70
0,43
Grey 4
0,80
0,80
0,71
0,71
0,66
0,41
0,23
0,22
0,80
1,06
G e n e r a l l y one can say: An i n c r e a s e o f t h e a b s o r p t i o n o f t h e atmospheric a e r o s o l ( w i t h t h e e x t i n c t i o n c o e f f i c i e n t r e m a i n i n g c o n s t a n t ) does n o t change t h e v i s i b i l i t y
of b l a c k t a r g e t s . The v i s i b i l i t y o f nonblack t a r g e t s decreases w i t h i n c r e a s i n g a b u e r p t i o n , t h e decrease i s l a r g e r f o r atmospheres w i t h h i g h amounts o f d i f f u s e l i g h t and f o r s t r o n g l y r e f l e c t i n g ground. F o r t h e model c a l c u l a t i o n s o f t a b l e 3, t h e extreme cases, b o t h f o r t h e amount o f d i f f u s e l i g h t and t h e r e f l e c t i o n o f t h e ground have been chosen, so t h a t most o f t h e cases t o be expected w i l l l i e i n between.
312
snow f i e l d s ) w i l l be b e t t e r v i s i b l e i n a s t r o n g l y
O n l y v e r y b r i g h t t a r g e t s (e.g.
a b s o r b i n g atmosphere ( M i d d l e t o n 1952), because t h e p o s i t i v e i n t r i n s i c c o n t r a s t o f the t a r g e t r e l a t i v e t o the horizon increases, since the brightness o f the h o r i z o n decreabes due t o a b s o r o t i o n . REFERENCES Dessenb, H.,
1944, " R e l a t i o n e n t r e 1 ' a b s o r p t i o n p a r 1 'atmosphere e t l a v i s i -
b i l i t 6 " , C.R.
Acad. S c i . 218, pp. 685 - 687
and R o e s s l e r , D.M.,
Faxvog, F.R.,
1978, "Carbon a e r o s o l v i s i b i l i t y vs. p a r t i -
c l e s i z e d i s t r i b u t i o n " , A p p l . Optic. Horvath, H.,
A t m . Environment 4 , pp. 177
Horvath, H.,
17, pp. 2612-2616
1911 a, "On t h e a p p l i c a b i l i t y o f t h e Koschm:edcr b : s i h i i i t y and P r e s l e , G.,
-
formula",
134
1979, "Measuremenbof v i s i b i l i t i e s i n s i m u l a t e d
atmospheres ( h y d r o s o l s ) and a p p l i c a t i o n s t o r e a l atmospheres", Aero-
sols research a t the I n s t i t u t e f o r Experimental Physics o f the U n i v e r s i t y o f Vienna, P a r t I 1 K e r k e r , M.,
1969, "The s c a t t e r i n g o f 1 i g h t and o t h e r e l e c t r o m a g n e t i c r a d i a t i o n " ,
New York: Academic p r . 1924, " T h e o r i e d e r h o r i z o n t a l e n S i c h t w e i t e " , B e i t r . z . Phys.
Koschmieder, H.,
f r e i e n A t m . 12, pp. 33 - 53 and 1 7 1
-
181
1976, " O p t i c s o f t h e atmosphere",
McCartney, E.J., M i d d l e t o n , W.E.K.,
John Wiley, New York
1952 and 1963, " V i s i o n t h r o u g h t h e atmosphere", U n i v e r s i t y
o f T o r o n t o Press, Toronto R o e s s l e r , D.M.,
and Faxvog, F.R.,
1981, " V i s i b i l i t y i n a b s o r b i n g a e r o s o l s " ,
A t m . Environment 15, pp. 151
-
156
ACKNOWLEDGEMENT: T h i s work was s u p p o r t e d i n p a r t by a g r a n t o f t h e "Fonds z u r Forderung d e r w i s b e n s c h a f t l i c h e n Forschung i n U s t e r r e i c h " , g r a n t number 3453.
313
CHANGES OF LOCAL PLANETARY ALBEDO BY AEROSOL PARTICLES HARTMUT GRASSL, I n s t i t u t fur Meereskunde, Universitat of Kiel, F R G MADELEINE NEWIGER, Max-Planck-Institut fur Meteorologie, Hamburg, FRG
ABSTRACT T h e c l i m a t e p a r a m e t e r local p l a n e t a r y a l b e d o i s a f f e c t e d both in c l e a r a n d cloudy a r e a s by a e r o s o l particles. In b o t h cases t h e a l b e d o may i n c r e a s e or d e c r e a s e i f
turbidity
increases, i.e. t h e r e a r e a r e a s w h e r e a n additional pollution l e a d s t o a n energy gain o r loss. While t h e most i m p o r t a n t p a r a m e t e r s in c l e a r a r e a s a r e s u r f a c e albedo a n d t h e mass absorption c o e f f i c i e n t of t h e particles, aerosol p a r t i c l e c o n c e n t r a t i o n v i a t h e number of condensation nuclei a n d a g a i n absorption a r e t h e dominating f a c t o r s i n clouds. A reappraisal of known bulk formulae for c l e a r a r e a s points t o additional p a r a m e t e r s determining t h e crossover from h e a t i n g t o cooling. T h e most i m p o r t a n t additional p a r a m e t e r i s sun elevation, however, a e r o s o l o p t i c a l d e p t h also has to b e considered. T h e weakness of former e s t i m a t e s of cloud a l b e d o c h a n g e w i t h aerosol p a r t i c l e c h a r a c t e r i s t i c s i s demonstrated f o r broad cloud
drop s i z e distributions and for simultaneous c h a n g e s in p a r t i c l e number, size, a n d chemical composition. T h e t e r r e s t r i a l radiation does n o t c o m p e n s a t e f o r t h e partly d r a s t i c changes in t h e solar radiation in c l e a r a n d cloudy a r e a s , a g a i n pointing t o a s t r o n g influence of aerosol p a r t i c l e s o n local p l a n e t a r y albedo.
INTRODUCTION Minor c o n s t i t u e n t s of t h e a t m o s p h e r e c a n play a n important role for climate. If t h e s e 'climatic' minor c o n s t i t u e n t s a r e moreover influenced i n t h e i r c o n c e n t r a t i o n of distribution by human a c t i v i t i e s t h e y become especially important. A s long as many of t h e feedback loops of t h e n a t u r a l c l i m a t e system a r e poorly o r n o t at all understood, o u r c o n c e r n with global
man-made p e r t u r b a t i o n s of t h e c l i m a t e system h a s t o b e speculative, being justified only by potentially dangerous c l i m a t i c changes a n d by obvious regional perturbations, as for i n s t a n c e h e a t islands of c i t i e s a n d acid rain, B e s t , b u t still only p a r t l y understood of a l l t h e possible c l i m a t i c perturbations i s t h e consequence of t h e greenhouse effect of radiatively a c t i v e g a s e s like C O
.
N 0, C H T h e 2' 2 4 e s t i m a t i o n of t h e a e r o s o l p a r t i c l e influence, however, i s much m o r e complicated e v e n for c l e a r a r e a s of t h e a t m o s p h e r e s i n c e 1) t h e seasonal a n d local c o n c e n t r a t i o n , composition and s i z e of t h e p a r t i c l e s v a r i e s tremendously, 2) t h e i n c r e a s e of p a r t i c l e c o n c e n t r a t i o n i s questioned, a n d 3) e v e n t h e sign of t h e local e n e r g y budget c h a n g e equivalent to a change in local p l a n e t a r y a l b e d o is u n c e r t a i n (ref. 1) depending o n s u r f a c e albedo, absorption a n d
314 s c a t t e r i n g c h a r a c t e r i s t i c s of t h e particles.
-
Since aerosol p a r t i c l e s
besides c i r c u l a t i o n p a t t e r n s - d e t e r m i n e t h e microphysics of
clouds, and t h u s a r e responsible for p r e c i p i t a t i o n a n d t h e radiation budget of clouds, t h e r e is n o justification for a n omission of t h e a e r o s o l particles’ influence o n t h e e n e r g y budget i n cloudy areas. A s a c o n s e q u e n c e of t h e u n c e r t a i n t i e s mentioned, t h e following s e c t i o n s will f i r s t give a n assessment of t h e a c c u r a c y of a l r e a d y known bulk formulae f o r c l e a n a r e a s , will show t h e i m p o r t a n c e of t h e p a r t i c l e s for t h e r a d i a t i v e t r a n s f e r i n a n a t m o s p h e r e w i t h clouds, and will also d e p i c t p r e s e n t u n c e r t a i n t i e s in estimating cloud a l b e d o changes just by showing t h e number of a c t i v a t e d p a r t i c l e s f o r given c h a n g e s in number, size, composition and s u r f a c e tension. ALBEDO IN A CLOUDLESS ATMOSPHERE T w o a t t e m p t s h a v e been made (ref. 1, 2) t o d e s c r i b e t h e i n f l u e n c e of aerosol p a r t i c l e s o n t h e r a d i a t i o n budget in cloudless a t m o s p h e r e s by bulk formulae. R a d i a t i v e t r a n s f e r c a l c u l a t i o n s using t h e
6
-Eddington approximation have b e e n c a r r i e d o u t t o test t h e
validity of t h e s e bulk formulae. Comparisons w i t h socalled e x a c t calculations with t h e matrix o p e r a t o r method show a good a g r e e m e n t for i n t e g r a l f e a t u r e s as albedo. For i n s t a n c e t h e a l b e d o d i f f e r e n c e f o r t w o cloud types, a p u r e w a t e r cloud a n d a n aerosol contaminated cloud, a r e 0.1186
a n d 0.1152
6
for t h e matrix o p e r a t o r a n d t h e
-Eddington method
respectively. In a f i r s t s t e p ChGlek and Coackley (ref. I ) derived a relationship b e t w e e n t h e r a t i o absorption-to-backscattering a / b of a n aerosol a n d t h e s u r f a c e a l b e d o A
E (1 -- As)2T
a
S’
>
o
heating
=
o
equilibrium
<
o
cooling
(1)
This bulk formula i s independent of t h e o p t i c a l thickness a n d n e i t h e r t h e sun e l e v a t i o n nor t h e s p e c t r a l d e p e n d e n c e of a / b a n d s u r f a c e a l b e d o a r e considered. Fig. 1 demonstrates, t h a t t h i s simple relationship is n o t a b l e t o r e p r e s e n t t h e main f e a t u r e s of aerosol influence. T h e conditions f o r equilibrium following. Eq. 1 a r e compared t o our r e s u l t s f o r t w o aerosol s i z e distributions depending on sun elevation, o p t i c a l thickness, a n d complex index of refraction. Since o u r r e s u l t s include t h e i n t e g r a t i o n over t h e solar spectrum, t h e y have been allied t o t h e a p p r o p r i a t e v a l u e a / b at h = 0.55 pm,
t h e c e n t e r wavelength of t h e visible spectrum.
T h e v a r i a t i o n i n v a l u e s a / b is mainly d u e t o a c h a n g e i n t h e complex r e f r e c t i v e index, t h e p a r t i c l e s i z e distribution h a s a minor influence. For a t y p i c a l industrial a e r o s o l w i t h a complex index of r e f r a c t i o n
m=1.5-0.02,
as measured in Mainz (ref, 3), a n d a J u n g e s i z e
distribution t h e equilibrium may c h a n g e from s u r f a c e a l b e d o 0.26 t o 0.56 depending o n sun e l e v a t i o n a n d o p t i c a l thickness. Such a n aerosol l a y e r over a snow s u r f a c e will lead t o a h e a t i n g of t h e atmosphere. F o r d e s e r t s with a n albedo v a l u e of -0.3
t h e effect i s critically
d e p e n d e n t o n both sun e l e v a t i o n a n d o p t i c a l depth: f o r cos 0 = 0.7 a n o p t i c a l thicknes ‘I; = 0.1 will c a u s e a heating, w h e r e a s a n aerosol l a y e r w i t h ‘I; = 0.5 cools t h e sythem. T h e e f f e c t
315
10
1;ykky
1974 1
I1 - A S 1'
n b
10
size distributions ~ _ . Haze L iDelrrnendjlani Junge wlth r d
zenlth angles c o s 0
\
\
009 4 07 0 05 003 0Of
\
\
10
10
1
02
04
06
*'
AS
Fig. 1: Absorption-to-backscattering r a t i o a / b of a e r o s o l p a r t i c l e s as a function of c r i t i c a l s u r f a c e a l b e d o A R e s u l t s f o r a bulk formula by Ch$lek a n d C o a c k l e y (ref. 1) a r e compared t o r a d i a t i v e t r a d f e r c a l c u l a t i o n s f o r t w o aerosol s i z e distributions with optical thicknessZ = 0.1 (open symbols) and Z = 1.0 (dark symbols) and f i v e z e n i t h a n g l e s 0. T h e domain t o t h e r i g h t s i d e of t h e equilibrium c u r v e defines conditions w h e r e additional aerosol p a r t i c l e s d e c r e a s e t h e albedo of t h e system a n d t h e r e f o r e h e a t s it.
.
of t h e o p t i c a l t h i c k n e s s 1 is more pronounced for low sun elevations, as well as for low
values a / b
-
i n t h i s case c h a n g e s in aerosol o p t i c a l thickness led t o t h e same s h i f t of t h e
equilibrium point as sun elevation. In a follow-up p a p e r (ref. 2) t h e a u t h o r s of (ref. I ) included a d e p e n d e n c e o n sun elea n d angular d e p e n d e n t phase f u n c t i o n by introducing a b(p). For a sufficiently thin
vation
aerosol l a y e r t h e y derived:
>0
heating
Again n e i t h e r t h e s p e c t r a l d e p e n d e n c e of t h e r a t i o a/b(p) nor t h e variation of optical thickness is considered. Fig. 2 shows t h e resuIts of t h e bulk formula (Eq. 2) a n d o u r c a l c u l a t i o n s i n terms of a/b(p) a n d t h e c r i t i c a l s u r f a c e albedo As f o r f i v e values p = cos 0 from 0.1 t o 0.5 and t h e t w o "extremes" for a / b from Fig. 1. T h e formula (Eq. 2) o v e r e s t i m a t e s t h e dependence o n p;
316
-_
._
zenith angles cos0 0 09
07 05 a03 0
00’
Fig. 2: a/b(p) a s a function of t h e c r i t i c a l s u r f a c e a l b e d o A f o r f i v e d i f f e r e n t z e n i t h a n g l e s p = cos 8 using Eq. 2 (-----) for t w o d i f f e r e n t aerosol siz; distributions. Own calculations T 6 0.5). (-) a l s o show d e p e n d e n c e o n o p t i c a l d e p t h 1 (0.1 t h e d i f f e r e n c e s being l a r g e s t f o r low sun e l e v a t i o n a n d low values a/b. T h e question w e t h e r a n additional aerosol l a y e r c a u s e s cooling o r h e a t i n g of t h e atmosphere-earth system c a n obviously n o t b e a n s w e r e d by t h e formulae (1) o r (2). AEROSOL PARTICLES AND RADIATION PARAMETERS O F WATER CLOUDS
If a e r o s o l p a r t i c l e s a b s o r b solar radiation (mainly i n t h e visible spectrum a n d in ‘windows’ b e t w e e n w a t e r vapour bands in t h e n e a r infrared), t h e r e i s a high probability t h a t t h e o r d e r of magnitude of absorption i s k e p t a f t e r t h e incorporation i n t o cloud air. This should hold w h e t h e r t h e p a r t i c l e s have been used as a condensation nucleus, c a t c h e d by cloud d r o p l e t s o r only grown with r e l a t i v e humidity t o a size normally n o t called a cloud droplet. C a l c u l a t i o n s by o n e of t h e a u t h o r s (ref. 4) a n d a n experimental verification f o r a f e w c a s e s by And& et al. (ref. 5), w h e r e simultaneous samples of cloud w a t e r a n d t h e una c t i v a t e d component w e r e available have confirmed t h i s expectation. If only t h e number of aerosol p a r t i c l e s changes, however, t h e i r chemical composition and r e l a t i v e s i z e distribution does not, t h e number of cloud d r o p l e t s under a fixed circulation p a t t e r n , e q u i v a l e n t t o fixed s u p e r s a t u r a t i o n and liquid w a t e r c o n t e n t , should c h a n g e i n t h e s a m e direction. Then t h e following r e l a t i o n b e t w e e n condensation nuclei number C or optical depth
T and t h e number of aerosol p a r t i c l e
should e x i s t (ref. 6-8):
N under t w o d i f f e r e n t situations
317 c2
N2a
I -
(-)
-
c2
NI
t 2
N2R (--)
-5
N1
-=
a = 0.8 as measured by Warner a n d Twomey (ref. 9) for a s p e c i f i c case
(3)
13 -0.3 if using a= 0.8, assuming narrow d r o p l e t s i z e distribution a n d T = 2 . C * r-z with t; = mean s q u a r e radius a n d C* = condensation nuclei used above unit surface.
(4)
If t h e a e r o s o l p a r t i c l e s a r e not only increasing in number b u t a l s o have a higher mass
absorption c o e f f i c i e n t k , t h e resulting clouds following r e l a t i o n (3) have higher optical d e p t h a n d a b s o r b stronger. S i n c e increasing
T, e n h a n c e s a l b e d o a n d increasing k lowers
albedo, both e f f e c t s additionally depending o n 7; for t h e s t a n d a r d case, t h e r e should e x i s t a n optical depth extent
Tc with no a l b e d o c h a n g e (T "35
- 0.8 km at 0.2
for highly polluted c a s e 2, v e r t i c a l
gmm3 liquid w a t e r conten?). Thinner clouds become brighter, thicker
clouds darker. If t h e absorption c o e f f i c i e n t remains c o n s t a n t , a l l clouds in a n increasingly polluted a t m o s p h e r e r e f l e c t more solar radiation, leading t o a n energy loss for t h e atmosphere-earth
system. This discussion of cloud albedo c h a n g e w i t h aerosol p a r t i c l e
changes included a n albedo e n h a n c e m e n t d u e t o a f l a t t e n i n g of t h e s c a t t e r i n g o r phase function which a l w a y s accompanies a decreasing mean d r o p l e t size. T h e variations of absorption, r e f l e c t i o n and transmission i n t h e i n t e g r a t e d
solar spectrum (0.3-3.7
vm
wavelength) c a u s e d by v a r i a t i o n s of a n a l y t i c a l cloud d r o p l e t s i z e distributions within observed limits have been presented e l s e w h e r e (ref. 10). Before questionning r e l a t i o n (4),which may b e necessary f o r simultaneous changes in size, c h e m i s t r y a n d number of p a r t i c l e s , in t h e n e x t section, w e will answer t h e question: Does longwave r a d i a t i o n compensate t h e e f f e c t s of aerosol p a r t i c l e variations o n shortw a v e cloud p a r a m e t e r s ? Again using t h e matrix-operator method f o r r a d i a t i v e t r a n s f e r c a l c u l a t i o n s f o r a n azimutally a v e r a g e d , plane parallel a t m o s p h e r e a n d accounting f o r t h e inhomogeneous s o u r c e extension by Wiscombe (ref. 1 I), our answer is: t h e longwave radiation d o e s n o t c o m p e n s a t e t h e e f f e c t s in t h e s h o r t w a v e domain. In Fig. 3 t w o cloud transformations
covering
t h e conceivable r a n g e from maritime (typical d r o p l e t
size
distribution C 5 a f t e r Deirmendjian (ref. 12) to c o n t i n e n t a l ( C l ) a n d c o n t i n e n t a l to strongly polluted (C3) l e a d to nearly t h e same n e t flux d i f f e r e n c e
A Fnet
= Fnet (C5)
-
Fnet (C1)
i n t h e s h o r t w a v e domain. N o i n c r e a s e i n t h e mass absorption c o e f f i c i e n t k is included. Additional absorption
A Fn e t in t h e longwave p a r t a r e a t l e a s t o n e o r d e r of
i n t h e s t r o n g e r pollution case would lower b o t h curves. T h e
values i n c r e a s e w i t h sun elevation.
A Fnet
magnitude lower a n d f o r t h e C5-C1 transformation e v e n a d d t o t h e s h o r t w a v e effect T h e s e small
a Fnet
a r e caused by t w o competing mechanisms. By adding p a r t i c l e s T is
increased lifting t h e e m i t t i n g l a y e r t o lower t e m p e r a t u r e s , causing r e d u c e d emission. This would f a v o r a compensation. T h e single s c a t t e r i n g albedo, however, i s lowered at t h e same time, bringing cloud emission n e a r e r t o blackbody emission, t h e r e f o r e increasing emission t o space.
318
AFnet
200
i -
100 : 50 -
-
optical depth at 0.55pm 26(C1) mean liquid water content = 0.2 gm-3
20 -
---
c1 -c3 continental 3 highly polluted
-
10 :
C5-Cl
continent a1 ---------
maritime
521
3
K
1
LW
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 cos 0 fig. 3. Radiative n e t f l u x d i f f e r e n c e A F = F (C5) - F function of solar zenith angle; upper &%es f0"rt shortwa%?
'
- F (C3) as a and lower (constan"e$alues) for
(1) or Fnet(C1)
long wave radiation. These results apply t o high lying clouds as well. An influence of pollution for high clouds is, however, much more uncertain because pollution by aerosol particles is f i r s t of all a problem of t h e planetary boundary layer. Since t h e location, t h e type and t h e height of a cloud determine, whether a n increase in cloud cover causes a n energy loss or gain for t h e earth-atmosphere system (for details
see Hartmann and Short (ref. 13)), additional aerosol particles without strongly increasing absorption favor a still more dominating albedo e f f e c t and thus enhanced energy losses if cloud amount should increase. ACTIVATED PARTICLES FOR DIFFERENT AEROSOL POPULATIONS T h e foregoing discussion avoided a n explicit t r e a t m e n t of changes in chemical composition and s i z e distribution of aerosol particles. Also changes in liquid water c o n t e n t and maximum supersaturation, which
-
even at fixed circulation p a t t e r n s
particle characteristics, have been neglected.
-
would vary with
T h e following example shows possible
variations of t h e number of a c t i v a t e d particles as a consequence of varying aerosol
319 p a r t i c l e parameters. T h e equations used stem from Hanel (ref. 14) a n d t h e example shown should only give a n impression of t h e possible reactions. T h e p a r a m e t e r c h a n g e s in Fig. 4 a r e at t h e margin of applicability of t h e r e l a t i o n s used, s i n c e Hanel's assumption of only minor c h a n g e s i n liquid w a t e r c o n t e n t
-
if comparing basic a n d new state - a r e already
stressed. Variations i n s u r f a c e tension a n d w a t e r u p t a k e with r e l a t i v e humidity, resulting from c h a n g e s i n chemical composition a r e n o t shown explicitly in Fig. 4, because r e a c t i o n s t o a 10% i n c r e a s e in p a r t i c l e numbers (n /n =1.1) a r e equivalent t o a lowering of s u r f a c e 1
0
tension by 6% or a n i n c r e a s e of t h e exponential mass i n c r e a s e c o e f f i c i e n t by 6.6%. T h e exponent
y
i n t h e r e l a t i o n b e t w e e n t h e r a t i o of cloud d r o p l e t s a n d t h e r a t i o of aerosol
p a r t i c l e numbers CCN1/CCNo =(NI/No)Y
, which
i s t h e r e s u l t of a l l t h e influences,
t h e r e f o r e h a s t o b e known for d i f f e r e n t a e r e a s a n d aerosol types.
16
I
I
.-c 121
0
I I I I I I I I I I I 1
2
3
4
5
6
7
8
9
10.10-5
liquid water mass mixing ratio
Fig. 4. A c t i v a t e d p a r t i c l e s in p e r c e n t as a funFtion of liquid w a t e r mass mixing ratio. T h e s u p e r s a t u r a t i o n at t h e basic state is 5 . 10- ; c( a n d 0: a r e t h e exponents of t h e power l a w s i z e distributions within t h e 0.01-0.1 a n d t h e 0.1-6.0 pm p a r t i c l e s i z e range. N /N is t h e r e l a t i v e p a r t i c l e number, n /n - 1.1 IS equivalent t o a 10 p e r c e n t i n c r e a s e 1 0 inlpa?ticle numbers. DISCUSSION Aerosol p a r t i c l e s play a n i m p o r t a n t r o l e f o r s h o r t w a v e r a d i a t i v e t r a n s f e r both i n c l e a r a n d cloudy areas. T h e e r e a r e only t w o p a r a m e t e r s grossly determining t h e sign of t h e energy-budget variation. In c l e a r and cloudy a t m o s p h e r e s o n e of t h e s e main parameters is t h e imaginary p a r t of t h e r e f r a c t i v e index of p a r t i c l e s , while t h e second o n e is s u r f a c e a l b e d o i n c l e a r a r e a s a n d o p t i c a l thickness of clouds i n cloudy areas. High s u r f a c e albedo a n d mean v a l u e s of t h e imaginary p a r t f o r c o n t i n e n t a l aerosol p a r t i c l e s favor energy gain
320 of t h e a t m o p s h e r e - e a r t h system. On t h e o t h e r hand thin w a t e r clouds under conditions w i t h
m e a n imaginary p a r t f a v o r a n e n e r g y loss. T h e s e p a r t l y o v e r simplified s t a t e m e n t s h a v e t o be modified in b o t h areas. T h e crossover from e n e r g y loss t o e n e r g y g a i n i s a f u n c t i o n of solar z e n i t h a n g l e a n d o p t i c a l d e p t h of t h e a e r o s o l p a r t i c l e s too. T h e crossover in cloudy a r e a s may e v e n n o t b e found, if cloud d r o p l e t s i z e distributions o c c u r i n g b e f o r e a c h a n g e i n p a r t i c l e c h a r a c t e r i s t i c s a r e broad a n d c h a n g e s in p a r t i c l e number a r e accompanied by a n i n c r e a s e in s u r f a c e t e n s i o n or a v a r i a t i o n in t h e s l o p e of t h e a e r o s o l p a r t i c l e s i z e dist r i b u t i o n prior to cloud formation. T h e t h e r m a l i n f r a r e d c a n n o t at all c o m p e n s a t e t h e possible v a r i a t i o n s in t h e s o l a r spectrum. In c l e a r a r e a s t h e longwave o p t i c a l d e p t h t e
i s by a f a r l o w e r t h a n t
in t h e
s h o r t w a v e s p e c t r u m e v e n if only a c c o u n t i n g f o r t h e a b s o r p t i o n o p t i c a l depth. T h e cloud d r o p l e t s i z e v a r i a t i o n s c a u s e d by c h a n g e s in a e r o s o l p a r t i c l e number a n d s i z e as well as chemical composition, which s h i f t t h e e m i t t i n g l a y e r s upwards t o l o w e r t e m p e r a t u r e s if a r e d u c t i o n i n m e a n d r o p l e t s i z e should o c c u r , a r e a c c o m p a n i e d by a n i n c r e a s e i n single s c a t t e r i n g a l b e d o fully compensating for r e d u c e d emission a t l o w e r temperatures. T h e o v e r a l l e f f e c t of human a c t i v i t i e s c a n only b e a s s e s s e d if reliable v a l u e s of p a r t i c l e c o n c e n t r a t i o n depending on l a t i t u d e a n d h e i g h t f o r n a t u r a l a n d disturbed cases a r e available. We hope t h a t w e c a n give t h i s a s s e s s m e n t r e f e r i n g t o a two-dimensional global a e r o s o l t r a n s p o r t model which i s now t e s t e d by our group. ACKNOWLEDGEMENT This work i s mainly s u p p o r t e d by t h e Environmental P r o t e c t i o n Agency of t h e F R C under G r a n t 104 02 621 a n d t h e European Commission under G r a n t CL I-044-D(B). REFERENCES 1 P. Ch$lek a n d J.A. C o a c k l e y , S c i e n c e , 183 (19741, 75-77. 2 J.A. C o a c k l e y a n d P. ChGlek, J. Atm. Sci., 32 (1975), 409-418. 3 K. Fischer, Contr. Atm. Physics, 46 (1973), 89-100. 4 H. Grassl, Contr. Atm. Physics, 48 (1975), 199-210. 5 K. Andrg, R. Dlugi a n d G. S c h n a t z , J. Atm. Sci., 38 (1981), 141-155. 6 T.S. Twomey, in G A R P C l i m a t e Dynamics Sub-programme, R e p o r t of IOC-Study C o n f e r e n c e o n p a r a m e t e r i z a t i o n of e x t e n d e d cloudiness, Appendix E, WMO, G e n e v a , 1978. 7 H. Grassl, R e i h e A, H e f t 37, Hamburger Geophysik. Einzelschriften, 1978, pp., 136. 8 H. Grassl, i n W. Bach, J. P a n k r a t h a n d W.W. Kellogg (Eds.), Man's Impact o n c l i m a t e Elsevier, Amsterdam, 1979, 229-241. 9 3. Warner a n d T.S. Twomey, J. Atm. Sci., 25 (19671, 704-706. 10 H. Grassl, Idoj&&s, in press (1982). 11 W.J. Wiscombe, J. Quart. Spectrasc. Radiat. T r a n s f e r , 16 (1976), 477-489. 12 D. Deirmendjian, E l e c t r o m a g n e t i c s c a t t e r i n g on s p h e r i c a l polydispersion; Elsevier, Amsterdam (1969), 290 pp. 13 D.L. H a r t m a n n a n d D A . Short, J. Atrn. Sci., 37 (1980), 1233-1250. 14 G. Handel, Contrib. Atm. Physics, 54 (19811, 159-172.
321
LASER TRANSMISSOMETER --A DESCRIPTION P.H. LEE University of California at Santa Barbara T.E. HOFFER, D.E. SCHORRAN Desert Research Institute, University of Nevada System E.C. ELLIS AND J.W. MOYER Southern California Edison
ABSTRACT A
laser
atmospheric
transmissometer is
described
extinction measurements.
that
The
is
suitable
for
instrument design
long path
incorporates
several unique features which greatly enhance the signal to noise ratio of the system. These are apodization of controlled beam
aiming
and
the
output
automatic
beam
beam
by
conical
width measurement
intervals. The system is completely automated and
utilizes
scan, servo at
regular
a micro-computer
designed by the DRI for data acquistion and s e r v o control.
INTRODUCTION The
optical
transmission of a particular medium is defined as the ratio of
t.he initial intensity to the final intensity of light after the medium.
Clearly
it
has
traversed
this number will vary with the path length through the
medium as well as the characteristic extinction of the medium. For a uniEorm medium, the transmission, T, is given by the equation: T=exp(-kL)=I/Io
,
(1)
where L is the path length and k is the extinction coefficient. The extinction
322 coefficient is, in
turn, the
sum
of
the
absorption coefficient and
the
scattering coefficient. In
the
atmosphere, the transmission in the visible portion of the spectrum
is affected principally by scattering. As a consequence, the transmission is a weak function of color and any convenient wavelength
can be
for
used
such
measurements. We have conceived and built a transmissometer that uses a red He-Ne laser to measure
atmospheric
extinction over
long paths.
The instrument has several
unique design features which allow the accurate measurement of small changes in transmission.
INSTRUMENT ARCHITECTURE The instrument has two paths, one for the reference and one for the This
is
a
conventional way
to
eliminate
sample.
the errors due to changes in the
sensitivity of the detector or in the intensity of the source. We have tested the instrument over a sample length of about two In
practical
planned.
field
operation, path
These path
lengths
are
lengths as
singly
folded
kilometers.
long as ten kilometers are by
the use
of
a
remote
retroreflector that requires no input power. The
optical
plan
of
this
instrument
is
shown
in Figure 1.
With the
exception of the retroreflector array, all of the components are mounted single rigid plate. and
the
on
a
The data paths between the components on the optical table
other major electronic components associated with the transmissometer
are illustrated in Figure 2 . Some of the block names are abbreviated as listed in the following table.
323 TABLE 1
Abbreviations S SM RSFM CSM VSM HSM SCM IRET IREF DME
SOURCE SPLITTING MECHANISM REFERENCE SIGNAL FOCUSING MECHANISM CONICAL SCAN MECHANISM VERTICAL SERVO MECHANISM HORIZONTAL SERVO MECHANISM SIGNAL C O M B I N I N G MECHANISM RETURN SIGNAL INTENSITY REFERENCE SIGNAL INTENSITY DEMODULATING ELECTRONICS
The remainder o f t h i s s e c t i o n on i n s t r u m e n t a r c h i t e c t u r e w i l l
describe
the
f u n c t i o n and s t r u c t u r e o f t h e s e b l o c k s and components. helium neon l a s e r i s used a s t h e s i g n a l s o u r c e .
Laser--A has
an
output
operates in a
of 10 m i l l i w a t t s a t a wavelength o f 6 3 3 nanometers.
power single
The l a s e r s e l e c t e d
transverse
mode
with
a
Gaussian
intensity
It
profile.
Angular
d r i f t o r beam p o i n t i n g s t a b i l i t y i s l e s s t h a n 0.050 m i l l i r a d i a n s a f t e r
warmup.
The beam d i v e r g e n c e i s about one m i l l i r a d i a n .
The
output
is
light
plane polarized. Source
Splitting
Mechanism
(SSM)--A
p e r c e n t as i n t e n s e as t h e main beam polarizing
beam
splitter.
The
is
r e f e r e n c e s i g n a l i n i t i a l l y about t e n split
reference
off signal
a d j u s t e d by r o t a t i n g t h e l a s e r about i t s a x i s . turned
to
as semb 1y
.
be
parallel
L i g h t Chopper--The
to
the
main
beam
The
used
are
this
block
by
a
i n t e n s i t y can b e c o a r s e l y reference
beam
is
then
f o r e n t r y i n t o t h e l i g h t chopper
l i g h t chopper i s a c o m e r c i a l l y a v a i l a b l e component
u s e s a r o t a t i n g d i s c w i t h a x i a l l y spaced s l o t s . radii
inside
that
Two sets o f s l o t s a t d i f f e r e n t
t o modulate t h e main beam and t h e r e f e r e n c e beam a t d i f f e r e n t
frequencies. R e f e r e n c e S i g n a l Focusing Mechanism (RSFM)--In reference
this
block,
the
modulated
s i g n a l i s focused by a l e n s o n t o t h e end of a f i b r e o p t i c bundle.
In
a d d i t i o n , mounting space i s provided ahead o f t h e l e n s f o r f i l t e r s t h a t f u r t h e r attenuate the reference signal provided
strength.
by f i x e d a b s o r p t i o n f i l t e r s .
a rotatable polarizer.
Coarse
steps
in
attenuation
are
F i n e a t t e n u a t i o n c o n t r o l i s provided by
324
PRIMARY MIRROR RETROREFLECTOR HORIZONTAL SERVO WEDGE PRISMS
VERTICAL SERVO WEDGE PRISMS
I
I
\"/
/
/ LASER'
POLARIZING BEAMSPLITTER
CONICAL SCANNER WEDGE PRISMS
LASER TRANSMISSOMETER OPTICS LAYOUT
Fig. L Laser transmissometer optics layout.
--I RETURN -._/SIGNAL
--
/ PHOTOMULTIPLIER TUBE
RECEIVING TELESCOPE
&--
TRANSMITTED
'
t
LL W
a
n z a I-
ki I
1
II I CONICAL SCAN
-VOLTAGE CONTROL AMP
HORZ. ERROR
Fig. 2. I n f o r m a t i c m signal links between the c o m p n e n t s on the optical table and the peripheral electronics.
325 C o n i c a l Scan Mechanism (CSM)--This rotate
c o n t i n u o s l y a t f i v e Hz.
block contains
time-averaged
apodization
properties
of
wedges
scan
is
twofold:
results
It
that
beam
toward
the
this
in
a
retreoreflector.
a r e t h e most u n u s u a l f e a t u r e o f t h i s i n s t r u m e n t .
and implementation of
that
t h e o u t p u t beam and i t p r o v i d e s a r e t u r n s i g n a l
of
s u i t a b l y modulated f o r s e r v o - p o i n t i n g These
pair
T h i s r o t a t i o n r e s u l t s i n a conical scan of the
The purpose o f t h i s c o n i c a l
main beam.
a
conical
scan
are
described
in
The t h e o r y
detail
in
the
d e s c r i p t i o n o f t h e t r a n s m i s s o m e t e r f e a t u r e s below. a d j u s t a b l e m i r r o r is used for the initial alignment
Mirror--This
Alignment
of t h e t r a n s m i t t e d s i g n a l beam. V e r t i c a l and H o r i z o n t a l Servo Mechanism (VSM, HSM)--These driven
by
the
are
the
devices
o u t p u t o f t h e s e r v o e l e c t r o n i c s t o d i r e c t t h e main beam toward
the retroreflector.
The d e t a i l s o f t h e s e r v o p r i n c i p l e s a r e a l s o c o n t a i n e d
in
t h e s e c t i o n on f e a t u r e s . Output
Mirror--This
mirror
launches
the
main
beam o n t o t h e a x i s o f t h e
receiving telescope. R e t r o r e f l e c t o r Array--This measuring
path.
The
component i s s i t e d a t t h e f a r
end
of
a
folded
c u r r e n t l y used c o n s i s t s o f f i f t e e n 2 . 5 cm c o r n e r
array
cubes. R e c e i v i n g Telescope--A laser
light.
component
is
with
eyepiece
This
reflecting telescope
t e l e s c o p e i s used t o c o l l e c t and f o c u s t h e
the
a
reflected
commercially a v a i l a b l e 1 2 . 5 cm d i a m e t e r replaced
by
the
signal
combining
mechanism. S i g n a l Combining Mechanism (SCM)--Within signals
are
combined
and
t h i s b l o c k t h e r e t u r n and r e f e r e n c e
d i r e c t e d toward t h e p h o t o m u l t i p l i e r t u b e .
A small
f r a c t i o n o f t h e combined l i g h t i s d i r e c t e d toward an a u x i l i a r y e y e p i e c e t o h e l p i n aligning t h e instrument.
The remainder o f t h e l i g h t
is
passed
series of s t o p s , c o l l i m a t o r s and f i l t e r s t o t h e p h o t o m u l t i p l i e r t u b e .
through
a
Care h a s
been t a k e n i n t h e d e s i g n of t h i s s i g n a l combining b l o c k t o make s u r e t h a t t h r e e i m p o r t a n t c r i t e r i a are m e t : 1)
The
light
from
both
beams must f a l l on e x a c t l y t h e same a r e a of t h e
326 photocathode. 2 ) The combined beams must be c o l l i m a t e d when p a s s i n g through t h e p o l a r i z e r
and t h e narrow band p a s s f i l t e r .
3 ) The f i e l d and a p e r t u r e s t o p s must be o p t i m i z e d f o r f u l l
suppression
of
any s t r a y l i g h t . Photomultiplier tube i s used.
Tube--A
commercially
available
high gain photomultiplier
I t h a s an end-on c a t h o d e w i t h a h i g h quantum e f f i c i e n c y
wavelength o f t h e He-Ne
at
the
laser.
Chopper Frequency Control--A
commercially a v a i l a b l e motor speed c o n t r o l t h a t
p r o v i d e s a s t a b l e chopping f r e q u e n c y . S i g n a l C o n d i t i o n i n g Electronics--A
commercially a v a i l a b l e u n i t t h a t performs
t h e f o l l o w i n g f u n c t i o n s : a d j u s t s t h e s i g n a l g a i n ; demodulates and d i s c r i m i n a t e s t h e r e t u r n and r e f e r e n c e s i g n a l s ; and r a t i o s t h e r e t u r n s i g n a l t o t h e r e f e r e n c e signal. Servo
Control
Electronics--Interface c i r c u i t r y t h a t processes conical scan
p o s i t i o n s i g n a l s from t h e CSM and t r a n s m i s s i o n measurements i n t o e r r o r
signals
t h a t p r o v i d e beam p o s i t i o n i n f o r m a t i o n . Field
Data
A c q u i s i t i o n Computer--A CMOS computer used f o r d a t a a c q u i s i t i o n
and t h e c o n t r o l o f a l l t r a n s m i s s o m e t e r f u n c t i o n s . proper
control
strategy
to
drive
The
computer
develops
the
s t e p p e r m o t o r s i n t h e VSM and HSM through
i n t e r r o g a t i o n o f t h e e r r o r s i g n a l s from t h e s e r v o c o n t r o l e l e c t r o n i c s i n
order
t o minimize p o i n t i n g e r r o r .
UNIQUE FEATURES OF THE TRANSMISSOMETER Our
transmissometer
has
several
unique
features.
The most i m p o r t a n t o f
t h e s e i s t h e a p o d i z a t i o n o f t h e beam. The o t h e r f e a t u r e s o f importance are
beam
width
measurement
and
uniform
intensity.
A p o d i z a t i o n by c o n i c a l s c a n
A l a s e r beam t y p i c a l l y h a s a Gaussian d i s t r i b u t i o n as i t s i n t e n s i t y p r o f i l e .
327 Thus,
if
t h e i n t e n s i t y , I , i s p l o t t e d a g a i n s t d i s t a n c e from t h e c e n t e r of t h e
beam, y , t h a t f u n c t i o n t a k e s t h e form
I=Io exp(-by2)
(2)
where t h e c o n s t a n t 10 d e f i n e s t h e i n t e n s i t y on t h e beam a x i s , and t h e c o n s t a n t , The e x p r e s s i o n i s e x a c t b o t h c l o s e t o t h e l a s e r ( i n
b , d e f i n e s t h e beam w i d t h .
In
t h e n e a r f i e l d ) and f a r away from t h e l a s e r ( i n t h e f a r f i e l d ) . field,
the
near
c o n s t a n t , b , i s a l i n e a r measurement u s u a l l y g i v e n i n m i l l i m e t e r s .
the
I n t h e f a r f i e l d , t h e c o n s t a n t , b , i s an a n g u l a r measurement normally g i v e n
milliradians.
3
Figure
in
i l l u s t r a t e s t h e c o n t o u r s o f i n t e n s i t y through such a
beam. When such a beam i s a p o d i z e d , some d e l i b e r a t e s t e p s
this
Gaussian
intensity
distribution,
c o n s t a n t independent of p o s i t i o n i n
the
i.e.,
to
beam,
y.
are
make
taken the
That
to
flatten
intensity, I, a
constant
intensity
d i s t r i b u t i o n s h o u l d p r e v a i l f o r some u s e f u l d i s t a n c e away from t h e beam a x i s . If
symmetrical Gaussian beam i s r o t a t e d about i t s own a x i s , t h e r e i s , o f
a
c o u r s e , no change i n i t s however,
the
intensity
profile
anywhere
along
the
beam.
If,
beam i s scanned smoothly about a n o t h e r a x i s somewhat i n c l i n e d t o
i t s own, t h e peak i n t e n s i t y a t t h e c e n t e r of t h e o r i g i n a l laser beam w i l l t r a c e o u t a cone i n s p a c e .
This i s i l l u s t r a t e d i n Figure 4 .
a t a p o i n t , p, i n t h i s f i g u r e . It
be
will
maximum
when
Consider t h e
intensity
Here t h e i n t e n s i t y w i l l f l u c t u a t e p e r i o d i c a l l y .
t h e l a s e r p o i n t s c l o s e s t t o i t and minimum when i t
p o i n t s f a r t h e s t away. The time averaged v a l u e of t h e p e r i o d i c a l l y v a r y i n g i n t e n s i t y o f f
the
scan
a x i s ( a t p i n F i g u r e 4 ) can b e made n e a r l y e q u a l t o t h e i n t e n s i t y sensed on t h e axis.
By
properly
selecting
the
scanning angle.
I n o t h e r words, t h e t i m e
averaged beam p r o f i l e can be shaped t o be remarkably f l a t i n
the
vicinity
of
the distant target. A p l o t o f t h e t i m e averaged i n t e n s i t y as a f u n c t i o n of p o s i t i o n with r e s p e c t t o t h e c e n t r a l a x i s o f c o n i c a l s c a n t h r o u g h such an F i g u r e 5.
apodized beam
i s shown a s
328
Fig. 3. Contours of normalized intersity for a laser beam of G a d a n Shape. The contour interval equals 0 1 units. Beam axis is directed through the paper at the onqh. X and Y represent distances measured in meters perpendicular to this axis. The eras section typifies a certain 1;Lser beam at a distance of sL5 K m from the source.
SCAN ABOUT THE LASER / RETRO REFLECTOR AXIS
-,,
I
...’.,.
DIRECTION OF
EZ’. LASER
Fig. 4. Conical Scan with a laser beam of G a d a n shape.
%-:*
329
GAUSSIAN PROFILE BEAM
APODIZED BEAM PROFILE
0.7
/
t
/
\
\
a
/ ;,'
3 v)
APODIZED BEAM
'
10.3
\
I
i\
DISTANCE PERPENDICULAR TO CENTRAL AXIS OF CONICAL SCAN (meters)
Fig. 5. An apodized beam prof& at a distance of %L5 K m from the laser s)uTce. The normalized time averaged inte&ty is plotted as a function of distance as measured perpendicular to the conical scan axis. Averaging time is greater than 10 scan cycles. The half width of the profile is shown. A nori-amized Gaussian beam profile is shown as a dashed line fur comparison. BEAM AT START OF SCAN TO LEFT t = t 2
BEAM JUST COMPLETING SCAN TO RIGHT t = t
y--\ \
/ /
\
I
I
\
fi SCAN DlREC /
&AM JUST COMPLETING SCAN TO LEFT t = t 3
BEAM AT START OF SCAN TO RIGHT t = t ,
THE INPUT SIGNAL TO THE SERVO CONTROL ELECTRONICS vo ( t ) IS PROPORTIONAL TO THE RATIO OF THE RETURN SIGNAL INTENSITY IRET ( 1 ) AND THE REFERENCE SIGNAL INTENSITY IREF
Yo I t )
k 11
13
'2
i v t2 o(t)
-
[v,(t) 13
HORIZONTAL ERROR SIGNAL = I
2
Fig. 6. Scan of the retrorefkctor array for beam steering feedback. The integrated return signal received during the scan to the right of the retroreflectck- is electronically m the signal returned during the scan to the bft. This difference is subtracted m propor+ional to the beam aiming error in the horizontal plane.
330 Conical
scan
and
a p o d i z a t i o n have been p u t i n t o p r a c t i c e i n
t r a n s m i s s o m e t e r by mounting two matched wedge prisms i n t o a
In
the
mount,
one
prism
the laser
cylindrical
c a n be r o t a t e d w i t h r e s p e c t t o t h e o t h e r .
tube.
In t h i s
c o n f i g u r a t i o n , t h e wedges a r e a d j u s t a b l e f o r an optimum s c a n n i n g a n g l e and correct
apodization
conical scan
of
the
When t h e t u b e i s r o t a t e d about i t s a x i s , a
t h e beam.
and as a r e s u l t a p o d i z a t i o n o f t h e main beam.
OCCUKS
In a d d i t i o n t o a p o d i z a t i o n , t h i s c o n i c a l s c a n t e c h n i q u e p r o v i d e s a means pointing
the
laser
beam a t t h e r e t r o r e f l e c t o r .
of
Feedback s i g n a l s are d e r i v e d
from t h e p e r i o d i c a l l y v a r y i n g i n t e n s i t i e s o f t h e r e t u r n s i g n a l i n
conical
its
sweep.
C o n i c a l s c a n p o s i t i o n s i g n a l s from t h e CSM t i m e t h e i n p u t o f t h e r e t u r n
signal
intensity
into
a
pair
of
differential
amplifiers.
s u b t r a c t s t h e r e t u r n s i g n a l i n t e n s i t y a s t h e beam p a s s e s t o retroreflector
from
the retroreflector. return
signal
retroreflector. zero,
the
left
the
The o t h e r a m p l i f i e r i s used t o compute d i f f e r e n c e s i n
as
intensity
the
beam
the
p a s s e s o v e r t h e t o p and bottom o f t h e
This i s i l l u s t r a t e d i n Figure
6.
If
both
differences
are
I f t h e two d i f f e r e n c e s a r e
o t h e r t h a n z e r o , t h e s i g n s of t h e d i f f e r e n c e s i n d i c a t e t h e d i r e c t i o n the
of
t h e i n t e n s i t y r e t u r n e d as t h e beam p a s s e s t o t h e r i g h t o f
beam i s c e n t e r e d on t h e r e t r o r e f l e c t o r .
the
One a m p l i f i e r
in
which
beam i s o f f - t a r g e t ( r i g h t o r l e f t , up o r down) and t h e magnitudes i n d i c a t e
t h e d e g r e e of p o s i t i o n i n g e r r o r .
These e r r o r s i g n a l s a r e used t o c o n t r o l s e r v o
mechanisms which steer t h e beam i n t h e
horizontal
(left-right)
and
vertical
(up-down) p l a n e s , r e s p e c t i v e l y . Aiming
of t h e beam i s accomplished by t h e alignment o f matched p r i s m s as i t
p a s s e s through t h e h o r i z o n t a l and principle
involved
in
this
vertical
adjustment
mechanism, t h e beam p a s s e s through a p a i r opposite
directions.
s t e p p e r motor. change
The
amount
of
servo
mechanisms.
The
is i l l u s t r a t e d i n Figure 7 . of
wedges
that
are
physical
In each
rotatable
in
r o t a t i o n i s c o n t r o l l e d by a f i n e a n g l e
As t h e wedges r o i a t e , t h e magnitude of t h e beam d e f l e c t i o n
can
from a minimum o f z e r o t o a maximum o f t w i c e t h e d e v i a t i o n a n g l e of t h e
wedge prism.
-
331
MATCHED WEDGE PRISMS
U
u
SIDE VIEW OF STEERING WEDGES
FRONT AXES OF VIEW DEFLECTION OF PRISMS SHOWN
PRISMS ROTATED THROUGH ANGLE e
'I
Yl
VECTOR COMPONENTS OF DEFLECTION
Fig. 7. Beam steering with matched wedge prisms. A light beam incident to the p r k m s shown at the top experiences no net deflection. The right wedge cancels the deflection affected by the left wedge. If the wedges are corstrained to rotate o b t e to each other through an angle, as shown above, the net deflection is to the right This can be represented as the vector sum of A + B. V e r t i c a l components of deflection cancel, horizontal components add.
332 Beam w i d t h
The i n t e n s i t y of t h e r e f l e c t e d l i g h t c o l l e c t e d by t h e t e l e s c o p e i s dependent n o t o n l y on a b s o r p t i o n and
atmospheric
established.
medium
The
transmission
beam
spreading
we
periodic
have beam
selected
is
normalization
width measurements.
the
main
to
It i s i l l u s t r a t e d on F i g u r e 4
beam.
.
of
the
Beam w i d t h , i n t h i s
a p p l i c a t i o n , i s d e f i n e d as t h e h o r i z o n t a l width between h a l f of
due
and i t s c o n t r i b u t i o n t o changing t r a n s m i s s i o n must be
technique
through
on
also
but
T h i s beam d i s p e r s i o n i s an i n h e r e n t f e a t u r e c r e a t e d by
atmospheric turbulence. the
scattering
intensity
points
It can b e measured by a
c o n t r o l l e d d e f l e c t i o n o f t h e beam from i t s c e n t e r e d p o s i t i o n . I n p r a c t i c e , t h e wedges o f t h e h o r i z o n t a l s e r v o mechanism a r e
the
centered
position
in
one
from
d i r e c t i o n u n t i l the returned signal i n t e n s i t y
f a l l s t o one h a l f i t s i n i t i a l v a l u e . opposite
rotated
The
prisms
are
then
rotated
in
the
d i r e c t i o n past t h e center point t o the opposite half i n t e n s i t y point.
The wedges a r e t h e n r e t u r n e d t o calculated
from
the
central
position.
The
beam
width
is
t h e p u l s e count needed t o d r i v e t h e h o r i z o n t a l servomechanism
between t h e h a l f i n t e n s i t y p o i n t s and t h e i n i t i a l
alignment
position
of
the
h o r i z o n t a l s t e e r i n g prisms. A
subroutine
i n t h e f i e l d d a t a a c q u i s i t i o n computer i s a c t i v a t e d h o u r l y t o
i n t e r r u p t t h e t r a n s m i s s i o n measurement and make The
transmission
data
are
normalized
to
the
beam
width
measurement.
an a v e r a g e beam width d u r i n g d a t a
processing.
Uniform i n t e n s i t y A p o d i z a t i o n c r e a t e s a beam of uniform i n t e n s i t y when i n t e g r a t e d This
means
beams
sections.
time.
t h a t w i t h i n t h e beam volume, a l l p a r t i c l e s w i t h i d e n t i c a l p h y s i c a l
c h a r a c t e r i s i t i c s w i l l a b s o r b and s c a t t e r l i g h t t h e same. light
over
that
have
Gaussian
or
other
shape
to
This i s not
true
of
their intensity cross
333
This uniform
intensity
transmissometers and
feature
all
eliminates
a
common
deficiency of
laser
other long path transmissometers that do not use an
apodized beam.
ELECTRONIC FEATURES The electronic signals that carry information to and from the optical table They are also enumerated in Table 2 below.
are illustrated i n Figure 2 . TABLE 2
-..Electronic information signals to and from the optical table.
INPUT
OUTPUT
VERTICAL SERVO CONTROL HORIZONTAL SERVO CONTROL CHOPPER SPEED CONTROL
P.M.T. SIGNAL (1) CONICAL SCAN POSITION SIGNALS ( 2 ) CHOPPER SPEED FEEDBACK
(1) Combined return and reference signal. ( 2 ) The four position signals from the conical scan mechanism. A
schematic
illustration of the electronic components associated with the
transmissometer are components with
shown as
Figure
8.
The
interconnections of
the optical table are shown on Figure 2 .
from the optical table are the combined return and conical
scan
The signal outputs
reference
signals, four
position signals,and the chopped frequency, The combined signal
is intially discriminated by demodulating electronics which lock in on chopped
these
signals
at discrete frequencies. These signals are then electronically ratiod
to obtain the transmission, T.
This information is passed
on
to
the
servo
control electronics (SCE) and the computer. The
SCE
serves
as an electronic interface between the electro-optical and
electromechanical components located on computer.
the
optical
table
and
the
control
Four scan position signals from the (CSM) indicated the position of
the beam in its scan about the retroreflector. These signals are used to the
input
of
the
transmission signal
to
two
differential amplifiers.
Differences in the transmission signals computed during top and scans
are
integrated
to
develop
a beam
aiming
time
bottom
sector
error signal in the plane
334 v e r t i c a l t o the scan a x i s . and
left
S i m i l a r l y , d i f f e r e n c e s computed
during
the
right
s e c t o r s c a n s a r e i n t e g r a t e d t o develop a beam aiming e r r o r s i g n a l i n
the plane horizon tal t o t h e scan a x i s . CH0PPI NG
ELECTRONICS
lRET RATIOMETRIC AMPLIFIER
PHOTOMULTIPLIER TUBE
SCAN SIGNALS FROM CSM
ELECTRONICS VERTICAL ERROR
HORIZONERROR
FIELD DATA ACQUISITION COMPUTER CONTROLS BEAM AIMING
- 11
OUTPUTS TO CONTROL VSM AND HSM
ACCUMULATES DATA MEASURES BEAM WIDTH
F i g . 8. Block diagram of t h e major e l e c t r o n i c components a s s o c i a t e d w i t h transmissometer.
and h o r i z o n t a l e r r o r s i g n a l s g e n e r a t e d i n t h e SCE a r e fed i n t o t h e
Vertical computer.
the
The
interrogation
of
computer
generates
the error signals.
servo
control
signals
based
upon
These c o n t r o l s i g n a l s are t h e n o u t p u t t o
t h e a p p r o p r i a t e servomechanism.
SUMMARY We have developed and put i n t o features
that:
provide
for
practice continually
a
laser pointing
transmissometer the
laser
at
beam
r e t r o r e f l e c t o r , t h e r e b y e l i m i n a t i n g t h e e r r o r s a s s o c i a t e d w i t h changes beam
with
in
a the
d i r e c t i o n due t o r e f r a c t i v e index changes; p r o v i d e a means o f n o r m a l i z i n g
t h e t r a n s m i s s i o n d a t a t o minimize t h e e f f e c t s of atmospheric t u r b u l e n c e on d i s p e r s i o n o f t h e beam; and p r o v i d e a beam of uniform i n t e n s i t y .
the
335 Experiments
are
in progress
to compare the transmission measurement with
other instruments that measure extinction parameters. The transmissometer is designed to operate in a field folded
path
of
ten kilometers.
installation with
Field installation is facilitated by using a
passive retroreflector. All functions have been successfully controlled by computer during
the development
anticipated that
it
interventions, and
will that
a
operate
period. for
In
at
a
least
field a
a
installation it is
week
without
operator
the data will be accessed by telephone using remote
terminals that can be indefinitely far away.
ACKNOWLEDGEMENT The authors wish to acknowledge the project
possible.
assistance of
Clarence Fought who
designed
and
others who made
the
built all the analog
circuitry, Rick Brown who designed the CMOS computer and wrote all the software to control the transmissometer, and Malcolm Barr who machined all the parts for the instrument. The development of this transmissometer was supported by Southern California Edison as a part of its environmental research program.
This Page Intentionally Left Blank
337
BIPOLAR CHARGE EQUILIBRIUM FOR SPHERICAL AEROSOLS (MINIMUM FLUX HYPOTHESIS)
L i u , S. Davisson and J.W.
C.S.
Gentry*
Department o f Chemical E n g i n e e r i n g , " I n s t i t u t e f o r P h y s i c a l Science and Technology,
U n i v e r s i t y of Maryland, Cot l e g e Parh, Maryland 20742,
U.S.A.
ABSTRACT An a l g o r i t h m based on t h e "minimum f l u x h y p o t h e s i s " f o r d e t e r m i n i n g t h e r e l a t i v e charge d i s t r i b u t i o n o f s p h e r i c a l p a r t i c l e s has been developed. l a t i o n s were c a r r i e d o u t f o r b o t h equal and unequal
ion mobil i t i e s .
Ca cu-
The
a l g o r i t h m was used t o d e t e r m i n e e x p e r i m e n t a l c r i t e r i a f o r t h e p r o d u c t i o n o f monodisperse a e r o s o l s and f o r t h e i n t e r p r e t a t i o n of measurements w i t h u l t r a
I ne
aeroso I s.
I NTRODUCT I O N P a r t i c l e s w i t h d i a m e t e r s j e s s than 0.05 Llm ( u l t r a f i n e a e r o s o l s ) must be measured i n d i r e c t l y .
One such method i s based on The e l e c t r i c a l m o b i l i t y o f t h e
p a r t i c l e i n which o n l y t h e charged p a r t i c l e s a r e measured.
Such a measurement
r e q u i r e s an a c c u r a t e t h e o r y f o r d e t e r m i n i n g t h e r a t i o o f uncharged t o charged p a r t i c l e s as a f u n c t i o n o f p a r t i c l e size.
Presented i n t h i s paper i s a d e s c r i p t i o n
o f a method based on t h e mean charge h y p o t h e s i s ,
i t s use i n d e t e r m i n i n g experimental
c o n d i t i o n s f o r o b t a i n i n g m n o d i s p e r s e a e r o s o l s by e l e c t r o s t a t i c c l a s s i f i c a t i o n , and i t s appl i c a t i o n i n i n t e r p r e i a t i o n of experiments.
CALCULATION OF CHARGE DISTRIBUTION The charge d i s t r i b u t i o n i s c a l c u l a t e d on t h e b a s i s o f two assumptions:
I. (ref.
The i o n f l u x t o t h e p a r t i c l e s a r e g i v e n by t h e "minimum f l u x " c r i t e r i o n
I ,2).
The e l e c t r o s t a t i c p o t e n t i a l ,
a t a reduced r a d i u s ;=r/a
i n c l u d i n g the image term,
obtained from t h e s o l u t i o n o f :
where +o i s t h e d i m e n s i o n l e s s charge parameter
2.
i s evaluated
(E
2
/akT).
The charges a r e assumed t o be i n d e t a i l e d e q u i l ibrium.
That is,
338
where NJ i s t h e number o f p a r t i c l e s w i t h J charges and F ( J , k )
i s the flux o f a
p a r t i c l e w i t h J charges changing t o k charges. In o u r f i r s t simulations, symmetrical --a
i t was assumed t h a t t h e charge e q u i l i b r i u m was
d i r e c t consequence o f assuming t h a t p o s i t i v e and n e g a t i v e i o n s
have t h e same m b i I i t y . In F i g .
I , t h e p a r t i c l e r a d i u s i s p l o t t e d a s a function o f t h e normalized
number r a t i o NJ Exp ( J
2
$,)/No
IW
( t e m p e r a t u r e @ 30O0K) f o r 1-4 charges.
I 10
I
RATIO
2 10
NJ E X P (
3
10
4 10
J2 Po
NO
F i g . I . P a r t i c l e r a d i u s a s a f u n c t i o n o f normal i z e d number r a t i o f o r p a r t i c l e s w i t h J e l e m e n t a r y charges.
Were t h e Boltrmann charge d i s t r i b u t i o n appl i c a b i e , t h e normal i z e d r a t i o would be e x a c t l y one.
W i t h i n c r e a s i n g charge number and d e c r e a s i n g charge, t h e
d i s c r e p a n c y between t h e two t h e o r i e s increase. (ref.
New p a r t i a l l y e m p i r i c a l t h e o r i e s
3 , 4 , 5 ) a g r e e w i t h t h e d i r e c t i o n o f our t h e o r y which c o n t a i n s no a d j u s t a b l e
parameters b u t suggests t h a t t h e t r u e c h a r g i n g d e n s i t y I i e s between t h e two t h e o r i e s a1 though c l o s e r t o t h e "mean charge h y p o t h e s i s " .
A p o s s i b l e s o u r c e o f e r r o r I i e s i n t h e assumption t h a t p o s i t i v e and n e g a t i v e i o n s have t h e same m o b i l i t y - - a
c o n c l u s i o n n o t i n agreement w i t h c l o u d p h y s i c s
experiments o r w i t h t h e recent studies o f Porstendorfer.
Our approach has been
t o examine t h e e f f e c t o f asymmetric d i s t r i b u t i o n s by assuming t h e r a t i o o f p o s i t i v e t o n e g a t i v e ion mobil i t y .
339 EXPERIMENT SELECT I ON Recent e x p e r i m e n t s by Heyder and Madelaine suggested an o p p o s i t e c o n c l u s i o n t o t h a t found by P o r s t e n d o r f e r i n t h a t p a s s i n g a p o l y d i s p e r s e aerosol t h r o u g h a TSI e l e c t r o s t a t i c c l a s s i f i e r d i d n o t r e s u l t i n a monodisperse a e r o s o l .
In
r e t r o s p e c t , t h e i r r e s u l t s c o u l d be e x p l a i n e d i n t h a t t h e c l a s s i f i e r s e l e c t s p a r t i c l e s by t h e i r m b i l i t y r a t h e r t h a n by s i z e .
The somewhat h i g h e r experimental
v a l u e s f o r p a r t i c l e s w i t h two o r m r e charges c o u l d be e x p l a i n e d by t h e erroneous use o f t h e Boltzmann d i s t r i b u t i o n . However, t h e r m r e i n t e r e s t i n g q u e s t i o n is: on t h e i n i t i a l p a r t i c l e d i s t r i b u t i o n ( i . e .
can one s e t t h e a p r i o r i c r i t e r i a
mean s i z e and s t a n d a r d d e v i a t i o n )
necessary t o d e t e r m i n e a m n o d i s p e r s e d i s t r i b u t i o n ?
To answer t h i s question,
a
computer code was designed and t e s t e d c h a r a c t e r i z e d by parameters d e s c r i b i n g t h e i n l e t aerosol and parameters d e s c r i b i n g t h e l o c a t i o n and w i d t h o f t h e window i n A t y p i c a l r e s u l t i s shown i n F i g . 2.
t h e EAC.
1.0
- 0.04
-
u)
K
& W
B 0
w
w
K
-0.02
g
5
t, a
E -I
0
3
6
Fig. 2. S i m u l a t i o n o f EAC performance: f r a c t i o n o f o u t 1 i e r s and f r a c t i o n o f p a r t i c l e s recovered as a f u n c t i o n o f t h e d i f f e r e n c e i n mean d i a m e t e r s o f t h e d i s t r i b u t i o n and EAC.
The i n i t i a l s i z e d i s t r i b u t i o n i s l o g normal w i t h equal t o D I .
&
LnB=o=l .O and w i t h a mean
The s e l e c t e d d i a m e t e r o f p a r t i c l e s f r o m t h e EAC i s 0.075 pm w i t h
t h e r e l a t i v e range o f mobil i t i e s b e i n g 10 and 20%.
The f r a c t i o n o f t h e i n i t i a l
d i s t r i b u t i o n w i t h p a r t i c l e s i n t h e s p e c i f i e d m b i l i t y range ( i . e . l e a v i n g t h e EAC) i s d i s p l a y e d on t h e r i g h t h a n d s i d e .
the particles
On t h e l e f t h a n d side, t h e
340 f r a c t i o n of charged p a r t i c l e s w i t h more t h a n one c h a r g e i s d i s p l a y e d .
An optimum
e x p e r i m e n t a l d e s i g n would r e q u i r e t h a t t h e f r a c t i o n o f p a r t i c l e s l e a v i n g t h e EAA be as l a r g e as p o s s i b l e w i t h as few o u t l i e r s a s p o s s i b l e .
The s i m u l a t i o n s i n d i c a t e d t h a t as t h e p a r t i c l e s become l a r g e r , t o have a n a r r o w e r d i s t r i b u t i o n .
i t is necessary
B e s t r e s u l t s a r e o b t a i n e d when t h e c l a s s i f i e r
s i z e i s n e a r t h e maximum o f t h e d i s t r i b u t i o n .
When t h e mean d i a m e t e r o f t h e
d i s t r i b u t i o n i s l a r g e r t h a n t h e EAC d i a m e t e r , t h e number o f o u t l i e r s i n c r e a s e dramat i c a l I v.
APPL ICAT ION TO EXPERIMENTAL MEASUREMENTS One t e s t o f t h e method i s whether t h e s i z e d s t r i b u t on o f a t e s t a e r o s o l t h e same f o r d i f f e r e n t c l a s s i f i e r s ( i . e . pore sizes).
GCAF d f f us i o n b a t t e r i e s w i t h d i f f e r e n t
In t h e "apparent diatneter method" ( r e f .
o f a h y p o t h e t i c a l monodisperse aerosol
6
, the
diffusion coefficient
h a v i n g a t heo r e t c a l p e n e t r a t i o n equal t o
t h e e x p e r i m e n t a l p e n e t r a t i o n i s p l o t t e d as a f u n c t i o n o f p e n e t r a t i o n . curve,
can be determined unambiguously.
where N
From t h i s
t h e parameters o f a log norma I d i s t r i b u t ion d e s c r i b i n g t h e measurements
diffusion coefficient
and NJti,
is
(T)/NJ(c) and WJ(')
6*(Q)
S p e c i f i c a l l y , t h e "apparent v a l u e " o f t h e
f o r a f l o w r a t e Q would be q i v e n b y :
i s t h e number o f p a r t i c l e s o f mobi I i t y J per measured charge, a r e t h e measured charge b e f o r e and a f t e r t h e g l a s s f i l t e r .
F o r each s i z e o f f i l t e r , one would e x p e c t t h a t increasinq flow rate. I
theoretical r a t i o
6*(Q) would
increase w i t h
A1 I t h e p o i n t s should f a l l on t h e same c u r v e i f t h e
NJ(T)/NJ(c)
i s calculated correctly;
f o r t h e d i s t r i b u t i o n does
n o t change o n l y t h e e x p e r i m e n t a l v a l u e s W J ( I ) and
W,"'.
v a l u e s f o r a s i l v e r a e r o s o l generated a t 650
The s o l i d c u r v e r e p r e s e n t s a
OC.
c a l c u l a t e d d i s t r i b u t i o n based on parameters o f 0=1.3
F i g . 3 shows t y p i c a l
and D*=1.6 x 10-4(cm2/sec).
The t h r e e symbols r e p r e s e n t t h e d i f f e r e n t p o r e s i z e s o f t h e GCAF and f a l l on t h e same c u r v e as would be expected i f t h e number t o charge r a t i o were c o r r e c t . contrast,
In
were t h e Boltzmann charge d i s t r i b u t i o n used, a sequence o f t h r e e d i f f e r e n t
curves a r e obtained (Fig. 4.).
The c o n s i s t e n t t r e n d i n t h e d a t a a r e due t o t h e
f a c t t h a t w i t h t h i s d i s t r i b u t i o n , t h e Boltzmann charge d i s t r i b u t i o n c o n s i s t e n t l y o v e r e s t i m a t e s t h e number o f p a r t i c l e s w i t h a s t r o n g b i a s toward y i e l d i n g e s t i m a t e s o f t h e d i f f u s i o n c o e f f i c i e n t which a r e t o o l a r g e . w i t h t h e d a t a i n F i g . 4.
T h i s i s i n accord
For t h e 50 urn, most p a r t i c l e s p e n e t r a t e , and t h e
e x p e r i m e n t i s n o t skewed toward srnal l e r p a r t i c l e s where t h e number/charge r a t i o i s inaccurate.
Consequently,
agreement w i t h t h e o r y .
the calculated d i f f u s i o n c o e f f i c i e n t i s in
341
o 0
L A
-
lo 0
5 0.5
1 1.0
0.5
lo -5 0
PENETRATlON
10um FILTER 25um FILTER 5 0 p m FILTER SIMULATION
F i g . 3. Apparent d i f f u s i o n c o e f f i c i e n t (crn2/sec) a s a f u n c t i o n of p e n e t r a t i o n f r o m EM measurements u s i n g minimum flux criteria.
1.0
PENETRATION
F i g . 4. Apparent d i f f u s i o n c o e f f i c i e n t (cm2/sec) a s a f u n c t i o n o f p e n e t r a t i o n f r o m E A A measurements u s i n g Boltzmann charge d i s t r i b u t i o n .
B o t h Koj irna and Haaf have proposed a s e m i - e m p i r i c a l
charge d i s t r i b u t i o n
A p p r o x i m a t e l y 50 e x p e r i m e n t s
d i f f e r i n g f r o m t h e Boltzmann c h a r g e d i s t r i b u t i o n .
were a n a l y z e d w i t h t h e s i z e d i s t r i b u t i o n c a l c u l a t e d u s i n g t h e s e c h a r g e d i s t r i b u tions,
t h e "minimum charge" h y p o t h e s i s , and t h e B o l t z m n n d i s t r i b u t i o n .
"minimum f l u x " model and t h e t w o s e m i - e m p i r i c a l a e r o s o l s whose mean d i a m e t e r i s l e s s t h a n 0.02
methods agreed w i t h i n 5%.
urn,
The For
t h e d e p a r t u r e i n t h e mean
c a i c u l a t e d w i t h t h e b i t z r n a n n c h a r g e d i s t r i b u t i o n was 25% whereas f o r a e r o s o l s whose mean d i a m e t e r s were g r e a t e r t h a n 0.02 was w i t h i n 8%.
urn,
agreement armng a l l f o u r t h e o r i e s
These r e s u l t s a r e c o n s i s t e n t w i t h o t h e r e x p e r i m e n t s which show
t h e Boltzniann d i s t r i b u t i o n o v e r e s t i m a t e s t h e number/charge r a t i o f o r smal I p a r t i c l e s .
CONCLUSION The "minimum f l u x c r i t e r i a " has been used t o d e v e l o p a code f o r p r e d i c t i n g f r a c t i o n r e c o v e r y and t h e p e r c e n t a g e o f o u t 1 i e r s ( d e g r e e o f m o n o d i s p e r s i t y ) t o s i m u l a t e p e r f o r m a n c e o f an E l e c t r i c a l A e r o s o l C l a s s i f i e r . ments a r e c o n s i s t e n t w i t h t h e o r y .
E x p e r i m e n t a l rneasure-
342 ACKNOWLEDGEMENTS
T h e a u t h o r s would I i k e t o r e c o g n i z e t h e s u p p o r t o f t h e N a t i o n a l Science Foundat ion under Grant # CPE-80-1 1269-AOI and t h e S t a t e o f Mary1 and Department o f N a t u r a l Resources under G r a n t #
P 678004.
REFERENCES
I 2 3 4
5 6
J. Gentry, J. Aerosol Science, 3(1972)65-76. C. L. , L i u and J.W. Gentry, J. Aerosol Science, 15(1982). W. Haaf, J. Aerosol Science, I I (1979)201-212. H. Kojirna, Atomspheric Environment, 12( 1978)2363-2368. J P o r s t e n d o r f e r , Pr i v a t e Commun i c a t ion, G o t t ingen , I 9 8 1 Y.O. Park, W. King, J r . and J. Gentry, I&EC P r o d u c t R&D, 19(1980)151-157.
.
.
343
SURVEYS AND MONITORING
Surveys were, and remain, the mainstay of a i r pollution science.
Their
methodology may range from simple h i s t o r i c a l recording t o the most s o p h i s t i c a t e d i n t e r p r e t a t i o n s and presentations. They may cover many p o l l u t a n t s and s i t e s , o r deal with one s i n g l e t o p i c , e . g . , p a r t i c u l a t e matter. T h e above proves t h a t surveys s t i l l cannot be made by completing some printed form. I n t h i s section a t l e a s t no routine or y e a r l y record and r e p o r t - l i k e survey has been included. Each one has some s p e c i f i t y , i t s own approach, i t s own outlook o r i n t e r p r e t a t i o n .
This Page Intentionally Left Blank
345
THE THIRD DIMENSION IN THE LOS ANGELES BASIN
R.J.
FARBER, A.A. HUANG, L.D.
BREGMAN, and R.L. MAHONEY
Southern California Edison Company, Rosemead, California (U.S.A.) D.J. EATOUGH and L.D. HANSEN Brigham Young University, Provo, Utah (U.S.A.) D.L. BLUMENTHAL and W.S. KEIFER Meteorology Research, Inc., Altadena, California (U.S.A.) D.W. ALLARD Aerovironment, Inc., Pasadena, California (U.S.A.)
ABSTRACT Airborne measurements were made during the summer and early fall seasons of 1978-1980 to characterize the third dimension of the Los Angeles Basin during air
pollution days.
One to three aircraft were employed per flight day to measure the
vertical profile of meteorology and air quality continuously, and to collect aeros o l samples for the various chemical analyses across the Basin.
sis was placed in the nighttime measurements.
Particular empha-
This was done because relatively
little nighttime third dimension data are available to date, and because they are important in defining the initial conditions f o r the following photochemically active days.
It was found that the physical and chemical characteristics with-
in the two meteorological regimes, i.e., mixed and stable layers, are distinctively different.
The mixed layer is characterized by uniformly low O3 and rela-
tively high NOx at night, while the stable layer has stratified high O3 but low NO
.
Aerosol size distribution in the mixed layer is found to be tri-modal,
while that in the stable layer is nearly bi-modal.
Based on the collected data,
the nighttime sulfur, nitrate and ammonia chemistry is discussed. INTRODUCTION During the past three decades, several research groups using a variety of techniques have sampled the vertical distribution of pollutants and meteorological parameters in the Los Angeles Basin.
Vertical pollutant and meteorological profiles
have been obtained by blimp (Refs. 1, 21,
small aircraft (Refs. 3-5) and helicop-
346 ter
(Ref.
_ et _ al.
6).
The most e x t e n s i v e
(Ref. 5),
set o f measurements were made by Blumenthal
i n 1972 and 1973.
The t h i r d dimension i n t h e Los Angeles B a s i n i s t y p i c a l l y c h a r a c t e r i z e d d u r i n g t h e s p r i n g , summer and e a r l y f a l l months by a s t a b l y s t r a t i f i e d atmosphere w i t h a strong,
persistent
well-defined
temperature
inversion.
There
is
a
pronounced
boundary between t h e P a c i f i c Ocean marine mixed l a y e r and a d r y , w a r m , c a p p i n g s u b s i d e n c e l a y e r above.
stable or
Mixing h e i g h t s d u r i n g t h e a f t e r n o o n summer months
t y p i c a l l y r a n g e from a b o u t 500 t o 1500 f e e t above ground l e v e l (AGL) i n t h e c o a s t a l sections increasing
Basin. hours,
The
capping
t o 1500 t o 2500 f e e t AGL i n t h e i n l a n d
inversion,
typically
2000 f e e t
portions
t h i c k during
the
of
the
nighttime
i s formed by a c o m b i n a t i o n o f m e t e o r o l o g i c a l p r o c e s s e s s u c h as s u b s i d e n c e Above t h i s s t a b l e a i r mass,
and r a d i a t i o n .
t h e atmosphere i s c o n d i t i o n a l l y sta-
b l e , o f t e n t o 10,000 f e e t mean sea l e v e l (MSL). The above c i t e d r e s e a r c h programs have p r i m a r i l y f o c u s e d on summertime daytime and e p i s o d i c s t u d i e s ( 0 3 h o u r l y a v e r a g e d peaks
>350
s e a b r e e z e d r i v e n "smog f r o n t " a c r o s s t h e Basin.
ppb),
often following
the
With t h e advancement d u r i n g t h e
p a s t few y e a r s of measurement t e c h n i q u e s i n g e n e r a l and a i r b o r n e sampling methodology i n p a r t i c u l a r ,
an increased
understanding
of
m e t e o r o l o g i c a l and
chemical
p r o c e s s e s i s now f e a s i b l e . Realizing
this,
the
Research
and
Development
E d i s o n (SCE) h a s embarked upon a m u l t i - y e a r dimension i n t h e Los Angeles Basin.
group
of
Southern
California
r e s e a r c h program t o e x p l o r e t h e t h i r d
The e l e v a t e d plumes from s e v e r a l l a r g e power
p l a n t s l o c a t e d a l o n g t h e immediate c o a s t i n t h e Los Angeles B a s i n p e n e t r a t e i n t o the stable layer.
T h i s r e s e a r c h program i s e x p l o r i n g t h e l o c a t i o n ,
sembled w i t h a long-range three-dimensional
t r a n s p o r t pro-
A s u f f i c i e n t d a t a b a s e i s b e i n g as-
cesses a n d u l t i m a t e f a t e of t h e s e e f f l u e n t s .
g o a l of a p p r o p r i a t e l y modeling t h e B a s i n u s i n g complex
E u l e r i a n and Lagrangian g r i d models.
s i m u l a t i o n s are p l a n n e d b e c a u s e of
Where p o s s i b l e ,
multi-day
t h e p o t e n t i a l " c a r r y over" e f f e c t and p e r s i s -
t e n c e of " e p i s o d e " p e r i o d s i n t h e Los Angeles Basin.
A s a f i r s t s t e p toward r e a l i z a t i o n of t h i s modeling g o a l , a g e n e r a l understandi n g of
t h e t h i r d dimension i s n e c e s s a r y .
meteorological
questions,
including
T h i s p a p e r a d d r e s s e s some fundamental
transport
t r a n s p o r t of p o l l u t a n t s i n t o t h e s t a b l e l a y e r ;
processes
in
the
inversion;
the
d e c o u p l i n g of t h e mixed and s t a b l e
l a y e r s ; and t h e p o t e n t i a l i m p o r t a n c e of c a r r y o v e r from one day t o t h e n e x t . p h a s i s i n t h i s p a p e r i s p l a c e d on t y p i c a l summer and f a l l non-episode m e t e o r o l o g y f o r which few d a t a have been p r e v i o u s l y a v a i l a b l e .
Em-
nighttime
The c h e m i c a l and
p h y s i c a l t r a n s f o r m a t i o n of p o l l u t a n t s i n t h e B a s i n and t h e a e r o s o l s i z e d i s t r i b u t i o n s r e s u l t i n g from t h e s e p r i m a r y and s e c o n d a r y p r o c e s s e s are a l s o examined. DESCRIPTION OF RESEARCH PROGRAM, EXPERIMENTAL PROCEDURES AND DATA BASE During
t h e summer
s e a s o n s of
1978-1980
a i r b o r n e measurements
were
conducted
347 t h r o u g h o u t t h e Los Angeles Basin, e x t e n d i n g from t h e ocean e a s t w a r d t o t h e mountains.
Sampling d u r i n g t h e f i r s t two
w i t h two t h r e e - h o u r f l i g h t s and
s e a s o n s emphasized n i g h t t i m e measurements The emphasis i n 1980 s h i f t e d t o daybreak
f l i g h t s per night.
afternoon flights.
T h i s paper
will
d i s c u s s mainly
1978-1979
the
n i g h t t i m e measurements. T h i s r e s e a r c h program r e p r e s e n t s s e v e r a l advances i n b r e a d t h and q u a l i t y of data collected. of-the-art
Continuous p a r t i c l e s i z e measurements have been made u s i n g s t a t e -
a i r b o r n e techniques.
A i r b o r n e p a r t i c u l a t e l i d a r d a t a , c o l l e c t e d by an
i n d e p e n d e n t g r o u p , a r e a v a i l a b l e as w e l l as s i z e s p e c t r a of s t r a t u s c l o u d s u s i n g t h e K n o l l e n b e r g forward s c a t t e r i n g probe.
A t y p i c a l t h r e e - h o u r a i r b o r n e f l i g h t would c o n s i s t of s e v e r a l v e r t i c a l s p i r a l s from c l o s e t o t h e s u r f a c e t o 5000 f e e t MSL a t s t r a t e g i c a l l y s e l e c t e d p o i n t s a c r o s s t h e B a s i n and o v e r t h e ocean.
S p i r a l s were connected by t r a v e r s e s a t
a l t i t u d e i n e i t h e r t h e mixed o r s t a b l e l a y e r s .
Twenty- t o t h i r t y - m i n u t e
constant orbits i n
b o t h t h e mixed and s t a b l e l a y e r s were conducted n e a r t h e s p i r a l s t o c o l l e c t aero-
s o l s u s i n g a wide v a r i e t y of f i l t e r d e v i c e s . From one t o t h r e e a i r c r a f t c o l l e c t e d d a t a s i m u l t a n e o u s l y d u r i n g e a c h sampling period. (AV)
D i f f e r e n t t y p e s of small, i n s t r u m e n t e d a i r p l a n e s from AeroVironment,
and Meteorology Research,
Inc.
(MRI)
collected
airborne data.
Inc.
Additional
ground based m e t e o r o l o g i c a l and chemical d a t a were c o l l e c t e d s i m u l t a n e o u s l y by t h e N a t i o n a l Weather S e r v i c e and SCE r e s e a r c h s t a f f . B e e c h c r a f t Queen A i r .
MRI used e i t h e r a Cessna 206 o r
The Cessna 206 had a f u l l complement of c o n t i n u o u s meteoro-
l o g i c a l i n s t r u m e n t s i n c l u d i n g t e m p e r a t u r e and t u r b u l e n c e equipment and c o n t i n u o u s gas analyzers, elometer.
i n c l u d i n g 0 3 , NOx,
and
SO2 m o n i t o r s
plus
an
i n t e g r a t i n g neph-
The Queen A i r i n c l u d e d i d e n t i c a l gaseous and m e t e o r o l o g i c a l i n s t r u m e n t s
as were a b o a r d t h e Cessna,
p l u s a e r o s o l and f o g measuring d e v i c e s t o provide a
complete a r r a y of p a r t i c l e s i z i n g from n u c l e i t o d r o p l e t s .
These d e v i c e s i n c l u d e d
a n e l e c t r i c a l a e r o s o l a n a l y z e r , K n o l l e n b e r g a c t i v e and forward s c a t t e r i n g probes and a Royco o p t i c a l p a r t i c l e c o u n t e r .
The Queen A i r a l s o i n c l u d e d a Volker Mohnen
fog d r o p l e t c o l l e c t o r f o r s t r a t u s clouds.
For a d d i t i o n a l d e t a i l e d i n f o r m a t i o n ,
t h e Cessna 206 i s d e s c r i b e d i n Blumenthal e t a l . Richards
st. (Ref.
8).
(Ref.
7) and t h e Queen A i r i n
AeroVironment used a P i p e r Turbo Navajo and P i p e r Aztec
i n s t r u m e n t e d w i t h a s i m i l a r complement of m e t e o r o l o g i c a l and gaseous a n a l y z e r s . I n t e r p r e t a t i o n of t h e i n s t r u m e n t s '
r e s p o n s e s i n v o l v e d d a t a a d j u s t m e n t s based on
(1) s t a n d a r d c a l i b r a t i o n of a n a l y z e r r e s p o n s e t o r e f e r e n c e s t a n d a r d s , and ( 2 ) det e r m i n a t i o n of s p e c i a l d a t a c o r r e c t i o n s n e c e s s a r y t o a c c o u n t f o r e a c h a n a l y z e r ' s r e s p o n s e and l a g t i m e , pressure day.
(altitude).
and changes i n a n a l y z e r r e s p o n s e w i t h changes i n ambient Analyzer
c a l i b r a t i o n s were performed
before
every
flight
S p e c i a l c a l i b r a t i o n f a c t o r s were d e r i v e d s e p a r a t e l y and were a p p l i e d t o t h e
s t a n d a r d c a l i b r a t i o n f a c t o r s t o a l l o w computation of
meters a s f u n c t i o n s of t i m e and p o s i t i o n .
the
values for
a l l para-
A d d i t i o n a l d e t a i l s have been d e s c r i b e d
348 by B l u m e n t h a l s & .
(Ref.
7) and R i c h a r d s %&. (Ref. 8).
An a r r a y of f i l t e r s were deployed t o c o l l e c t p a r t i c u l a t e analyzed f o r s u l f a t e ,
nitrate,
chloride,
o t h e r c a t i o n s s u c h as l e a d and sodium.
organic sulfur I V species,
s a m p l e r (0.3 p pore f i l t e r ) o r sequen-
t i a l tandem two s t a g e s a m p l e r s ( 8 pm and 0.3
and a l s o on a c i d
p pore f i l t e r s )
washed P a l l f l e x q u a r t z f i l t e r s u s i n g a high-volume
sampler.
c l u d e d i o n chromatography
proton
(IC),
ammonium and
These samples were c o l l e c t e d on n u c l e p o r e
membrane f i l t e r s u s i n g e i t h e r a low-volume
s p e c t r o s c o p y (PIXE).
samples s u b s e q u e n t l y
calorimetry,
and
Aerosol analyses ininduced
x-ray
ct. (Ref.
c h e m i c a l a n a l y s i s t e c h n i q u e s are g i v e n i n Eatough
Gaseous hydrocarbon samples were a l s o c o l l e c t e d .
emission
Details on t h e
S t r a t u s f o g samples were a n a l y z e d u s i n g I C .
9).
P o l i s h e d s t a i n l e s s s t e e l can-
i s t e r s , s u p p l i e d by Washington S t a t e U n i v e r s i t y , were f i l l e d w i t h ambient samples and w i t h i n 48 h o u r s a n a l y z e d f o r s p e c i a t e d hydrocarbons versity
u s i n g g a s chromatography
necessary,
mass s p e c t r o s c o p y .
by Washington S t a t e Uni-
(GC) w i t h f l a m e i o n i z a t i o n d e t e c t i o n and when d a t a are a n e c e s s a r y
These s p e c i a t e d hydrocarbon
i n p u t f o r modeling a p h o t o c h e m i c a l l y a c t i v e atmosphere. Aircraft
f o r a wide v a r i e t y
have c o l l e c t e d d a t a
of
m e t e o r o l o g i c a l c o n d i t i o n s d u r i n g t h e p a s t t h r e e summers. done on b a d l y p o l l u t e d d a y s d u r i n g t h e "smoggy" s e a s o n .
i s severely
and f a l l months v e r t i c a l mixing B a s i n d u r i n g a n e n t i r e 24-hour
time.
period.
air quality
ambient
Sampling was t y p i c a l l y During t h e s p r i n g , summer
restricted
across
the
This condition persists
Los Angeles
f o r days a t a
The mixed l a y e r i s capped by a v e r y s t r o n g t e m p e r a t u r e i n v e r s i o n ,
degrees
i n magnitude.
With v e r y
light
winds
night
and
through
morning
several
hours
and
s t r o n g s o l a r i n s o l a t i o n , t h e Los Angeles B a s i n behaves as a c l a s s i c a l photochemic a l smog chamber.
Furthermore,
s t r a t u s c l o u d s o r marine m o i s t u r e
are normally
p r e s e n t to promote h e t e r o g e n e o u s aqueous d r o p l e t c h e m i s t r y .
A l l this results i n
summer d a y s c h a r a c t e r i z e d by c o m b i n a t i o n s of e l e v a t e d ozone,
a e r o s o l and s u l f a t e
and a e r o s o l l e v e l s .
l e v e l s and f a l l d a y s c h a r a c t e r i z e d by h i g h NO
AND
CHEMICAL
PHYSICAL
CHARACTERISTICS OF
GASES AND
AEROSOLS
IN
THE
VERTICAL
DIMENS I O N A i r b o r n e measurements were conducted f o r a v a r i e t y of ambient a i r q u a l i t y and meteorological conditions during the past
three years.
v e r t i c a l p r o f i l e o f t h e Los Angeles B a s i n a t n i g h t , d i f f e r e n c e s between t h e s t a b l e a n d mixed l a y e r s .
Figure 1 i l l u s t r a t e s the
showing t h e marked chemical
These f i g u r e s a l s o i l l u s t r a t e
t h e maximum mixing h e i g h t d u r i n g t h e p r e v i o u s daytime hours. completely eroded, uniform a c r o s s result, layer.
masses.
the
even i n t h e
i n l a n d areas.
t h e e n t i r e Basin,
stable
in
spite
of
The mixing intense
The i n v e r s i o n i s n o t height
solar
i s remarkably
insolation.
As a
a i r mass r e m a i n s m e t e o r o l o g i c a l l y d e c o u p l e d from t h e mixed
T h i s i s r e f l e c t e d i n c h e m i c a l and p h y s i c a l d i f f e r e n c e s between t h e two a i r
349
Fig. 1. Vertical profile of meteorological and air quality data collected by light aircraft over the L.A. Basin; (top) from 2007-2248 PST, August 2, 1978; and (bottom) from 2020-0258 PST, October 24-25, 1979.
350 Gases ___ polluted,
being
characterized
by
These ozone c o n c e n t r a t i o n s are months) and because o f multiple
thin
is surprisingly quite
i n F i g u r e 1, t h e i n v e r s i o n ( s t a b l e ) l a y e r
As depicted
elevated
often
ozone
i n excess
levels,
t h e s t a b l y s t r a t i f i e d n a t u r e of
horizontal
l a y e r s e x t e n d i n g westward
p a s t t h e c o a s t l i n e s e v e r a l miles o v e r t h e ocean.
but
200 ppb
of
low
values.
NOx
(during
the inversion,
from
the
summer
the
occur i n
mountains
to
Above t h e i n v e r s i o n l a y e r ,
out
O3
values decrease rapidly. By c o n t r a s t , t h e mixed l a y e r i s a f r e s h a i r mass and c o n t a i n s h i g h v a l u e s of NOx
and v e r y
the year NOx
03.
low v a l u e s of
toward
the
fall,
Higher v a l u e s
of
NOx
are
observed
c o i n c i d i n g w i t h d e c r e a s i n g mixing
later
heights.
in
Highest
v a l u e s are u s u a l l y o b s e r v e d from t h e E l Monte area westward t o t h e c o a s t .
S p a t i a l c o n c e n t r a t i o n s of NOx v a r y n i g h t l y depending on t h e sea-land culation pattern.
The r a t i o of NO t o NO
breeze c i r -
a l s o v a r i e s seasonally.
C o n c e n t r a t i o n s o f SO2 m o n i t o r e d by t h e a i r c r a f t were low a c r o s s t h e Basin i n E x c e p t i o n s are immediately downwind of p o i n t
b o t h t h e mixed and s t a b l e l a y e r s . sources
s u c h a s power
p l a n t s and
refineries.
Otherwise,
nighttime
SO2 v a l u e s
a r e t y p i c a l l y 10 t o 25 ppb i n t h e mixed l a y e r and 10 t o 15 ppb i n t h e i n v e r s i o n . Aerosols
A s outlined previously,
a i r b o r n e p a r t i c u l a t e f i l t e r samples were c o l l e c t e d i n
t h e Los Angeles B a s i n as p a r t of t h i s r e s e a r c h program. i z e d i n T a b l e 1 and F i g u r e 1.
less a e r o s o l t h a n does layer.
These r e s u l t s a r e summar-
These d a t a show t h a t a l t h o u g h t h e s t a b l e l a y e r has
t h e mixed
layer,
substantial aerosol
is i n t h e s t a b l e
I n t h i s section, the nighttime chemistry i s described.
Nighttime
sulfur
chemistry.
Table
1 shows
the
highest
c o n c e n t r a t i o n s of
p a r t i c u l a t e s u l f u r s p e c i e s t o be i n t h e i n l a n d p o r t i o n s of t h e B a s i n i n t h e mixed layer.
The c o n c e n t r a t i o n s found w i t h i n t h e i n v e r s i o n l a y e r , b o t h i n l a n d and a l o n g
t h e c o a s t , are comparable.
The l o w e s t c o n c e n t r a t i o n s are observed a l o n g t h e c o a s t
i n t h e mixed l a y e r , which i s r e a s o n a b l e c o n s i d e r i n g t h e s t r e n g t h of t h e sea b r e e z e d u r i n g t h e summer months.
T a b l e 1 a l s o shows t h a t ,
s u l f a t e i s i n t h e f i n e s i z e range
( l e s s t h a n 2.5
s u l f a t e c o n c e n t r a t i o n s d e t e r m i n e d by hi-volume
and low-volume
a r e i n good agreement a s i n d i c a t e d by t h e low-volume
are a t l e a s t two r e a s o n s f o r t h e c o m p a r a b i l i t y .
on t h e a v e r a g e , p~ p a r t i c l e
90% of
diameter).
the The
sampling t e c h n i q u e s
t o hi-volume
ratio.
There
First, particulate sulfate i n the
atmosphere i s thermodynamically s t a b l e because t h e s u l f a t e s a l t s have low vapor pressures (Ref.
10).
Second,
since there was little sulfate i n larger particles,
t h e d i f f e r e n c e i n c u t p o i n t s among t h e sampling systems d i d n o t markedly a f f e c t t h e measured s u l f a t e c o n c e n t r a t i o n s .
351 TABLE 1
Summary of a i r b o r n e nighttime a e r o s o l samples in the Los Angeles Basin i n 1979
Locallo"
*nversran Layer, CDOStale
On sampling n i g h t s following days with s t r a t u s a s f a r inland a s t h e E l Monte a r e a , s u l f a t e l e v e l s i n t h e mixed l a y e r a r e n e a r l y twice a s high a s those on the days without
stratus.
This r e s u l t
i s c o n s i s t e n t with previous work suggesting
that heterogeneous SO2 t o s u l f a t e conversion occurs more r a p i d l y i n the presence
of c o a s t a l moisture and higher r e l a t i v e humidities than do slower homogeneous conv e r s i o n processes (Refs. 11-13). Perhaps t h e most i n t r i g u i n g chemical r e s u l t i s the l a r g e f r a c t i o n of particul a t e s u l f u r bound t o organic compounds.
i s r e f e r r e d t o a s organic S(IV) c o n c e n t r a t i o n s of
organic
s p e c i e s (Ref.
S(IV)
Figure 1) have been observed.
This f r a c t i o n of the p a r t i c u l a t e s u l f u r 14).
a s high a s 6
The e x i s t i n g d a t a base shows
pg/m3 expressed a s
s u l f a t e (see
In general, organic S(1V) i s observed in the d r i e r
p o r t i o n s of t h e Basin, both i n l a n d and throughout t h e i n v e r s i o n from the coast t o inland areas.
Figure 2 shows t h a t a t times,
more than 50% of
the p a r t i c u l a t e
s u l f u r is in t h e form of organic S(1V). Figure 2 i n d i c a t e s a very good c o r r e l a t i o n between organic and t o t a l particul a t e s u l f u r f o r days with warm a i r masses. open p o i n t s f o r a i r masses c o o l e r than 2 2 ° C .
Figure 2 a l s o includes data denoted by Excluding days when the average day-
time temperature of t h e a i r mass i s l e s s than 2 Z 0 C , obtained:
t h e following r e l a t i o n s h i p i s
352
A
Fig.
2.
R e l a t i o n s h i p between a i r b o r n e t o t a l f i n e p a r t i c u l a t e s u l f a t e and organic i n t h e L.A. Basin f o r s e v e r a l summer and f a l l days i n 1979. Solid data p o i n t s a r e f o r warmer a i r mass while open d a t a p o i n t s a r e f o r cooler a i r mass. The l a t t e r a r e not included i n the r e g r e s s i o n a n a l y s i s .
S(1V)
2-
+
[So4 ] = 1.10 [Org. S(IV)] where ground
all
concentrations a r e
level
of
inorganic
a l s o suggests t h a t i n warm,
in
SO-:
nanomoles/m in
the
3
17.7
.
Basin
Equation of
about
(1)
2
suggests pg/m
3
.
a
back-
Figure
dry a i r masses SO2 conversion t o inorganic
2
sulfate
and organic S(IV) occur a t similar r a t e s . These r e s u l t s a r e complicated by the f a c t
that
these data were
n i g h t when photochemical homogeneous processes were a t a minimum.
collected a t Furthermore, a
d i f f e r e n c e i n residence times and a i r mass age between the mixed and s t a b l e l a y e r s m u s t a l s o be considered.
Additional sampling and d a t a a n a l y s i s a r e needed t o un-
r a v e l t h e d i f f e r e n c e s between daytime and nighttime chemistry w i t h i n and between each l a y e r .
Nighttime n i t r a t e
chemistry.
Proper
sampling
of
nitrate
in
the
atmosphere
353 i n the data s c a t t e r n e s s shown i n Fig-
continues t o be a challenge a s r e f l e c t e d ure 3.
From t h e c o a s t
to the inland areas,
l e v e l s i n c r e a s e a s the dry a i r masses aged. tions
of
particulate
nitrate
to
occur
measured
fine particulate nitrate
The trend is f o r higher concentra-
toward
the
fall
months
as
NO2
values
increase.
100
fn
0 INVERSION A MIXED L A Y E R
W
-
c
a
0
U
n
60 -
W
5
LL
40
z 0"
z
E
2o A
0
I
0
A
20
I
I
I
,
,
I
40
60
80
100
120
140
[NO;] IN FINE PARTICLES
, nanomol/m3
Fig. 3. R e l a t i o n s h i p between the percent of t o t a l p a r t i c u l a t e n i t r a t e i n the f i n e S o l i d data mode ( < 2 . 5 pm Dp) and ambient c o n c e n t r a t i o n of f i n e p a r t i c l e n i t r a t e . p o i n t s a r e samples where evidence e x i s t s f o r gaseous HNO3. The percentage of p a r t i c u l a t e n i t r a t e in t h e fine size range i s d i r e c t l y proportional
t o the
fine
particle
concentration
as
shown i n Figure
3.
Figure
3
suggests t h a t the background p a r t i c u l a t e n i t r a t e is about 30% f i n e p a r t i c l e and
70% c o a r s e p a r t i c l e .
These concentrations
a r e derived from the regression
line
obtained i n Figure 3: % NO;
where
NO;
suggests
( f i n e s ) = 0.334 [NO;]
concentration that
is
t h e background
in
nanomoles/m
nitrate
+
fines
3
.
31.0
This
concentration
in
(2) regression
the
Basin
pg/m3 f o r t h e 2 . 5 pm p a r t i c l e diameter (Dp) range and about 2 . 3
relationship
is about
1.0
pg/m3 f o r the
2.5 pm Dp range. The d a t a obtained i n t h i s study lead t o believe t h a t f o r n i g h t s when s t r a t u s clouds a r e not p r e s e n t i n the mixed l a y e r inland and i n the inversion a substant i a l p o r t i o n of n i t r a t e might be i n the form of
gaseous HN03.
The i n t e r p r e t a -
t i o n of t h e i n l a n d and i n v e r s i o n p a r t i c u l a t e n i t r a t e concentrations is d i f f i c u l t
354 because
of
t h i s g a s e o u s HN03.
The
c o n s i d e r i n g c h a n g e s i n t h e C1volume and high-volume The
presence
of
presence
of
g a s e o u s HN03 was
concluded
by
p a r t i c l e s i z e d i s t r i b u t i o n and comparing t h e low-
sampling r e s u l t s .
should
g a s e o u s HN03
result
in
release
of
coarse
particle
C1- as g a s e o u s HC1 a c c o r d i n g t o t h e r e a c t i o n (Ref. 1 5 ) :
I t h a s been s u g g e s t e d by Moskowitz
(Ref.
16) t h a t t h i s r e a c t i o n is i m p o r t a n t i n
t h e p r o d u c t i o n of c o a r s e p a r t i c l e n i t r a t e i n t h e Basin.
Evidence t o s u p p o r t t h i s
c h e m i s t r y i s shown in F i g u r e 4 , which p l o t s t h e % C1% NO;
the
in
coarse
particles.
While
p a r t i c l e s l e s s t h a n and g r e a t e r t h a n 2.5
the
i n coarse particles versus
of
distribution
pm Dp i s r e l a t i v e l y
NO;
constant,
between t h e C1-
d a t a c a n be d i v i d e d i n t o two g r o u p s as denoted by t h e two c i r c l e s .
100
1
I
,/
v)
w
I _----_ -.
,
-
0 l-
\
A
/ I
80 -
0
\
\\
-0
,tiI
A
0
I I'
0
/'
A
0
-
',..-?--*.#' A /----A,
60 -
0
', i
o
\, O
a a a w v) a a
I
A'
40 -
z
\, 1 I
! I \\,
m
a
-
0 :
;
'\ A ,,' '\..e----.-.,'
20 -
-
-
OlNVERSlON
aQ
AMIXED LAYER 0 0
I
I
I
I
20
40
60
80
100
F i g . 4 . R e l a t i o n s h i p between p e r c e n t o f t o t a l c h l o r i d e in c o a r s e mode and p e r c e n t o f t o t a l n i t r a t e i n c o a r s e mode. S o l i d d a t a p o i n t s are samples from l o c a t i o n s of g r e a t e r photochemical a c t i v i t y .
The
samples having
the
majority
c o l l e c t e d i n t h e mixed l a y e r a t
c l e NO;
and
SO:-
levels
ures 2 and 3) a n d / o r
were
of
the
t h e coast. close
to
C1-
in
At
this
the
expected
t h e r e was no m e a s u r a b l e a c i d i t y
coarse
location
background i n the
particles
were
b o t h fine p a r t i levels
samples,
(Figso
that
355 gaseous HN03 c o n c e n t r a t i o n s would be u n i m p o r t a n t ( T a b l e 1). Table 1 s u g g e s t s t h a t i n t h e mixed l a y e r a t t h e c o a s t , c e n t r a t i o n i n t h e s i z e r a n g e of > 2 . 5
pm Dp i s a b o u t 1 pg/m
The samples having t h e m a j o r i t y of
t h e C1-
i n the
t h e background C13
con-
.
f i n e p a r t i c l e s were c o l -
i n t h e i n l a n d areas and from t h e s t a b l e l a y e r
l e c t e d from t h e mixed l a y e r
The s h i f t t o smaller p a r t i c l e C1-
the coast.
An examination of
in
i s c o r r e l a t e d w i t h g r e a t e r photo-
c h e m i c a l a c t i v i t y ( h i g h e r O3 and gaseous HNO ) as w e l l a s h i g h e r f i n e p a r t i c u 3 l a t e NO;, SO:a n d a c i d i t y and presumably r e s u l t s from d i s p l a c e m e n t of from c o a r s e p a r t i c l e s as shown i n E q u a t i o n ( 3 ) .
C1-
c a t e t h a t a b o u t one-half
i n l a n d mixed l a y e r samples by way of E q u a t i o n ( 3 ) . inland
coarse particle
levels
NO;
the experimental value
3.9
of
pg/m
of 3
about
4
of
t o form 2 pg/m3 of NO;.
The
the
pg/m3
from
of CI-
present
2
study
i s displaced i n the drier
1,
(Table
background
indicates
that
NO;
T h i s would l e a d t o p r e d i c t e d
pg/m
3
,
agrees w e l l
with
"mixed l a y e r ,
in-
which
row l a b e l l e d
l a n d , no i n l a n d low c l o u d s t h e p r e v i o u s day"). comes
The d a t a i n F i g u r e 4 i n d i -
t h i s c o a r s e p a r t i c l e C1-
of
T h i s p r e d i c t e d v a l u e of 4 pg/m and
elevated
the
displacement
particle
1 pg/m3
of
concentrations
NO;
3
can
o c c u r a t n i g h t n o t o n l y when t h e a i r mass was w a r m and d r y on t h e p r e v i o u s day ( T a b l e 1) b u t a l s o when t h e a i r mass was c o o l e r and m o i s t d u r i n g t h e n i g h t (Refs. 18).
17,
P e r h a p s NO2 i s c o n v e r t e d p h o t o c h e m i c a l l y d u r i n g t h e warmer,
d r i e r day-
t i m e h o u r s t o g a s e o u s HN03 and t h e n w i t h t h e o n s e t of c o o l e r n i g h t t i m e temperat u r e s and i n c r e a s i n g r e l a t i v e humidity to particulate nitrate.
t h e gaseous HN03 i s g r a d u a l l y converted
Thermodynamically, t h e f o r m a t i o n of
particulate nitrate
i s f a v o r e d by c o o l e r t e m p e r a t u r e s and h i g h e r r e l a t i v e h u m i d i t i e s (Ref.
A p r i n c i p a l a t m o s p h e r i c r o l e f o r ammonia is as a n e u t r a l -
Ammonia chemistrll. izer for
s u l f u r i c and n i t r i c a c i d .
i n t h e f i n e p a r t i c l e mode. i s bound
t o Na
The
Table
two
a c i d i t y of
columns
+
i n Table
the aerosol.
1 shows t h a t n e a r l y a l l t h e NH;
is
This again suggests t h a t the coarse p a r t i c l e n i t r a t e
t o some c a t i o n o t h e r t h a n NH4,
+.
19).
as d i s c u s s e d above,
and,
1 a d d r e s s t h e abundance of
+
the
NH4
concentration,
From examining t h e H+
age a e r o s o l a c i d i t y i s observed i n t h e i n l a n d samples.
most
ion
likely
and
the
t h e h i g h e s t aver-
However,
t h e h i g h e s t con-
c e n t r a t i o n s of a c i d i t y o c c u r i n samples c o l l e c t e d a t t h e c o a s t .
T h i s i s reason-
able
NH3
s i n c e most
inland aerosols.
NH;
was
in
sources The
t h e <2.5
of
NH3
are
further
size-fractionated pm
Dp
range.
inland
samples
generally
Generally,
particulate
NH;
calculated
from
s e v e r a l times h i g h e r t h a n t h a t from t h e high-volume
this
indicate
reasonable
s e r v e d between t h e h i g h volume and low volume samples. c o n c e n t r a t i o n of
and
neutralizes
90% of
the
was
ob-
agreement
However, i n some cases t h e the
low-volume
samples.
samples
was
T h i s d i f f e r e n c e may
356 a r i s e from h a n d l i n g p r o c e d u r e s which may l e a d t o t h e a b s o r p t i o n of
gaseous
NH3
by a c i d i c p a r t i c u l a t e s a f t e r sample c o l l e c t i o n . The the
mole
ratio
extent
to
+
(NO; NO;
which
+
s a l t s of
NH4
+.
H
or
ples collected i n
42SO4
and
When t h e r a t i o i s 1.0,
salts.
For
or
+
NH4.
The
layer
the suggestion If
that
t h o s e samples
background Equations
of
the
other
2
pg/m3 then
are c a l c u l a t e d t o be p r e s e n t as NH;
Aerosol s i z e d i s t r i b u t i o n .
the
or
1
Table
as
present
salts
cation
c o a s t are
reflects
+
NH4
exist.
strongly
and and
a
toward
occurs for
salts
SO:-
samples
neutralization
(Z)],
of and
other
along
SO:-
collected inland
SO:-
(1)
NH3
are
in
The
with
drier
value
gaseous
a i r masses
background
NO;
all
the
essentially
are
of
than
1.0
HN03
are
by
or
H'
supports H2S04.
corrected for
of 1.0 pg/m3 [see 2secondary SO4 and NO3
compounds.
F i g u r e s 5 and 6 p o r t r a y t y p i c a l s u r f a c e area and In
t h e volume d i s t r i b u t i o n s are t r i - m o d a l w i t h d i a m e t e r peaks cen-
t e r i n g a t a b o u t 0 . 2 pm, 0.5 p and 7 pm. show b i - m o d a l .
sam-
t h a t ca-
other
volume d i s t r i b u t i o n p l o t s f o r t h e a c c u m u l a t i o n and c o a r s e modes of a e r o s o l s . t h e mixed l a y e r ,
H+
or
influenced
The l a r g e c a l c u l a t e d r a t i o i n d i c a t e s
background
tendency
species
r a t i o s >1.O,
t h e mixed
with
H+)
t h e s u l f a t e and n i t r a t e can a l l be accounted f o r as
background s u l f a t e and n i t r a t e . tions associated
+
2S02-)/(NHi
By c o n t r a s t ,
t h e i n v e r s i o n volume p l o t s
No c o a r s e mode e x i s t s , w i t h a bi-modal
f i n e p a r t i c l e mode a t 0.2
and 0.5 p Dp. From p r e v i o u s s t u d i e s ( R e f s . 12, 21) t h e 0.2
p mode may be a s s i g n e d p r i m a r i l y
t o t h e o r g a n i c component and homogeneously formed s u l f a t e s and n i t r a t e s , w h i l e t h e
0.5
pm mode
c o n t a i n s h e t e r o g e n e o u s s u l f a t e and n i t r a t e .
have i n d i c a t e d a mass median d i a m e t e r (MMD)
whereas f o r o r g a n i c s t h e MMD i s smaller, but unknown.
on e x i s t i n g p a r t i c l e s and growth ceases a t 0.2 However,
close
Gas-to-particle
b e h a v i o r i n t h e B a s i n a l s o s u p p o r t s t h i s modal assignment.
hydrophobic p r o p e r t i e s .
These p r e v i o u s s t u d i e s
f o r s u l f a t e very
to
0.5
pm
conversion
The o r g a n i c s condense
t o 0.3 pm i n p a r t , because of t h e i r
t h e a c c u m u l a t i o n mode s u l f a t e and n i t r a t e can
condense o r form i n s t r a t u s l f o g d r o p l e t s and c o n t i n u e t o grow h y g r o s c o p i c a l l y i n t h e m o i s t marine environment t o a l a r g e r e q u i l i b r i u m s i z e of 0.5 t o 2 pm. The volume i n e a c h of
t h e s e modes i s a l s o c o n s i s t e n t w i t h t h e i r chemical as-
Assuming a d e n s i t y of
signment.
1.5 g/cm3 f o r t h e s e p a r t i c l e s , o r g a n i c a e r o s o l s
have a mass c o n c e n t r a t i o n v a r y i n g from a b o u t 35 t o 60 pg/m3 i n t h e mixed l a y e r , b u t c o n s i d e r a b l y less i n t h e s t a b l e l a y e r .
3 20 ug/m
.
S u l f a t e and n i t r a t e w i l l t o t a l about
These r e s u l t s are c o n s i s t e n t w i t h ACHEX e x p e r i m e n t s a s w e l l as w i t h
more r e c e n t work conducted by SCE which shows t h a t a c o n s i d e r a b l e amount of a c c u m u l a t i o n mode a e r o s o l i s i n t h e form of o r g a n i c s ( R e f s 15, 1 7 , a n a l y s i s of samples c o l l e c t e d i n d i c a t e t h a t
15% s u l f a t e ,
5-10% n i t r a t e ,
18).
the
Detailed
t h e a e r o s o l mass i s 30-40% o r g a n i c ,
5% ammonium, 25% t r a c e e l e m e n t s ,
and
30-35% unas-
5. R e p r e s e n t a t i v e d i f f e r e n t i a l s i z e d i s t r i b u t i o n p l o t s i n t h e mixed l a y e r o v e r S a n t a Monica ( a l o n g c o a s t ) a t 5 5 0 m MSL a t 0441 PST, O c t . 9, 1980: (a) volume d i s t r i b u t i o n ; a n d ( b ) s u r f a c e area d i s t r i b u t i o n .
Fig.
6. Representative d i f f e r e n t i a l s i z e d i s t r i b u t i o n p l o t s i n the inversion l a y e r o v e r S a n t a Monica ( a l o n g c o a s t ) a t 1280 m MSL a t 0448 PST, Oct. 9 , 1980: ( a ) volume d i s t r i b u t i o n ; a n d ( b ) s u r f a c e a r e a d i s t r i b u t i o n .
Fig.
358 b a s e d on
The u n a s s i g n e d p o r t i o n may b e water,
signed.
t h e e a r l i e r ACHEX work
( R e f s . 2 2 , 23). The d i f f e r e n c e s between t h e f i n e and c o a r s e modes once a g a i n p o i n t s t o t h e deThe 0.5
c o u p l e d n a t u r e between t h e mixed and s t a b l e l a y e r s .
p Dp h e t e r o g e n e o u s
s u l f a t e / n i t r a t e mode i s g r e a t l y d i m i n i s h e d i n t h e s t a b l e l a y e r .
First,
t h e rela-
t i v e h u m i d i t y of t h i s l a y e r i s low, u s u a l l y < 3 0 % so t h a t l i q u i d water i s n o t asT h e r e f o r e , t h e volume o f t h e s e a e r o s o l s c a n be re-
sociated with these aerosols. duced
by
one-third
l i k e l y t h e s e 0.5
compared
t o mixed
layer
pm Dp mode a e r o s o l s were
l a y e r a n d t r a n s p o r t e d upward
into
aerosols initially
the drier
(Ref.
22).
formed i n
inversion.
Second,
t h e m o i s t mixed
T h i s marked
r e l a t i v e h u m i d i t y may r e s u l t i n a h y s t e r i s t y p e s h r i n k i n g of
most
change
in
t h e a e r o s o l down t o
t h e u p p e r e n d o f t h e c o n d e n s a t i o n a l 0.2 pm Dp mode. The c o a r s e mode i s c h e m i c a l l y and p h y s i c a l l y q u i t e d i f f e r e n t from t h e accumul a t i o n modes.
The f i n e a n d c o a r s e modes b e i n g p h y s i c a l l y s e p a r a t e d o c c u r s b e c a u s e
c o n d e n s a t i o n p r o d u c e s f i n e p a r t i c l e s whereas m e c h a n i c a l p r o c e s s e s produce m o s t l y coarse p a r t i c l e s .
The e q u i l i b r i u m dynamics of f i n e p a r t i c l e s p r e v e n t t h e s e par-
t i c l e s from growing l a r g e r t h a n a b o u t 1 p.
Thus,
t h e c o a r s e mode i s a b s e n t i n
t h e s t a b l e l a y e r b e c a u s e t h e s o u r c e of t h e s e l a r g e r p a r t i c l e s i s a t t h e s u r f a c e a n d t h e s e t t l i n g v e l o c i t i e s of t h e s e p a r t i c l e s are t o o h i g h . s e t t l i n g v e l o c i t y o f a b o u t 1 cm/sec (Ref.
Given a c o a r s e mode
2 4 ) and c o n s i d e r i n g t h e l o n g r e s i d e n c e
times o f 2 4 h o u r s o r g r e a t e r i n t h e s t a b l e l a y e r ,
t h e e q u i l i b r i u m dynamics p o i n t s
t o no c o a r s e mode i n t h e s t a b l e l a y e r . The l a r g e s u r f a c e area a s s o c i a t e d w i t h t h e 0.2
p Dp peak s u g g e s t s t h a t most of
t h e new p a r t i c l e s a r e produced i n t h i s s i z e range.
Condensation occurs preferen-
t i a l l y on p a r t i c l e s h a v i n g t h e l a r g e s t s u r f a c e area. G e n e r a l l y , when t h e s u r f a c e area e x c e e d s 500 pm 2 / c m 3 , s u f f i c i e n t p a r t i c l e s e x i s t so t h a t c o n d e n s a t i o n o c c u r s on e x i s t i n g p a r t i c l e s .
Thus, o n e would e x p e c t t h e n u c l e a t i n mode ( s o u r c e s
s u c h a s t h e a u t o m o b i l e ) t o r a p i d l y d i s a p p e a r i n t o t h i s 0.2
pm Dp mode.
However,
i n t h e i n v e r s i o n , s u r f a c e area i s s u f f i c i e n t l y low t h a t p a r t i c l e growth dynamics o c c u r s p r i m a r i l y v i a t h e n u c l e a t i o n and c o n d e n s a t i o n r o u t e .
CONCLUSIONS AND FUTURE WORK The Los A n g e l e s B a s i n i s a complex e n v i r o n m e n t w i t h a n a r r a y o f m o b i l e and stat i o n a r y s o u r c e e m i s s i o n s s p r e a d o v e r a r a t h e r l a r g e g e o g r a p h i c a l area.
One o f t h e
most complex a n d l e a s t u n d e r s t o o d d i m e n s i o n s i n t h e Los Angeles B a s i n i s t h e v e r -
t i c a l p r o f i l e of a m b i e n t a i r c o n s t i t u e n t s . gram t o g a i n a n improved u n d e r s t a n d i n g of years'
a i r b o r n e d a t a base,
gases and a e r o s o l s .
A s p a r t o f a long-term t h i s dimension,
r e s e a r c h pro-
using an i n i t i a l three
t h i s p a p e r h a s examined t h e c h e m i s t r y and p h y s i c s o f
Because of t h e a c t i v e i n t e r p l a y o f t h e s e phenomena, t h e p a p e r
h a s t r e a t e d e a c h i n some d e t a i l . A d d i t i o n a l d a t a on t h e c h e m i s t r y a l o f t
i s needed
i n order
t o elucidate the
359 s p a t i a l d i s t r i b u t i o n of sulfur species.
c h e m i c a l compounds s u c h as s u l f a t e ,
n i t r a t e and o r g a n i c
Improved sampling t e c h n i q u e s a r e needed t o d i f f e r e n t i a t e between
p a r t i c u l a t e n i t r a t e and n i t r i c a c i d . ~ t a n dg a s - t o - p a r t i c l e
More e x p e r i m e n t a l d a t a are needed t o under-
t r a n s f o r m a t i o n s and i n what manner t h e s e t r a n s f o r m a t i o n s are
a f f e c t e d by t r a n s p o r t p r o c e s s e s .
P e r h a p s t h e g r e a t e s t gap i n o u r knowledge i s i n
t h e t r a n s p o r t p r o c e s s e s i n t h e v e r t i c a l dimension.
Much more d e t a i l e d v e r t i c a l
m e t e o r o l o g i c a l i n f o r m a t i o n i s needed t o c l a r i f y t h e " c a r r y over"
of
pollutants,
p a r t i c u l a r l y f o r a e r o s o l s a n d ozone
of
fall-winter
stagnation,
precursors.
During
periods
" c a r r y o v e r " may become i n c r e a s i n g l y i m p o r t a n t .
A d d i t i o n a l meteoro-
l o g i c a l and c h m e i c a l p r o f i l e s are needed t o t h e w e s t of t h e Los Angeles Basin o u t t o 50-100 miles o v e r t h e P a c i f i c Ocean.
Because of t h e d a i l y sea b r e e z e ,
a i r is
t r a n s p o r t e d from t h i s f a r e a s t w a r d o v e r t h e Los Angeles B a s i n p r a c t i c a l l y e v e r y day.
The i n t e r a c t i o n and t r a n s p o r t of p o l l u t a n t s w i t h s t r a t u s c l o u d s i s an a l m o s t
untouched s u b j e c t .
REFERENCES 1 M. N e i b u r g e r , N.A. R e n z e t t i , L.H. Rogers and R. T i c e , An Aerometric Survey of 1954--Interpretation of R e s u l t s , A i r t h e Los Angeles B a s i n , August-November, P o l l u t i o n F o u n d a t i o n R e p o r t No. 9, Los Angeles, 1955. Hidy, 3. Appel, R.J. C h a r l s o n , W.E. C l a r k , S.K. F r i e d l a n d e r , R. Giauque, 2 G.M. S . Heisler, P.K. M u e l l e r , R. R a g a i n i , L.W. R i c h a r d s , T.B. Smith, A. Waggoner, J.J. Wesolowski, K.T. Whitby and W. White, C h a r a c t e r i z a t i o n of A e r o s o l s i n C a l i f o r n i a (ACHEX), F i n a l Rep. t o C a l i f o r n i a A i r Resources Board, under C o n t r a c t 358, 1974. 3 J.G. E d i n g e r , J . of Meteor., 16(1959)219-226. 4 J.G. E d i n g e r , Environ. S c i . Technol., 7(1973)247-252. Smith, W.H. White, S . L . Marsh, D.S. Ensor, R.B. Husar, 5 D.L. Blumenthal, T.B. P.S. McMurry, S.L. Heisler and P. Owens, Three-Dimensional P o l l u t a n t G r a d i e n t Study--1972-1973 Program, Meteorology Research, Incorporated, Altadena, C a l i f o r n i a , R e p o r t No. MRI 74FR-1262, 1974. 6 J.G. C a l v e r t , Environ. S c i . Technol., 10(1976)248-256. 7 D.L. Blumenthal, J.A. Ogren and J.A. Anderson, Atmos. Environ., 12(1978)613-620. 8 L.W. R i c h a r d s , J.A. Anderson, D.L. Blumenthal, A.A. B r a n d t , J.A. McDonald, N. Waters, E.S. Macias a n d P.S. Bhardjawa, Atmos. Environ., 15(1981)2111-2134. 9 D.J. Eatough, N.L. Eatough, M.W. H i l l , N.F. Mangelson, J. Ryder, L.D. Hansen, R.G. Meisenheimer and J.W. F i s c h e r , Atmos. Environ., 13(1979)489-506. 10 W.D. S c o t t and F.C.R. C a t t e l l , Atmos. Environ., 13(1979)307-317. 11 G.R. Cass, Methods f o r S u l f a t e A i r Q u a l i t y Management w i t h A p p l i c a t i o n s t o Los A n g e l e s , Ph.D. T h e s i s , C a l i f o r n i a I n s t i t u t e of Technology, 1978. 12 R.E. Meyers and E.N. Z i e g l e r , Environ. S c i . Technol., 12:(1978)302-309. Eatough, T. Major, J. Ryder, M. H i l l , N.F. Mangelson, N.L. Eatough and 1 3 D.J. L.D. Hansen, Atmos. Environ., 12(1978)263-271. 14 D.L. Eatough, L.D. Hansen, M.L. Lee, and N.F. Mangelson, Measurement of S u l f u r (LV) and M e t h y l a t e d S u l f a t e S p e c i e s i n A e r o s o l s Produced by F o s s i l F u e l Burning Steam P l a n t s , F i n a l Report EPRI C o n t r a c t RP-1554-1, J a n u a r y , 1981. 1 5 J. F o r r e s t , R.L. Tanner, D. Spandau, T. D'Ohavio and L. Newman, Atmos. Environ., 14(1980)137-144. 16 A.H. Moskowitz, The D i s t r i b u t i o n of A e r o s o l N i t r a t e Compounds w i t h Respect t o P a r t i c l e S i z e , M.S. T h e s i s , C a l i f o r n i a I n s t i t u t e of Technology, 1977, p. 195. 1 7 E.C. E l l i s , R.J. F a r b e r , S.L. H e i s l e r , P.K. M u e l l e r , R.E. Henry and G.M. Hidy, C h a r a c t e r i z a t i o n o f Ambient S u l f a t e A e r o s o l s i n Los Angeles, 1 7 7 t h Meeting o f t h e American Chemical S o c i e t y , Honolulu, Hawaii, A p r i l , 1979.
360 18 S.L. Heisler, R.C. Henry, P.K. M u e l l e r , G.M. Hidy and D. G r o s j e a n , A e r o s o l B e h a v i o r P a t t e r n s i n t h e S o u t h C o a s t A i r B a s i n w i t h Emphasis on A i r b o r n e S u l f a t e , E n v i r o n m e n t a l R e s e a r c h a n d Technology, Inc., W e s t l a k e V i l l a g e C a l i f o r n i a , Document P-A085-1, 1980. 19 I. N. Tang, A t m o s . E n v i r o n . , 14(1980)819-828. 20 B.W. S t e l s o n , S.K. F r i e d l a n d e r and J.H. S e i n f e l d , Atmos. Environ., 13(1979) 369-37 1. 21 W.H. White a n d P.T. R o b e r t s , Atmos. Environ., 11(1977)803-812. 22 W.W. Ho, G.M. Hidy a n d R.M. Govan, J. Appl. Meteor., 4(1974)871-879. 23 K.T. Whitby a n d G.M. S v e r d r u p , i n G.M. Hidy (Ed.), The C h a r a c t e r and O r i g i n s of Smog Aerosols, California Aerosols: Their Physical and Chemical C h a r a c t e r i s t i c s , J o h n Wiley & Sons, New York, 1980, p. 484. 24 N.A. F u c h s , Mechanics of A e r o s o l s , Pergamon P r e s s , N e w York, 1964, p. 33.
361
CHARACTERIZATION OF A LOCAL AEROSOL ON A RURAL SITE OF THE PO VALLEY
*
**
S. FUZZ1 , M. MARIOTTI
*
*
and G . ORSI
**Istituto FISBAT - CNR, Bologna (Italy) Sezione Chimica, Laboratorio Provinciale Igiene e Prof ilassi, Bologna (Italy)
ABSTRACT A site was chosen in the Po Valley (Northern Italy) that could be considered representative of the whole eastern part of the Valley. High volume aerosol samples were collected during periods characterized by weak pressure gradients over the region, so that any influence by external sources, over the aerosol composition, could be reasonably excluded. The measured total concentration of airborne particles appears notably high in a rural atmosphere. The following aerosol characteristics were determined: a) concentration of water soluble and insoluble material; b) concentration of ether soluble organic material; c) chemical element balance. Synoptic and local meteorological data were also collected during the samplings. The results are discussed from the point of view of the contribution of various sources to the total particulate matter.
INTRODUCTION This work represents the first step of a study program on aerosol production, transformation and circulation in the Po Valley (Northern Italy). The topographic feature of the Po Valley determines particular cases of circulation analysed, as a first approach, by Tampieri et al. (ref. 1 ) . This ample valley is essentially flat, about 400 Km long, and has a maximum width of about 100 Km; it is surrounded by mountains to the north, west and south, whereas its eastern side faces the North Adriatic Sea (Fig. 1 ) . The eastern part of the Valley is an agricultural area with light industrial activities (except for a big localised plant in Ferrara) and homogeneous cultivations. High volume aerosol samples were collected in an equipped field near S. Pietro
362
Capofiume (see Fig. l ) , during periods characterized by weak pressure gradients at the mean sea level,
so
that valuable advection of material from outside the
Valley could be reasonably excluded.
4
on
UF A
Fig. 1. Map of the Po Valley. The shaded area refers to elevations greater than 500 m. The dots indicate some of the main cities in the Valley; the triangle indicates the sampling point S. Pietro Capofiume (SPC). This sample would thus represent the chemical composition of the local aerosol (of both natural and anthropogenic origin), and it is, in a first instance, assumed that the present data could be roughly consistent for the whole eastern part of the Po Valley. The knowledge of the composition of the locally produced particulate matter, related to different seasonal situations and agricultural activities, is the first step in the evaluation of transportation and transformation of the aerosol.
EXPERIMENTAL PART The measurements were carried out at ground level, with an high volume sampler. The sampling time was between 12 and 24 hours, at a constant rate of 46 SCFM. In addition to the synoptic data, provided by the Air Force Meteorological Service, continuous measurements were performed of local temperature and humidity, both at ground level and at a height of 50 m, whereas wind speed and direction were measured at a height of 12 m.
363 The samples were collected during two distinct periods in 1981. Period A, late summer (25 August - 1 September). This period was subsequent to a precipitation; under a synoptic situation of weak baric gradients near the ground the mean wind speed was 1.5 m/sec and the prevailing wind direction was west, southwest (70% of the cases). The period was characterized by vertical stability between the ground and 50 m and by strong temperature inversions during the night; the temperature ranged between a maximum mean value of 25 OC at noon and a minimum of 12 'C just before sunrise. The humidity was higher than 60% most of the time. Period B, fall (13
-
16 November). The samples were taken at the end of a stable
weather period just before a perturbation. The mean wind speed was 1.0 m/sec in the first part and 2.5 m/sec in the last part of this period. The prevailing wind direction was west, north-west (90% of the cases). There were also strong nighttime inversions and vertical stability situation. The temperature ranged between a mean maximum of 12 "C at 2.00 p.m. and a minimum value of -2 "C at 2.00 a.m.. The humidity was very low during a few central hours of the day (less than 4 0 % ) and near saturation most of the time: in one case there were a few hours of fog. The sampled glass fiber filters, after weighing, were divided into three parts. The first part was treated with water for one hour, in an ultrasonic tank, in order to extract the soluble part of the particulate. After filtration, the concentration + + 2+ + 2of Na , K , Ca , NH o f colorimetric methods 4' SO ,3-NO3 was determined by means 2+ and AAS (ref. 2 ) . C1 and PO were always absent, Mg concentration was negligible. 4 The second part of the filter was extracted in a Soxhlet apparatus, for 8 hours, with ether, in order to determine the ether soluble organic part (ref. 3 ) . No data are at present available on the composition of organic ether extractable fraction of the aerosol.
In the third part of the filter the total concentration of Fe, Mn and Pb was determined by AAS, after acid attack.
RESULTS AND DISCUSSION
Total suspended particulate matter Five samples were collected in period A, and four were collected in period B. The total suspended particulate matter concentration, as a function of time is presented in Fig. 2. The total suspended particulate matter concentration was increasing during period A, subsequent to a precipitation, and almost constant (after
a strong decrease in sample B2) in period B .
364
0
24
48
72 time
96 h
144
120
168
F i g . 2 . T o t a l suspended p a r t i c u l a t e m a t t e r f o r t h e d i f f e r e n t samplings. Samples A r e f e r t o t h e f i r s t p e r i o d , samples B t o t h e second; time z e r o i s considered t h e beginning of every p e r i o d . The f i g u r e shows t h a t , d u r i n g t h e s e p e r i o d s of atmospheric s t a b i l i t y , t h e t o t a l a e r o s o l load, i n t h i s r u r a l area, i s considerably high. Water s o l u b l e f r a c c i o n The p e r c e n t a g e of water s o l u b l e m a t e r i a l of t h e samples i s given i n t a b l e 1 TABLE 1 Water s o l u b l e f r a c t i o n of t h e samples Sample
A1
A2
A3
A4
A5
B1
B2
B3
B4
Z of s o l u b l e m a t e r i a l
68
71
46
49
ne
75
64
52
ne
ne = n o t e v a l u a t e d The s o l u b l e f r a c t i o n i s v a r i a b l e i n t h e d i f f e r e n t samples, b u t i t i s , on average, n o t a b l y h i g h a s a l s o p o i n t e d o u t by C o r r a d i n i e t a l . i n a p r e v i o u s work on t h e a e r o s o l i n t h e Po Valley ( r e f . 4 ) . The amount of hygroscopic p a r t i c u l a t e p l a y s an important r o l e i n t h e v i s i b i l i t y d e g r a d a t i o n by h a z e , q u i t e a common c o n d i t i o n i n t h i s a r e a . On t h e o t h e r hand, w i n t e r r a d i a t i o n f o g s occur i n t h e Po Valley w i t h a r a t h e r unique frequency and t h i c k n e s s .
365
The chemical composition of the soluble fraction of the aerosol is summarized in table 2 , in wich the mean concentrations are reported relative to both periods A and B. TABLE 2
Chemical composition of the water soluble fraction of the aerosol Constituent
3
Concentration (ug/m ) Period A
Period B
K+
0.7
1.2
+ Na ++
4.1
6.8
Ca
2.9
3.2
Mg++
nm
0.2
NHI
6.9
6.7
14.3
20.7
-
so-4
-
(increasing traces-10.dlf-ing 4 the pe 10 3+ Fe
Mn
++
nm
=
24.0
0.06
0.09
0.04
0.04
not measured
The first set of ions are undoubtedly of soil origin. In fact, there is no sea ++ salt in the samples (Cl absent) and the relatively high concentration of Ca accounts for a typical calcareous soil. The SO- concentration in period B is con4 sistent with the data reported by Corradini et al. (ref. 4 1 , who performed measu-
+
rements during the same period of the year; on the other hand the NH concentration 4 results, in comparison, to be about half. The correctness of the analysis of the water soluble fraction was assessed by both specific conductance and ion exchange methods (ref. 5 ) . A s a matter of fact the ionic composition of the samples was unbalanced, namely the cation equivalents were always in excess with respect to the anions. It can be suggested that carbonates from soil lime are the missing ions in the anion/cation balance. Adjusting the ionic balance with CO- the calculated and measured conductance of the water 3' extract agree within the limit of analytical error.
366 Organic p a r t i c u l a t e The organic content of t h e a e r o s o l can roughly be represented by t h e e t h e r soluble fraction: 3 period A 16.4 pg/m ;
period B 16.1 pg/m
3
.
It i s however necessary t o i n v e s t i g a t e t h e composition of t h e organic f r a c t i o n ,
i n order t o e v a l u a t e t h e sources and chemical processes involved i n i t s formation.
Trace metals Only few t r a c e metals were measured, namely Mn and Fe, both of s o i l o r i g i n , and Pb a s a t r a c e r of v e h i c u l a r p o l l u t i o n . The r e s u l t s a r e reported i n t a b l e 3 . TABLE 3
T o t a l c o n c e n t r a t i o n of t r a c e metals i n t h e samples Element
Fe Mn Pb
3 Concentration (pg/m ) Period A
Period B
0.52 0.04 0.15
0.75 0.06 0.38
Comparing t h e d a t a r e l a t i v e t o t h e t o t a l c o n c e n t r a t i o n of Mn and Fe (both import a n t a s c a t a l y s e r s of SO2 oxidation i n t h e l i q u i d phase) and t h e i r s o l u b l e f r a c t i o n ( t a b l e Z),
i t can be seen t h a t t h e former, although p r e s e n t a s only a t e n t h of the
Fe c o n c e n t r a t i o n , it i s almost completely water s o l u b l e , whereas t h e l a t t e r i s s o l u b l e only t o a small e x t e n t . The p a r t i c u l a t e v e h i c u l a r p o l l u t i o n , evaluated from t h e lead content of t h e samples ( r e f . 6 ) , does not account f o r more than 1 % of t h e t o t a l a e r o s o l .
P r i n c i p a l c o n s t i t u e n t s of t h e a e r o s o l Summarizing t h e r e s u l t s obtained from t h e f i l t e r s a n a l y s i s , it can be shown t h a t t h e r e l e v a n t p a r t of t h e l o c a l a e r o s o l , i n t h i s a r e a of t h e Po Valley, i s c o n s t i t u t e d by water s o l u b l e n i t r a t e and s u l f a t e , and by organic m a t e r i a l , which together account f o r 50-70% by weight of t h e t o t a l p a r t i c u l a t e . While n i t r a t e s and s u l f a t e s a r e u s u a l l y regarded a s secondary products o r i g i n a t e d by atmospheric r e a c t i o n s ( r e f . 7),
organic a e r o s o l s can be o r i g i n a t e d both by r e a c t i v e organic
367 v a p o r s ( n a t u r a l and a n t h r o p o g e n i c ) and by s o i l c o n t r i b u t i o n by f e r t i l i z e r s . The ammonium i s n o t s u f f i c i e n t , on a molar b a s i s , t o c o m p l e t e l y " n e u t r a l i z e " s u l f a t e and n i t r a t e i o n s . T h e r e f o r e o n l y a p a r t of n i t r a t e s and s u l f a t e s e x i s t i n t h e form of ammonium s a l t s ; t h o s e remaining a r e i n t h e form of c a l c i u m and sodium salts.
CONCLUSIONS
The r e s u l t s of t h e p r e s e n t work, a s p r e v i o u s l y o u t l i n e d , a r e o n l y a f i r s t approach t o t h e s t u d y of t h e a e r o s o l i n t h e Po V a l l e y ; t h e s e p r e l i m i n a r y d a t a , however, a l l o w f o r some c o n s i d e r a t i o n s on f u t u r e work: a ) s i z e f r a c t i o n a t e d samplings of t h e p a r t i c u l a t e a p p e a r t o b e u s e f u l , i n o r d e r t o i n v e s t i g a t e t h e s i z e d i s t r i b u t i o n of t h e v a r i o u s chemical compounds; b ) a complete a n a l y s i s of t h e o r g a n i c e x t r a c t from t h e f i l t e r s c o u l d a l l o w f o r t h e i d e n t i f i c a t i o n of t h e s o u r c e s of o r g a n i c compounds and t h e e v a l u a t i o n of t h e atmospheric processes involved i n t h e i r formation; and NO i n t h e atmosphere, d u r i n g t h e a e r o s o l X 2 c o l l e c t i o n , would h e l p t o e x p l a i n t h e c h a r a c t e r i s t i c s of n i t r a t e and s u l f a t e proc ) a c o n t i n u o u s r e c o r d i n g of SO
d u c t i o n under d i f f e r e n t a t m o s p h e r i c c o n d i t i o n s . Moreover, a s t u d y on t h e a e r o s o l c i r c u l a t i o n would o b v i o u s l y c a l l f o r a widespread network of sampling p o i n t s , equipped w i t h m i c r o m e t e o r o l o g i c a l i n s t r u m e n t a t i o n . A t p r e s e n t t h e c o l l e c t i o n of p a r t i c u l a t e i n t h e sampling p o i n t h e r e d e s c r i b e d i s s t i l l c a r r i e d o u t i n o r d e r t o o b t a i n b e t t e r i n f o r m a t i o n s on the l o c a l a e r o s o l ,
a t l e a s t on a y e a r l y b a s i s ; a i r c r a f t samplings a t d i f f e r e n t l e v e l s a r e a l s o under way, i n o r d e r t o measure t h e v e r t i c a l p r o f i l e s of t h e a e r o s o l s .
ACKNOWLEDGEMENTS We a r e i n d e b t e d t o D r . F. Tampieri, D r . F . T r o m b e t t i and P r o f . P. Lanza f o r t h e i r h e l p f u l comments.
REFERENCES 1 F . T a m p i e r i , F. T r o m b e t t i and C .
2 3
4 5
S c a r a n i , Geophys. A s t r o p h y s . F l u i d Dynamics, 17(1981)97-112. J . N . Galloway and G . E . L i k e n s , T e l l u s , 30(1978)71-82. G. K e t s e r i d i s , J . Hahn, R. J a e n i c k e and C . Junge, Atmos. Environ. 10(1976)603-610 C . C o r r a d i n i , M. Dalfiume and B. F a v a l e , J . A e r o s o l S c i . 8(1977)231-236. S t a n d a r d Methods f o r t h e Examination of Water and Wastewater, 1 2 t h edn.,
368
A.P.H.A., New York, 1965, pp. 36-40. 6 G.M. Hidy and P.K. Mueller, in G.M. Hidy, P . K . and J.J. Wesolowski (Eds.), The Character and and Sons, New York, 1980, pp. 17-52. 7 G.M. Hidy and C.S. Burton, in G.M. Hidy, P.K. and J.J. Wesolowski (Eds.), The Character and and Sons, New York, 1980, p p . 385-433.
Mueller, D. Grosjean, B.R. Appel Origin of Smog Aerosols, Wiley Mueller, D. Grosjean, B.R. Appel Origin of Smog Aerosols, Wiley
369
COMPARISON OF REGIONAL AND TEMPORAL TRACE SUBSTANCE DISTRIBUTION I N BULK PRECIPITATION AND ATMOSPHERIC DUST
W. THOMAS L e h r s t u h l fur H y d r o l o g i e d e r U n i v e r s i t a t B a y r e u t h (G.F.R.)
ABSTRACT Mean c o n c e n t r a t i o n v a l u e s o f PAH ( l . l Z - b e n z o p e r y l e n e , anthene),
3.4-benzopyrene,
fluor-
t r a c e m e t a l s (Zn, Pb, Cu, Fe) and y-BHC i n b u l k p r e c i p i t a t i o n and a t -
mospheric p a r t i c u l a t e m a t t e r f r o m 20 sampling s t a t i o n s i n B a v a r i a (G.F.R.)
were
used f o r a m u l t i v a r i a t e r e g i o n a l c l a s s i f i c a t i o n o f a i r p o l l u t i o n s i t e s . For t h i s purpose a c l u s t e r a n a l y s i s w i t h Ward's a l g o r i t h m was chosen. The r e s u l t s o f t h e c l u s t e r a n a l y s i s show a number o f p o l l u t i o n c l a s s e s w i t h d i s t i n c t t r a c e substance p a t t e r n s .
A f u r t h e r c h a r a c t e r i s a t i o n o f these p o l l u t i o n c l a s s e s c o u l d be reached by anal y s i s o f temporal t r a c e substance c o n c e n t r a t i o n s i n t h e atmosphere.
INTRODUCTION F o r t h e r e g i o n a l comparison o f sampling s t a t i o n s r e l a t i v e t o t h e i r atmospheric t r a c e substance c o n t e n t s o f t e n a c l a s s i f i c a t i o n i n t o remote, r u r a l , and urban s i t e s i s used. T h i s k i n d o f c l a s s i f i c a t i o n r e s u l t s f r o m measured p o l l u t i o n l e v e l s a s w e l l as t h e l o c a t i o n o f sampling s t a t i o n s . E s p e c i a l l y when a l a r g e r number o f parameters a r e used f o r f o r m i n g atmospheric p o l l u t i o n types, i t i s n o t easy t o d e c i d e t o w h i c h t y p e a s t a t i o n c a n be a t t a c h e d . T h e r e f o r e t h e r e s u l t s f r o m d i f f e r e n t i n v e s t i g a t i o n s o f t e n a r e n o t d i r e c t l y comp a r a b l e because o t h e r c l a s s i f i c a t i o n c r i t e r i a were used. T a b l e 1 shows a p a r t i a l l i s t w i t h t r a c e substance c o n c e n t r a t i o n v a l u e s from some p o l l u t i o n c l a s s e s . I t can be seen t h a t o n l y t r a c e
metal
- or
PAH-con-
t e n t s were measured a t e v e r y sampling s i t e so t h a t i t i s necessary t o combine t h e d a t a of d i f f e r e n t a u t h o r s t o c l a s s i f y p o l l u t i o n t y p e s . F u r t h e r , r e g i o n a l comparison o f p o l l u t i o n d a t a i s made more d i f f i c u l t when t h e c l a s s i f i c a t i o n i s done r e l a t i v e so s i n g l e o r mean v a l u e s a l o n e w i t h o u t showing t h e temporal d i s t r i b u t i o n p a t t e r n by means o f s t a n d a r d d e v i a t i o n o r o t h e r parameters.
370
TABLE 1 Comparison of some atmospheric t r a c e substance concentrations from d i f f e r e n t sampling s i t e s ( i n ng . m-3)
Sampling s i t e
Trace substance
(Reference)
Zn
remote s i t e s
rural s i t e s urban s i t e s
Pb
Cu
Fe
8.0
1.6 0.3
70 32
(1) 5.0
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(7)
1.7
-
-
0.3-27 0.1-64 33-140 30-150
-
-
0.1-10 3.4-220 6-10 59-310
1.12-benzo- 3.4-benzo- f l u o r perylene pyrene anthene
0.1-2.4 0.1
-
0.3-0.8 2800 213 2800 145-298 499-518 18-25 1231-2467 4.4-10.5 -
-
-
-
0.1-2.4 0.1
-
-
0.1-6.3 0.3 0.8-5.3
-
0.7-1.7 0.8-29.5
The aim of t h i s i n v e s t i g a t i o n i s to present a c l a s s i f i c a t i o n method f o r sampling s t a t i o n s according t o t h e i r t r a c e substance concentrations ( i n t h i s case PAH, t r a c e metals and y-BHC i n bulk p r e c i p i t a t i o n and atmospheric d u s t p a r t i c l e s ) using mu1 t i v a r i a t e c l u s t e r i n g techniques. This kind of a n a l y s i s computes groups ( p o l l u t i o n c l a s s e s ) of sampling s t a t i o n s with similar atmospheric pollution leve l s , taking a l l parameters into consideration.
MATERIAL AND METHODS Sampling s t a t i o n s The l o c a t i o n of the 20 sampling s t a t i o n s i n Bavaria, G.F.R., i s shown in Fig. 1. The s t a t i o n s show a l a r g e regional variance with locations i n t h e northern and e a s t e r n paleozoic highlands (1, 2, 3, 4, 15), i n the meso- and neozoic lowlands (5-14, 16-18), as well as i n t h e Alps (19, 2 0 ) . The surrounding anthropogenic area ranges from woodland (2, 4, 6, 9, 14, 15, 19) and a g r i c u l t u r a l areas (8, 12, 13, 17) t o suburban l o c a t i o n s (1, 3, 5, 7, 16, 18). 2 Each s t a t i o n was equipped with t o t a l i s a t o r s (funnel = 855 cm ) f o r taking bulk p r e c i p i t a t i o n samples ( r e f . 11). Atmospheric p a r t i c u l a t e matter was sampled w i t h low-volume samplers ( r e f . 12) using c e l l u l o s e - n i t r a t e f i l t e r s (0.45 pm). This f i l t e r material was preferred because of low blancs e s p e c i a l l y f o r t r a c e metals. D u r i n g each sampling period 100-150 m 3 of a i r were f i l t e r e d .
371
F i g . 1. Sampling s t a t i o n s f o r b u l k p r e c i p i t a t i o n and atmospheric p a r t i c u l a t e m a t t e r i n B a v a r i a , G.F.R.
1 2 3 4 5 6 7
= Hof = = = =
= =
8 = 9 = 10 =
Hohenberg/Eger Arzberg Oc hsen ko p f /F ic h t e 1ge b . Bayreuth Veldensteiner F o r s t Nuremberg/zoological garden Schwabach-Kammerstein Claffheim Greding
11 12 13 14 15 16 17 18 19 20
= Kelheim
= Manching = Moosburg/Isar = Ebersberger F o r s t = Brotjacklriegel/Bayer.
Wald
= Munich = Grunwald = A1 t e n m a r k t / A l z = Grassau/Chiemsee = Bad R e i c h e n h a l l
Sampling p e r i o d s
A t a l l t h e s t a t i o n s samples of b u l k p r e c i p i t a t i o n and atmospheric p a r t i c l e s were t a k e n c o n t i n u o u s l y f r o m F e b r u a r y t o September 1980 w i t h a l l sample m a t e r i a l s b e i n g t a k e n t o t h e l a b o r a t o r y i n t h e same 3-week p e r i o d s . Mean c o n c e n t r a t i o n v a l ues f o r a l l t r a c e substances c o u l d t h e r e f o r e be computed f r o m t h e d a t a o f 13 sampl i n g p e r i o d s . Chemical a n a l y s i s P r e c i p i t a t i o n samples were t a k e n t o t h e l a b o r a t o r y u s i n g 2 1 g l a s s b o t t l e s
372
( f o r o r g a n i c t r a c e substance a n a l y s i s ) and 250 m l p o l y e t h y l e n e b o t t l e s ( f o r t r a c e metal a n a l y s i s ) .
PAH (1.12-benzoperylene,
3.4-benzopyrene,
f l u o r a n t h e n e ) were determined by
h i g h performance t h i n - l a y e r chromatography ( r e f . 12), y-BHC by gas-1 i q u i d c h r o matography u s i n g c a p i l l a r y columns ( r e f . 11). The a n a l y s i s o f t h e t r a c e m e t a l s Zn, Pb, and Cu was c a r r i e d o u t by a n o d i c - s t r i p p i n g voltammetry; Fe was analysed by AAS ( r e f . 11). F o r t r a c e substance a n a l y s i s o f atmospheric p a r t i c u l a t e m a t t e r t h e f i l t e r s were d i v i d e d i n t o two equal p a r t s . One p a r t was d i g e s t e d w i t h n i t r i c a c i d ( s u p r a pure grade) f o r t r a c e metal analysis, methane f o r PAH-analysis.
t h e o t h e r h a l f was e x t r a c t e d u s i n g d i c h l o r o -
B o t h methods a r e d e s c r i b e d i n d e t a i l i n r e f . 13.
C1 u s t e r a n a l y s i s C l u s t e r a n a l y s i s belongs t o t h e group o f mu1 t i v a r i a t e s t a t i s t i c a l methods and makes i t p o s s i b l e t o group measuring s t a t i o n s r e l a t i v e t o t h e i r d a t a on two o r more v a r i a b l e s , i n o u r case atmospheric p o l l u t a n t s . Grouping o f s t a t i o n s f o l l o w s two c r i t e r i a : 1) t o g e t m i n i m a l d i s t a n c e o f v a l u e s between s t a t i o n s w i t h i n a g r o u p and 2) t o g e t maximal d i s t a n c e o f v a l u e s between t h e groups. The measure used t o group s t a t i o n s i s c a l l e d t h e ' e r r o r i n d e x ' . A c c o r d i n g t o t h e purpose o f t h e i n v e s t i g a t i o n , i t i s i m p o r t a n t t o d e c i d e which e r r o r index i s r e l e v a n t ( r e f . 14). F o r t h i s i n v e s t i g a t i o n t h e e r r o r i n d e x f r o m Ward ( r e f . 1 5 ) w h i c h i s based on t h e a b s o l u t e d i s t a n c e s o f t h e measured v a l u e s ( e q u a t i o n 1) was used t o d e t e r m i n e atmospheric p o l l u t i o n c l a s s e s . n
with n
= number o f measured v a r i a b l e s
= data o f .th-group j J x . =~ d a t a o f k t h - g r o u p .
x.
The c l u s t e r a n a l y s i s was computed w i t h t h e program YGROUP ( r e f . 1 6 ) . To a v o i d mathematical b i a s t h e r e should be no h i g h c o r r e l a t i o n c o e f f i c i a n t s between t h e measured v a r i a b l es.
RESULTS Atmospheric p o l l u t i o n c l a s s e s
-
regional d i s t r i b u t i o n
P r i o r t o t h e c l u s t e r a n a l y s i s a c o r r e l a t i o n a n a l y s i s w i t h mean c o n c e n t r a t i o n v a l u e s o f a l l measured v a r i a b l e s and s t a t i o n s was c a r r i e d o u t . S i g n i f i c a n t c o r r e l a t i o n c o e f f i c i a n t s c o u l d o n l y be f o u n d between t h e t h r e e PAh-substances, each
373
o c c u r i n g i n b u l k p r e c i p i t a t i o n and a t m o s p h e r i c p a r t i c u l a t e m a t t e r . As p o i n t e d o u t b e f o r e , i n t e r c o r r e l a t i o n can i n f l u e n c e r e s u l t s , b u t comparison o f two computed c l u s t e r analyses, one w i t h a l l PAH-substances and one w i t h f l u o r anthene alone, showed t h a t t h e r e s u l t i n g p o l l u t i o n c l a s s e s were i n b o t h cases absolutly identical. Thus t h e r e s u l t s o f t h e p r e s e n t e d c l a s s i f i c a t i o n i n t e g r a t e t h e d a t a o f a l l 15 measured v a r i a b l e s ( T a b l e s 2a and 2b). The f i r s t p o l l u t i o n c l a s s , c o n s i s t i n g o f 8 s t a t i o n s , i s c h a r a c t e r i s e d by t h e l o w e s t mean c o n c e n t r a t i o n v a l u e s o f t r a c e m e t a l s and PAH, i n b o t h p r e c i p i t a t i o n and d u s t . T h i s g r o u p shows p a r t l y e l e v a t e d y-BHC ( L i n d a n e ) v a l u e s which r e s u l t from a g r i c u l t u r a l s t a t i o n s , as t h e c l a s s i n t e g r a t e s them w i t h f o r e s t e d s i t e s . Lower c o n c e n t r a t i o n s , comparable w i t h 'remote s i t e s ' , were n o t found a t t h e measuring stations. TABLE 2a
(x),
Atmospheric p o l l u t i o n c l a s s e s r e s u l t i n g f r o m c l u s t e r - a n a l y s i s - mean v a l u e s m i n i m a l and maximal v a l u e s o f t r a c e substance c o n c e n t r a t i o n s i n p a r t i c u l a t e m a t t e r Class
T r a c e substance
(Sampling s t a t i o n )
I (2,6,12,13,14, 17,19,20)
I 1 (4,15)
I 1 1 (1,3,5,9,11)
I V (8,10,18)
v
Zn
Pb
Cu
Fe
1.12-benzop e r y l ene
135 x m i n 102 x max 208
59 35 73
15 8 26
221 96 384
0.11 0.06 0.16
0.03 0:02 0'.07
0.55 0.30 1.01
57 55 59
23 16 30
199 150 247
0.10 0.10 0.10
0.03 0.03 0.03
0.59 0.38 0.79
107 63 191
30 15 49
361 196 518
0.19 0.16 0.24
0.05 0.02 0.11
0.72 0.44 1.29
151 80 x m i n 109 55 x max 194 115
15 10 18
208 187 224
0.13 0.13 0.14
0.04 0.03 0.04
0.62 0.59 0.66
x 222
116
18
282
0.22
0.20
3.11
x 294
295
45
527
0.17
0.08
1.23
x
x
259 x m i n 245 x max 272
x
243 x m i n 171 x max 329
x
(7)
V I (16) ( a l l v a l u e s i n ng
m
-3
3.4-benzo- f l u o r a n t h e n e pyrene
)
Two measuring s t a t i o n s ( 4 and 15) r e p r e s e n t p o l l u t i o n c l a s s 11. T h i s c l a s s i s d i s t i n g u i s h e d f r o m I because o f e l e v a t e d Z n - c o n c e n t r a t i o n s i n p r e c i p i t a t i o n and p a r t i c u l a t e m a t t e r , and PAH i n p r e c i p i t a t i o n . While P A H - p o l l u t i o n a t t h e s e s t a t i o n s , w h i c h b o t h l i e i n f u l l y f o r e s t e d a r e a s on t h e t o p o f mountain highlands, i s caused by a n e a r b y i n c i n e r a t o r a t s t a t i o n 4 (a T V - s t a t i o n ) ,
f o r t h e Zn-con-
374 t e n t a n o r i g i n f r o m s u b s o i l ( g r a n i t i c r o c k s a t b o t h s t a t i o n s ) can b e suspected. E s p e c i a l l y t h e Zn-content i n p r e c i p i t a t i o n t h a t i n t e g r a t e c o a r s e r d u s t p a r t i c l e s as d r y d e p o s i t s a r e e x t r a o r d i n a r i l y h i g h f o r a f o r e s t s t a t i o n . TABLE 2b
(x),
Atmospheric p o l l u t i o n c l a s s e s r e s u l t i n g from c l u s t e r - a n a l y s i s - mean v a l u e s m i n i m a l and maximal v a l u e s o f t r a c e substance c o n c e n t r a t i o n s i n b u l k p r e c i p i t a t i o n Class
T r a c e substance
(Sampling s t a t i o n )
I (2,6,12,13,14
Zn
-
Pb
Cu
Fe 1.12-benzoperylene
3.4-benzopyrene
f l u o r - y-HCH anthene
8.2 6.6 9.8
4.4 3.3 5.3
21.4 19.6 15.3 6.9 35.3 28.5
71 47 94
12.6 8.3 16.8
6.9 3.5 10.3
55.3 17.5 28.6 12.8 82.0 22.1
x min x max
64 19 10 178 41 13 4 82 86 25 17 356
14.7 9.8 21.5
5.9 3.O 8.0
39.2 11.5 17.7 6.9 64.4 16.1
x x min x max
54 22 49 17 63 25
4 101 3 98 6 103
13.4 12.3 15.1
9.6 7.5 12.9
32.2 27.4 25.0 19.6 38.4 34.8
v (7)
x
94 19
8 134
20.4
14.3
58.9 21.4
V I (16)
x
59 41 17 250
9.3
5.2
17,19,20)
x x rnin x max
39 13 28 9 59 16
x 132
I 1 (4,15)
13
x min 123 8 x max 140 17
x
I11 (1,3,5,9,11)
I V (8,10,18)
( t r a c e m e t a l s i n 1-19
*
6 84 3 61 9 151 6 4 8
1 - I ; o r g a n i c t r a c e substances i n ng
.
51.7
7.7
1-I)
T h i s a s p e c t o f geogenic p o l l u t i o n i s a l s o c o n f i r m e d by comparison w i t h p o l l u t i o n c l a s s 111. T h i s c l a s s c o n s i s t s o f measuring s t a t i o n s w i t h a n t h r o p o g e n i c i n f l u e n c e o f a t m o s p h e r i c t r a c e substance c o n c e n t r a t i o n s . The s t a t i o n s a r e s i t u a t e d n e x t t o small c i t i e s and c o u l d be c a l l e d suburban s i t e s . Here i n a d d i t i o n t o Zn a l s o t h e Pb, Cu, and Fe l e v e l s , as w e l l as PAH i n d u s t , a r e e l e v a t e d . P e s t i c i d e values a r e lower than i n a g r i c u l t u r a l areas. Class I V shows s i m i l a r t r a c e m e t a l and PAH d a t a a s 111 b u t i s separated from i t because o f h i g h e r y-BHC c o n c e n t r a t i o n s . How atmospheric t r a n s p o r t f r o m nearby a g r i c u l t u r a l areas o r p o l l u t i o n f r o m chemical i n d u s t r y , s t o r a g e e t c . causes t h e s e p e s t i c i d e l e v e l s should be t h e s u b j e c t o f f u r t h e r i n v e s t i g a t i o n s . The ' c l a s s e s ' V and V I each c o n s i s t o f one measuring s t a t i o n o n l y . W h i l e s t a t i o n 7 ( c l a s s V ) was l o c a t e d i n t h e z o o l o g i c a l garden o f t h e c i t y of Nuremberg, t h a t i s a suburban s i t e , s t a t i o n 16 ( c l a s s V I ) i s a downtown s t a t i o n . F o r c l a s s V i n d u s t r i a l i n f l u e n c e t o a t m o s p h e r i c q u a l i t y i s dominant whereas f o r V I t h e d i -
r e c t exposure t o c a r t r a f f i c i s c h a r a c t e r i s t i c .
375
A d i s c r i m i n a t i o n between t h e s e two urban p o l l u t i o n c l a s s e s was made by t h e PAH values (Table 2). The r e s u l t s o f c l u s t e r a n a l y s i s show t h a t t h e l a r g e number o f p o s s i b l e combin a t i o n s o f t r a c e substance v a r i a b l e s t o f o r m p o l l u t i o n c l a s s e s can be d e t e c t e d and grouped by t h i s method. I n a d d i t i o n t o a d i f f e r e n t i a t i o n between t r a c e metal and PAH p o l l u t i o n o f s i m i l a r s t a t i o n s , a c h a r a c t e r i s a t i o n by comparing s i n g l e substances o f t h e s e two groups o f p o l l u t a n t s i s a l s o p o s s i b l e . Furthermore, a p e s t i c i d e v a r i a b l e h e l p s t o d e t e c t t h e i n f l u e n c e o f a g r i c u l t u r e on a i r q u a l i t y . The c o m b i n a t i o n o f numerous i n f l u e n c i n g f a c t o r s t o a i r q u a l i t y cause r e l a t i v e l y h i g h v a r i a t i o n s o f data w i t h i n a c l u s t e r e d c l a s s . Temporal t r a c e substance d i s t r i b u t i o n o f some atmospheric p o l l u t i o n c l a s s e s Temporal v a r i a t i o n s of a t m o s p h e r i c t r a c e substance c o n c e n t r a t i o n s r e s u l t from a number o f v a r i a b l e s . I n a d d i t i o n t o emission-dependent parameters, as f o r examp l e i s known f o r PAH by h e a t i n g i n w i n t e r , m e t e o r o l o g i c a l parameters a l s o i n f l u ence i m m i s s i o n v a l u e s . F o r p o l l u t a n t v a l u e s i n b u l k p r e c i p i t a t i o n t h e amount o f r a i n , r a i n f a l l i n t e n s i t y and d r o p l e t s i z e s a r e i n f l u e n c i n g parameters. The d i s t r i b u t i o n between wet- and d r y f a l l i s i n a d d i t i o n t o o t h e r v a r i a b l e s dependent on t h e degree o f a n t h r o p o g e n i c p o l l u t i o n ( r e f . 11).
-10
--
50-
12
30-
10-
1
'
F
'
M
'
A
' M ' 1980
J
'
J
'
A
'
S
F i g . 2. Temporal d i s t r i b u t i o n o f Pb i n b u l k p r e c i p i t a t i o n ( i n ug measuring s t a t i o n s 7, 10 and 1 2 .
.
1-l)
-
One method o f d e t e c t i n g t h e temporal s t r u c t u r e o f data i s t h e comparison o f mean v a l u e s
(x) and s t a n d a r d d e v i a t i o n s
( s ) o f a d a t a s e t . Here o n l y few aspects
o f s - a n a l y s i s can be p o i n t e d o u t . Lowest s - v a l u e s o f t r a c e m e t a l s c o u l d be computed f o r Pb, i n b o t h p r e c i p i t a t i o n and p a r t i c u l a t e m a t t e r . A p a r t f r o m s t a t i o n s 10 and 18 w h i c h belong t o p o l l u t i o n c l a s s I V , t h e r e l a t i o n s between
1.80 and 2.83 (10 = 1.07; 18
x and s f o r
Pb ( b u l k p r e c i p i t a t i o n ) l i e between
1.25). As F i g . 2 i n d i c a t e s , t h e Pb d i s t r i b u t i o n from Jan. t o Sept. 1980 showed r e l a t i v e l y equal v a l u e s a t t h e s t a t i o n s 7 and 12. As mentioned b e f o r e , t h e Pb l e v e l s o f s t a t i o n 10 show h i g h e r temporal v a r i a t i o n . =
376 A t t h i s highway-near s t a t i o n t h e amount o f d r y d e p o s i t i o n and so t h e i n f l u e n c e
o f t h e amount o f p r e c i p i t a t i o n a r e h i g h e r .
1
-4
-...........1-.._ :
4 .O
I
V
I
\
\ I'\
2.0
..........
' 0
1980
F i g . 3. Tern o r a l d i s t r i b u t i o n o f f l u o r a n t h e n e i n atmospheric p a r t i c u l a t e m a t t e r ( i n ng * m-g) - measuring s t a t i o n s 4, 7 and 19.
- 1
-
- 8
50-
_J
'
F
'
M
'
A
' M J 1980
J
A
s
F i g . 4. Temporal d i s t r i b u t i o n o f y-BHC i n b u l k p r e c i p i t a t i o n ( i n ng
.
1-I)
Another t y p e o f temporal d i s t r i b u t i o n i s shown by f l u o r a n t h e n e ( F i g . 3 ) and t h e c h l o r i n a t e d p e s t i c i d e y-BHC ( F i g . 4). Here t h e e m i s s i o n - p e r i o d o c i t y dominates a t m o s p h e r i c t r a c e substance c o n c e n t r a t i o n s . PAH show h i g h e s t l e v e l s i n w i n t e r and
311 e a r l y s p r i n g caused by h e a t i n g a c t i v i t i e s w i t h d i f f e r e n t a b s o l u t e v a l u e s due t o t h e above-discussed p o l l u t i o n c l a s s e s . I n comparison, y-BHC l e v e l s i n t h e atmosphere a r e h i g h e s t i n s p r i n g and summer because o f a p p l i c a t i o n i n a g r i c u l t u r e and h i g h e r m o b i l i s a t i o n r a t e s f r o m s o i l and v e g e t a t i o n r e l a t i v e t o atmospheric temperatures. W h i l e PAH and y-BHC a t n e a r l y a l l s t a t i o n s show s i m i l a r temporal d i s t r i b u t i o n p a t t e r n s w i t h d i f f e r e n t absol U t e c o n c e n t r a t i o n v a l u e s r e l a t i v e t o t h e degree o f atmospheric p o l l u t i o n , f o r Zn ( F i g . 5) one can r e c o g n i z e d i f f e r e n t p o l l u t i o n t y pes. C i t y - n e a r s t a t i o n s (1 and 7 ) show h i g h e s t Z n - l e v e l s i n b u l k p r e c i p i t a t i o n i n l a t e w i n t e r which decrease r a p i d l y t o r e a c h minimum v a l u e s i n summer. I n c o n t r a s t a t s t a t i o n 4 ( p o l l u t i o n c l a s s 11) s i n g l e h i g h Zn-values were measured a t a l l seasons. A t t h i s s t a t i o n where h i g h Z n - p o l l u t i o n f r o m s u b s o i l was suggested t o cause atmospheric Zn-levels,
t h e h i g h e r w i n t e r c o n c e n t r a t i o n s f o r t h i s metal a r e super-
posed by m e t e o r o l o g i c a l parameters i n f l u e n c i n g s o i l p a r t i c l e u p t a k e i n t o t h e a t mos p h e r e .
F i g . 5. Temporal d i s t r i b u t i o n o f Zn i n b u l k p r e c i p i t a t i o n ( i n Fig measuring s t a t i o n s 1, 4 and 7
.
1-l)
-
CONCL US I O N S C l u s t e r a n a l y s i s has been shown t o be a u s e f u l method f o r a m u l t i v a r i a t e and o b j e c t i v e c l a s s i f i c a t i o n o f measuring s t a t i o n s due t o mean atmospheric t r a c e subs t a n c e c o n c e n t r a t i o n s . The r e s u l t s i n d i c a t e t h a t 20 s t a t i o n s can be grouped i n t o
6 p o l l u t i o n c l a s s e s . I n a d d i t i o n t o c l a s s e s w i t h d i f f e r e n t k i n d s o f anthropogenic emissions, Zn p o l l u t i o n f r o m s u b s o i l as w e l l as e l e v a t e d p e s t i c i d e l e v e l s a t r u r a l l o c a t i o n s c o u l d b e found.
318
As mean v a l u e s i n t e g r a t e r a t h e r l a r g e v a r i a t i o n s i n p o l l u t i o n d a t a w i t h i n t h e t i m e o f i n v e s t i g a t i o n , a c l a s s i f i c a t i o n s h o u l d a1 so i n c l u d e temporal t r a c e substance d i s t r i b u t i o n . Next t o p o l l u t a n t s w i t h n e a r l y e q u a l l y d i s t r i b u t e d values (as Pb f r o m t r a f f i c ) o t h e r s w i t h d i s t i n c t temporal d i s t r i b u t i o n s were found. PAH's show maximal a t m o s p h e r i c c o n c e n t r a t i o n s d u r i n g w i n t e r , y-BHC c o n t e n t i n b u l k p r e c i p i t a t i o n i n c r e a s e s d u r i n g summer. Thus, b o t h r e g i o n a l and temporal d i s t r i b u t i o n o f atmospheric t r a c e p o l l u t a n t s a r e necessary f o r a d i f f e r e n t i a t e d and complete c h a r a c t e r i s a t i o n o f measuring s t a tions.
ACKNOWLEDGMENTS The a u t h o r would l i k e t o t h a n k t h e ' B a y e r i s c h e s Landesamt f u r Umweltschutz' f o r f i n a n c i a l s u p p o r t o f t h e i n v e s t i g a t i o n , Miss M. Tyzenhouse f o r r e v i e w i n g and Mrs. E. Misch f o r t y p i n g t h e paper.
REFERENCES
1 A. Semb, D e p o s i t i o n o f t r a c e elements f r o m t h e atmosphere i n Norway, SNSF-proj e c t , FR 13/78, Oslo, 1978, p. 28. 2 N. Z. Heidam, Atmospheric Environment, 15 (1981) 1421-1427. 3 A. B j o r s e t h and G. Lunde, Atmospheric Environment, 13 (1979) 45-53. 4 J . M. Daisey, R. J . McCaffrey and R. A. G a l l a g h e r , Atmospheric Environment, 15 (1981) 1353-1363. 5 R. A. Duce, G. L . Hoffmann and W. H. Z o l l e r , Science, 187 (1975) 59-61. 6 P. A. Cawse, A s u r v e y o f atmospheric t r a c e elements i n t h e UK, AERE 7669, Her M a j e s t y ' s S t a t i o n e r y O f f . , London, 1974, p. 95. 7 G. Broddin, W. C a u t r e e l s and K. van Cauwenberqhe, Atmospheric Environment, 14 (1980) 895-910. 8 K. A. Rahn, Study o f n a t i o n a l a i r p o l l u t i o n by combustion. Progress R e p o r t I n s t . N u c l . Wet., Gent, 1972, D . 312. 9 H. A. Trindade, W. C. P f e i f f e r ; H. Condres and C . L. C o s t a - R i b e i r o , E n v i r o n mental Science and Technology, 15 (1981) 84-89. 10 M. Katz, T. Sahuma and A . Ho, Environmental Science and Technology, 12 (1978) 909-915. 11 W. Thomas, Deutsche Gewasserkundl i c h e M i t t e i l u n g e n , 25 (1981) 120-129. 12 R. Herrmann, Catena, 5 (1978) 165-175. 13 W . Thomas, B a y r e u t h e r G e o w i s s e n s c h a f t l i c h e A r b e i t e n , 3 (1981) p. 144. 14 W. Symader and W. Thomas, Catena, 5 (1978) 131-144. 15 J . H. Ward, J . Am. S t a t i s t . Ass., 58 (1963) 236-244. 16 D. Veldman, F o r t r a n Programming f o r t h e B e h a v i o r a l Sciences. H o l t , R i n e h a r t & Winston, New York, 1967, p. 406.
379
THE CHFMISTRY OF PRECIPITATION IN RELATION TO PRECIPITATION TYPE
J. A. WAF?.l3UMON
Amspheric Sciences Center, Desert Research Institute, Reno, Nevada (U.S.A.)
ABSTRACT
Collections have been made of several types of wet deposition and of aerosols in various particle size ranges. The chemical canposition of the precipitation changes significantly from one precipitation type to another. The forms of deposition, diffusionally-gram ice for exqle, canpared with accretionally-grown ice, appear to be important factors controlling the concentrations and ratios of the several elements which have k e n measured. The aerosol samples show significant changes in chemical carpsition with particle size, consistent with other observers' results. It is hypothesized that these changes in aerosol chemistry and those of the wet deposition are related, and that t h i s information, canbined with the theoretically supported processes of nucleation, Brownian capture, phoretic processes and impaction, provide a better insight to the physical processes involved in the r m v a l of chemical impurities fran the atmosphere. ~
~~~
~
SCIENTIFIC BACKGRWND The chemical carpsition of precipitation as it relates to precipitation grayth processes has not been extensively investigated. Takahashi (1963) has studied the romposition of snow in relation to ice crystal habit. His results showed that the elemental content of snow flakes varied with the crystal habit. The concentrations of Na, C1 and MI4 for example, were l m s t in colmar crystals, whereas the concentration of MI4 was greatest in denckitic types. Additionally, he found that the C1 and Na contents were greatest in graupel. His investigations also discussed possible origins of the chemical impurities by looking at elemental ratios and comparing them with crustal and sea water values. The interpretation of his results was ccmplicated by apparent contamination fran industrial pollutants. The implication of his results, however, appears to be that the predaninant ice g r m t h mechanism (diffusion and accretion) which vary in degree for the different crystal structures, are in saw way related to the differences in chemical capsition.
380
W e n t studies of dew chemistry also show that the deposition of chemical substances from the atmosphere by this fonn of precipitation is different f r m that due to rain at the sam location. BrimblecQnbe and Todd (1977) have provided results of measurments of the ptassium and sodium camposition of dew collected in England. They found that the potassium-sodium ratios are higher than those normally found in rain by a factor of 20, using values fran Junge (1963). This apparent potassium enrichment in dew has also been observed by Yaalon and Ganor (1968), who investigated the chemical canpsition of dew and dry fallout in Jerusalem, Israel. T h e enrichment factor for potassium was about three. Yaalon and Ganor also showed that the dew was richer in Ca, HC03 and SO4 than rainfall at the sane site. It was also found that the relative proportions of the salts in the dew showed. very little variation, and although the origins of the higher calcium and bicarbonate were able to be identified, the mechanisms by which dew can have greater enrichments than precipitation (when referenced to sodium) were not understood. It has been suggested that the fine dust particles may have acted as condensation nuclei for dew formation resulting in a disproportionally higher ccmpnent of these substances in the dew compared with rainfall. Since the chemical composition of wet depsition and that of the amspheric aerosol should be related, it is of interest to review briefly, the results of recent invetigations of aerosols of various origins and collected by cascade impaction methods so that chemical canpsition can be studied as a function of particle size. Duce, Woodcock and Wyers (1967) studied variations of ion ratios with size amng particles in ocean air in Hawaii. The I/C1 ratio increased with decrease in particle size. The Br/C1 ratio s h d a minimm at intenrediate particle sizes. They also found that these ratios were significantly greater than sea water values and that most of the iodine mass was on particles around 0.6 p m radius, whereas the chlorine and bromine masses maximized on particles of radii between 1.25 and 2.5pm. Barker and Zeitlin (1972) in Hawaii found that the aerosols were enriched in most metals relative to sodim, and to the metal to scdim ratio found i n sea water. Generally, enrichments were greatest on the snaller aerosols approaching Aitken size (
381
the other hand, was found to be enriched relative t o Fe w i t h increasing particle
s i z e , from a c r u s t a l value i n the m l l e s t particles t o about six times this value for particles >4pm diameter. Page, Elseewi and Straughan (1979) obtained r e s u l t s of a similar nature f o r the chemical camposition of fly-ash f r m a coal-fired power plant.
In a study of
the trace element ccenposition of the ash a s a function of particle s i z e they found t h a t the p r o p r t i o n s of P, Zn, I%,
Cu, N i , Cd, Pb, Na and S increased with de-
crease i n particle size, w h i l e Ca, Fe, Mg t o 141-1 remained relatively constant. Their r e s u l t s showed t h a t particulates emitted into the atmosphere by coal-fired power stations can be considerably enriched i n trace elements.
Once a i r b r n e ,
they are available t o be inmrporated into wet deposition. OBSERVATION PRGRW
AND IWI'HCKX~IKY
The Ross Ice Shelf, Antarctica, was chosen as the region f o r this study of atmospheric chemical processes because it is a large, f l a t expanse of i c e and snow approximately 800 Km i n width and extending up t o 800 Km f r m the i c e front t o the Transantarctic kBuntains along i t s southern bundary. void of orcgraphic features.
I t is essentially de-
Cyclonic storm systems originating i n the southern
oceans often m e i n across the Shelf, penetrating t o the muntains and beyond. These storms and other large scale a i r mass m t i o n s , carry aerosols, particulates and hydrmetexs inland, enabling them to precipitate onto the Shelf. The snowpack was intensively sampled i n p i t s of approximately 2 m depth a t three sites, 70 Km t o 470 Km frm the ocean. Workers used p l a s t i c coated paper cleanr m coveralls while sampling t o ensure that samples =re free of contamination. Sheets of f i n e mesh nylon net w e used t o c o l l e c t samples of f a l l i n g snow during storms, ard diffusionally-grown ice and hoar during periods of supercooled fog a t the same sites.
The nylon nets on which the precipitation w a s collected,
were cleaned by a series of leachings i n analytical grade solutions of n i t r i c acid, This treatToent was followed by several rinses and leachings in doublyd i s t i l l e d , deionized w a t e r . All the e q u i p e n t was then sealed i n polyethylene bags f o r transport t o the Antarctic.
All sample preparation and analyses were conducted in the c l e a n r m of the Elemental analyses were made using flameless atanic absorption techniques. Repeated blanks and matrix standards were used to establ i s h reference levels. Excellent consistency and statistical control over results
Desert Research Institute.
o c m e d by first conducting five analyses on each of four standards over the range of experimental values anticipated, follawed by the samples, the analyses The spectrophotaneter was
of which were repeated five times f o r each e l m t .
cycled through drying and analysis rrodes i n an exact t h i n g sequence to ensure reproducibility. !the analytical procedures produced concentration values with
382
uncertainties of 5 - 10%. Aerosol filter samples were analyzed by proton-excitation methods using a 2 &V van der Graaf generator. RESULTS Aerosol Chemical Catimsition This elemental enrichment has also k e n observed in aerosols by Warburton in the pristine environment of Antarctica. The chemistry of natural aerosols collected on Nuclepore filters of different pore sizes ( 0 . 2 u m and 0.08 pm) was investigated. Fe, Br and MI showed increased concentrations on the mailer particles whereas S, K, Ca, Sr and Pb showed decreases (see Table 1).
TABLE 1 Natural Aeroso1sI Antarctica ~ e a nass
El-t
0 . 2 u m Pore Size 2096
S K
ca
120 75
Fe Br Sr Pb
45 4 11
Mn
0
19
ng 0.08pm Pore Size 1586 56 42 66 70
2 6 3
'!"nesemeasurerents were made on the Ross Ice Shelf (latitude 8OoS) , where during the same period, fresh ice-phase precipitation was occurring from time to time. Three different types of ice-phase precipitation were collected; supercooled fog depositicm, fresh snadall, and the snow and firn constituting the upper layers acmlated snawpack. Eslhanced Dxiclnnent of Heavy bktals i n Fresh IcePhase Precipitation We define enriclrment by the factor: (X/R) Atnospheric (X/R) Sea where R = Na for marine elerrwts, and R = Fe for crustal elements; X(sea) is the mass of elerrent X in (sub-surface) sea water and X(atm0spheric) is the mass of the smne el-t in the sample d u m (rain,snow, aerosol, etc.); similar definitions hold for the crustal c v i s o n s . Table 2 shows the results obtained from the accumulated firn, and Table 3 the results of analyses of the fog deposition and the fresh snowfall. Firstly, in E
=
Table 3 w note in lines 3 and 4 that the E(Ag) values for fog deposition at C-7 and Bc sites are four and ten times greater respectively than those for the firn samples at the same locations, given in Table 2. This is not fully explained by changes in sodium.
383
TABLE 2 Silver :ar,ganeseand Iron Wichments in Accumulated Snowpack Location and Distance from open Sea Sea Water Crustal C-7 (70 Km) RIC (220 Ial) Bc (470 Km) F-9 (600 Km)
Mean
OBSERVED CYLCUTATIOIG da ppb ~ c ppb i Mn ppb
lo7 2.6~10 162 117 78 32
2x10-1 80 8~10-~ 1.5~101: 1.5xlg 8x10-
OBSERVED RATIOS Location and Distance Aq/Na Mn/N a Fe/Na from Open Sea Sea Water Mean crustal C-7 (70 Km) RTC (220 Km) Bc (470 Km) F-9 (600 Km)
Fe ppb
26 5.3~10-~ 7 10 2.8xlOI; 1.1~10-~ 3.2~10-~ 1.2~10-~ 4.1x10-3 1.7~10-~ 6.1~10 2.3xlO
CX'NLATED ENRICF h ) E(Mn) E ( Fe)
~
-
-
620
Secondly, the set of fresh snowfall samples collected at the J-9 site also show enhanced enrichrent factors ccnpared with those for firn samples collected at Ice Shelf sites at similar distances from the ice front. This is true for silver, mganese and iron when the enrichent factors are calculated on the basis of sea water cunparisons. The mean E(Mn) factor is 200 times the value in firn; the mean E(Ag) factor is 20 t h s the firn values; and the mean E(Fe) factor is 350 times greater than the firn value at the same location. The enhanced E(Ag) values are still evident when crustal camparisons are made. Thirdly, the concentrations of elements vary considerably as a function of sampling time during the precipitation event. The Na, Fe and Mn concentrations change i n similar ways from sample to sample, whereas the silver (Ag) concentrations tend to be more uniform throughout the precipitation period, suggesting that the origins of these e l m t s may be different or that they are distributed differently in the 1 absphere. We also note that the Mn/Fe ratio in the fresh snow samples remains fairly constant at h u t the crustal ratio, supporting the crustal origin. Hence it is appropriate to distinguish between origin and enrichment when discussing the chemical canpsition of t h i s fresh precipitation. As regards enri-t as a function of precipitation characteristics, an earlier paper by Warburton and Linkletter (1978) shailed that enrichment factors for potassium and magnesium of 2.4 and 1.2 respectively were found in the supercooled f q deposition. E'urther to t h i s , T a b l e 3 shows that silver i s enriched four to ten times in the fog depsition above the firn values, and an average of 20 times in the fresh snowfall h v e the firn values at similar locations. Same of this enhancement (a factor of 3.4) is accounted for by reduced mean sodim content
384 TABE 3
Bhanced Enrichment in Fresh ice-Phase Precipitation - Observed Concentrations Location and Distance frwi ice front and collection times Sea Water Mean Crustal Ice Shelf C-7 Site 70 Km (Fog Deposition) Ice Shelf Bc Site 470 Km (Fog Deposition) Ice Shelf J-9 Site 450 Km Fresh Snawfall Sample Collection Oh 8hl5m 8h45m 9h15m 9h45m 10h15m 10h45m llh15m llh45m 12h15m 12h50m
1 2 3 4 5 6 7 8 9 10 11 12
-
M ppb
Aq ppb
Fe ppb
2.6~10-~ :06
lo7
2x10-l 80
7 5.3~10
237
5.2~10-~
47
9.~ x I O - ~
Times
No.
lvlean
OBSERVED CONCENTRATIONS
Na ppb
13Nh
Values:
50 55 42 32 18 10 8
6 12 11 11 21 23
7 l ~ 1 0 - ~ 8.3~10-~ 85 55 5.4 17 39 5.0 8 36 0.4 7 13 6.0 3 19 4.0 8 9 5.0 3 10 4.5 3 5 12.5 3 25 2.2 29 12 3.0 16 12 4.2 7 2 5 ~ 1 0 - ~ 5.4~10-1 16
(23 ppb) With which the silver is canpared, but the remaining factor of six enhancenent is not able to be explained in this manner. The apparent enhancements in IQI and Fe in fresh precipitation under l o w wind velocity conditions are also not accounted for by changes in sodium, the man E ( M ) and E(Fe) values being sore 60 to 100 times greater respectively in the fresh precipitation, than in the f i m at similar locations. CONCLUSIONS We have seen that the ratios of the concentrations of chemical constituents of three different types of fresh wet deposition, one in the water phase, the other bm in the ice phase, have shown significant departures from the values of these ratios in rainfall or total accumulated snowpack. Based upon these limited studies it appears that the various forms of water depsition to the surface m k e differing contributions to the total chemical ramval process. The reasons for this are not well understood although there is good reason to believe that they may relate to aerosol particle size both from the viewpoint of varying chenical canpsition and varying efficiencies of the aerosol removal processes (nucleation, Brownian diffusion, phoretic effects and impaction).
385
TABLE 3 (continued)
Eslhanced Enriclnnent in Fresh Ice-Phase Precipitation - Calculated Enrichents cAUXLAmD E N R I C 2 " T S
Referenced to Na (sea water) mation and Distance frcm ice front and collection t h s
E(M)
E(A3)
E(F5)
xi04
x l ~
xl~
-
Sea Water Mean Crustal
Ice Shelf C-7 Site 70 Km (Fog Deposition) Ice Shelf Bc Site 470 Km (Fog Deposition) Ice Shelf J-9 Site 450 Km Fresh Snowfall Sample No.
1 2 3 4 5 6 7
a
9 10 11 12 Wan
Values:
Collection T h s Oh 8~5m 8h45m 9hl5m 9h45m 10hl5m 10h45m llh15m llh45m 12N5m 12h5Cm 13hlOm
-
Referenced to Fe Crustal E(Md
E(Ag)
x10
-
1 10
7 5 5 5 3
9 5
a
2 11 5 3 6
7 5 6 7 17 20 31 38 52 10 14 10 20
17 3
2 2 2 8 4 5 3
26 15 3 7
0.5 1.5 2.5 2.5
2.0 1.0 1.5 1.5 1.0 0.5 0.5 1.0 1.3
7 20 40 40 130 33 113 100 280 7 13 40 70
The diffusionally-grown s ~ l water l droplets of dew and supercooled fog depsition, both rely on Brownian capture and phoretic forces for particle capture which would tend to favor the smaller aerosol particles sizes and which, in general, exhibit chemical enriclnnent. Rainfall or accreted snowfall (graupel) muld terd to favor larger particle capture by nucleation and impaction by the larger raindrops and ice particles. This muld tend to de-emphasize the enrichm t manifestation in the wet depsition. We have not demonstrated an aerosolprecipitation chemistry relationship, merely suggested it, and further m r k is needed to help resolve these phenanenological questions. AcmmLEEm
This mrk was supported by the U.S. National Science Foundation under a grant frcm the Division of Polar Programs, &ich is gratefully acknowledged.
386
w-ims 1 R.A. Duce, A.H. Woodcock and J.L. Moyers, Variations of ion r a t i o s with s i z e amng particles i n tropical ocean a i r , Tellus, 1 9 (1967), 369-379. 2 T . Takahashi, Chemical corip?osition of snow relation t o crystal shapes, J. Met. SOC. Japan, 14, (1963) 6, 327. 3 P. Brimbleccknbe aid I . Y . '~wcl,Sdium and p t a s s i m i n dew. Atmos. h v i r o n . , 11 (1977) 649-650. 4 C.E. Junge, Air chemistry and radioactivity. Academic Press, New York (1963). 5 D.H. Yaalon and E. Gmor, Chemical composition of dew and dry fallout in Jerusalem, Israel. Nature, 217 (1968) , 1139-1140. 6 D.R. Barker and H. Zeitlin, Wtal-ion concentrations i n sea-surface microlayer and s i z e separated a m s p h e r i c aerosol samples i n Hawaii, J. Geophys. Res., 77, (1972), 27, 5076-5088. 7 D.L. Meinert and J.W. Winchester, Chemical relationships in North Atlantic aerosol, J. Geophys. Res. 82, (19771, 12, 1778-1782. 8 A.L. Page, A.E. Elseewi and I. Straughan, Physical and chemical properties of fly-ash from coal-fired power plants w i t h reference t o environmental impacts, Residue Reviews, 71, (1979) ,83-120. 9 J.A. Warburton and G.O. Linkletter, Atanspheric processes and the chemistry of snow on t h e Ross Ice Shelf, Antarctica. J. Glaciol. 20, (1978),149-162.
387
DAILY MEASUREMENTS OF ATMOSPHERIC SULFATES I N PARIS
Y . LE MOULLEC, F. COVIAUX, and B . FESTY
L a b o r a t o i r e d'HygiPne d e l a V i l l e de P a r i s , P a r i s (France)
ABSTRACT S u l f a t e c o n c e n t r a t i o n measurements were made from J u n e 1977 through March 1981 a t a sampling s i t e l o c a t e d i n t h e c e n t e r of P a r i s . The f i f t i e t h p e r c e n t i l e f o r s u l f a t e w a s a p p r o x i m a t e l y lOyg/m
3 and t h e mean v a l u e 12 yg/m 3
.
R e l a t i o n s h i p s of s u l f a t e s w i t h m e t e o r o l o g i c a l and chemical q u a n t i t i e s were s t u d i e d . C o r r e l a t i o n s w i t h SO2 and f i n e suspended p a r t i c u l a t e s were h i g h e r i n w i n t e r (October t o March i n c l u s i v e ) t h a n i n summer ( A p r i l t o September i n c l u s i v e ) . The h i g h e s t c o n c e n t r a t i o n s were o b s e r v e d e s p e c i a l l y in w i n t e r , when wind speed was l e s s t h a n 2 m / s a n d / o r f o g o r i m p o r t a n t morning haze o c c u r e d , b u t f o r t h e s e days SO /SO
4
2
r a t i o s were n o t h i g h e r t h a n f o r t h e o t h e r d a y s . On t h e o t h e r hand, i n
summer SO / S O 2 r a t i o s were abnormally s t r o n g f o r p r e f e r e n t i a l wind d i r e c t i o n s .
4
Measurements a t s u b u r b s sampling s i t e s proved
t h a t the s u l f a t e concentrations
were a t t h e same time v e r y homogeneous i n t h e P a r i s m e t r o p o l i t a n a e r o s o l ; a s t a t i o n exposed t o d i e s e l e x h a u s t d i d n o t show s i g n i f i c a n t i n c r e a s e i n s u l f a t e s .
INTRODUCTION
S u l f a t e s c o n s t i t u t e a l a r g e f r a c t i o n of f i n e a t m o s p h e r i c p a r t i c u l a t e m a t t e r (Ref. 1 ) ;
t h e y have been i m p l i c a t e d as l u n g i r r i t a n t s and i n a number of a d v e r s e
e c o l o g i c a l e f f e c t s . Among t h e more prominent a d v e r s e e f f e c t s a r e reduced v i s i b i l i t y (Ref. 2) and f r e s h w a t e r a c i d i f i c a t i o n . Atmospheric s u l f a t e s may b e a r e s u l t of l o c a l e m i s s i o n s , f o r m a t i o n i n t h e atmosphere by a v a r i e t y of homogeneous and h e t e r o g e n e o u s mechanisms, and t r a n s p o r t a t i o n from d i s t a n t SO2 s o u r c e s . The r e l a t i o n s h i p of SO4 t o S O 2 , and t o o t h e r m e t e o r o l o g i c a l and p o l l u t i o n v a r i a b l e s , was s t u d i e d i n v a r i o u s u r b a n a r e a s (Ref. 3-4-5)
; t h i s r e p o r t summarizes t h e f i n d i n g s
of a r e c e n t s t u d y of a t m o s p h e r i c w a t e r s o l u b l e s u l f a t e s i n t h e P a r i s a r e a .
SAMPLING SITE, SULFATE COLLECTION AND ANALYTICAL METHOD The p r i n c i p a l sampling s i t e was on t h e r o o f of t h e l a b o r a t o r y which was l o c a t e d i n t h e c e n t e r of P a r i s n e a r St-Jacques Tower. From June 1977 through March 1981
388 daily sulfate samples were collected on a 50 mm cellulose acetate filter (Sartorius
SM 11105, poke size 0.65 um) placed in a plastic filter holder. Air sampling was achieved with an Austen F65 DE pump ; mean 24 h sample volumes were of the order 3 of 3 5 m /day. The extraction procedure consisted of immersion in 8 ml of bidistilled water at 70°C for 2 h, and mecanic and ultrasonic vibrating for respectively 5 and 15 w . In the filtrate, passed through a cellulose nitrate filter (pore size 0.01 um), sulfates were determinated by the classical BaS04 turbidimetric procedure on an autoanalyser. In the same site, routine measurements were made of SO concentrations (by 2 (by spectrometry after sampling on impregnated filters), 2 black smoke (by reflectometry) and fine suspended particulates (by @-particle attestrong acidity method), NO
nuation method). All of these samples were changed at 3 p.m. each day. Meteorological data were supplied by the Montsouris observatory (for solar radiation) and by the St-Jacques Tower meteorological station for the other variables (precipitation, visibility, relative humidity, air temperature, wind speed and wind direction). It is important to note that wind direction in the center of Paris can be influenced by the urban constructions and by the Seine river.
RESULTS
Sulfate results From analyses of 1300 filters collected over these four years the monthly sulfate averages were given in table 1 . TABLE 1 3 Monthly average concentrations of sulfates in vg/m
April May June July August September October November December January February March
1977-78
1978-79
-
16.0 20.0
12.5 10.6 9.6 10.2 8.1 7.5 13.6 9.7 14.2 9.7
-
13.4 10.5 12.0 17.7 19.7 12.9 17.0 22.2 8.0
1979-80 11.5 I 1 .o 16.8
-
8.3
15.0 13.6 9.6 8.2 17.0 13.3 17.3
1980-81 15.2 14.8
6.6 10.4 7.4 8.5 7.5
11.4 9.7 9.8
16.6 5.0
The four-year average was 1 2 . 3 ug/m3. As with a number of atmospheric pollutants, sulfate concentrations had approximately a lognormal distribution. The median values 3 were slightly higher in summer than in winter (10.7 ug/m3 and 10.1 ug/m ) and in
389 c o n t r a s t t h e mean v a l u e s were s l i g h t l y h i g h e r i n w i n t e r t h a n i n summer (12.5 pg/m 3 3 and 12.1 ug/m ) . It appeared t h a t summer v a l u e s ( A p r i l t o September i n c l u s i v e ) were more grouped t h a t t h e w i n t e r v a l u e s (October t o March i n c l u s i v e ) ; t h e h i g h e s t 3 on 2.20.79 and 58 ug/m3 on 2.25.81 I .
v a l u e s o c c u r e d d u r i n g t h i s p e r i o d (68 ug/m
For b o t h s e a s o n s i t was n o t e d t h a t 90 % of t h e c o n c e n t r a t i o n s were c o n t a i n e d 3
between 3 and 30 ug/m
.
S u l f a t e c o n c e n t r a t i o n s f o r e a c h day of
t h e week d u r i n g t h e f o u r y e a r s were
averaged and showed a c y c l e which i n d i c a t e d t h e i n f l u e n c e o f t h e a n t h r o p o g e n i c a c t i v i t y . The l o w e s t v a l u e s were grouped d u r i n g t h e week erd (10.6 ug/m3 on Sunday, 3 1 1 . 7 ug/m on S a t u r d a y and 13.6 ug/m3 on Tuesday and Wednesday).
Relationshius with the other o o l l u t a n t s ~~
Table 1 showed t h a t a h i g h monthly a v e r a g e c o u l d o c c u r i n t h e summer ; t h e s e a s o n a l c y c l e was l e s s r e g u l a r t h a n t h e s t r o n g a c i d i t y c y c l e , however t h e corr e l a t i o n SO -SO remained s i g n i f i c a n t f o r p c O . 0 1 . 4 2 TABLE 2
C o r r e l a t i o n c o e f f i c i e n t s , r , f o r 843 d a t a (1977-1981) s04 1
s04 s02
s02
0.59 1
BS(a)
FSP(b)
0.62 0.80
0.81 0.73 0.78
1
BS
FSP
1
N02 0.29 0.34 0.47 0.33 1
NO2
( a ) Black Smoke
(b) F i n e Suspended P a r t i c u l a t e s
The b e s t c o r r e l a t i o n between t h e s e p o l l u t a n t s was observed between s u l f a t e s and f i n e suspended p a r t i c u l a t e s (FSP) e s t i m a t e d by t h e @ - p a r t i c l e a t t e n u a t i o n method ( t a b l e 2 ) . It i s n o t i c e d t h a t t h e s e two p o l l u t a n t s a r e n o t independant because s u l f a t e s c o n s t i t u t e
about 20 Z of t h e suspended p a r t i c u l a t e s weight.
F r a c t i o n s s e l e c t i v e s t u d y of t h e r e s u l t s , a c c o r d i n g t o month, s e a s o n o r t o d i f f e r e n t m e t e o r o l o g i c a l c o n d i t i o n s , showed t h a t t h i s c o r r e l a t i o n w a s s t i l l v e r y s i g n i f i c a n t . It was b e s t i n w i n t e r (r=0.86 ; n=455) t h a n i n summer (r=0.75 ; n=363). The f i g u r e 1 i l l u s t r a t e s t h i s r e s u l t d u r i n g t h e w i n t e r 1977-1978
390
30
2o
It
0
Fig. 1 . Correlation between daily concentrations in water soluble sulfates and daily concentrations in fine suspended particulates during winter 1 9 7 7 - 1 9 7 8 .
Relationships with the meteorological variables Sulfates, SO2, fine suspended particulates and meteorological variables were regressed with SO4 as dependent variable ; the formulation which yielded the most statistically significant ( r = 0 . 8 2 ) results was : [SO4] = 7.27 + 0 . 2 0
[ I FSP
- 0.096
3
Z HR
with SO and FSP i n ug/m 4
In comparison with SO /FSP correlation (r=0.81) i t appears that influence of 4
relative humidity was negligible. In the same way, statistical analysis showed that wind speed, air temperature, precipitation
and solar radiation could not explain
the variations of the daily sulfate concentrations. However table 3 proves that the highest concentrations were observed when low wind speed, and/or, fog occured without rain.
TABLE 3 3
Highest sulfate values (ug/m ) for each tropic year and associated meteorological factors. Date
udm ~
2.18.78 2.20.79 3.16.80 2.25.81
SO4
FSP 3
udm
3
wind dir. speed m/ s
visibility at 10 a.m
T°C
HR %
m
rain m
m
~~
192 218 96
-
36.0 68.0 45.0 58.5
ENE ENE NNE NNE
4.1 1.2 2.9 1.8
2500 1500 2800 3500
-1.5 1.6 4.0 1.8
78 83 82 65
0
0 0 0
391 Wind direction (divided into 16 directional sectors) was also a meteorological factor of great interest. Table 4 shorn
the average concentrations of S O 2 and
SO
for each wind direction during the four years. For these two pollutants the 4 lowest concentration appeared when the wind was blowing from the west (these
winds were predominant over Paris), the highest values occured when the wind blowed from the south-east (only in winter) or from the north-east. In winter S04/S0 ratios were about the same for all directions ; but in summer higher 2 ratios from the north-east were observed ; this might indicate sulfate transportation
from this direction. TABLE 4
3 SO and S O concentrations (in ug/m ) and SO /SO ratios averaged over all wind 4 2 4 2 directions during the four years.
WIND DIR.
SUMMER n
NNE NE ENE
29 39 38
E
13
ESE SE SSE
14 7 24 26 15 13 16 47 45 54 45 34
S
ssw sw wsw W WNW NW NNW N
WINTER
So4
SO2
S04/S02
n
SO4
SO2
15.4 15.2 17.5 12.0 12.2 12.5 11.9 11.8 7.4 7.5 7.8 7.3 8.7
33 48 56 47 52 64 62 61 25 20 20 23 34 51 60 59
0.46 0.32 0.32 0.26 0.24 0.19
15 27 54 22 21 22 78 46 49 50 45 53 53 42 28 17
22.7 18.5 20.8 16.1 15.0 18.8 16.1
147 132 142 129
10.1
14.0 14.2
0.19
0.19 0.30 0.38 0.39 0.32 0.26 0.20 0.23 0.24
11.0
9.0 6.1 5.7 7.0 7.0 8.3 9.2 14.7
S04/SQ2
110
212 172 115 92 64 60 79 92 102 106 129
0.15 0. I4
0.15 0.12 0.14 0.09 0.09 0.10 0.10 0.10
0.09 0.09 0.08 0.08 0.09 0.11 -
(n) number of occurrences
Results of the other samoline sites ~
~
From July 1978 through June 1979 sulfates were also collected on cellulose Whatman filter (W 4 0 ) at two other sites located in suburbs diametrically opposed : Blanc Mesnil 13 km north-east of Paris and Issy les Moulineaux 7 km westsouth-west of the center of Paris. This study did not indicate any important variations for daily sulfate concentrations in relation to the wind direction ; an influence from primary local sources of sulfates in Paris or in the near suburb 3 seemed therefore to be exclude. The mean values were slightly lower ( 1 2 pg/m ) than those noted in the center of Paris ( 1 4 pg/m3 during the same period). The correlation coefficients between the three sampling sites were higher than r=0.90 which showed that for sulEates evolutions were very closely linked.
392 Relationships with urban traffic Studies (Ref. 6) showed that diesel fuels contained sulfur which was mainly converted to sulfur dioxide upon combustion
; a portion of the sulfur was con-
verted to sulfate. It appeared of great interest to measure the concentration of sulfate in a sampling site located Porte d'Aubervilliers (about 5 km of the center of Paris), 5 m above ground level, in front of an exit of the periferical avenue, very used by trucks. From July 1978 through December 1979 aerosols and gas were collected to measure the sulfate (on cellulose Whatman W 40), the SO
the black smoke and
concentrations in the same conditions as in the center of Paris.
2
Table 5 shows
a significant increase of black smoke and also of SO2, a part
of which had to be attributed to the diesel exhaust
. In contrast sulfate concen-
trations did not increase. The comparative evolution of the daily concentrations between the four sampling stations still showed very high correlations ( 0 . 8 0 c r < 0 . 9 0 ; n= 139). These results seem
indicate that, near a great avenue, contribution of diesel
is negligible
in regard to the urban concentration in sulfates. TABLE 5 3
Six-month averages of SO4, SO2 and black smoke (BS) in the two sites (ug/m ) Sites Center of Paris Porte d'Aubervilliers
s04 14.1 14.2
s02
91 136
BS 35 124
CONCLUSION Results from these four years showed that sulfate concentrations could be correctly described by the fine suspended particulates concentrations estimated by @-particle attenuation method. Sulfate concentrations were in the same time
very
uniform in the Paris metropolitan aerosol. On the other hand, with the statistical method used in this study, variations of SO /SO ratios could not be explained by the meteorological data collected. 4
2
Transportation of primary sulfates was possible but not prwed. REFERENCES 1 J . Wagman, R.E. Lee and C.J. Axt, Atmos. Environ., I (1967) 479-489. 2 B.P. Leaderer, J. Air Pollut. Control Assoc., 28 (1978) 321-327. 3 M.J. Cooke and R.A. Wadden, J . Air Pollut. Control Assoc., 31 (1981) 1197-1199. 4 R.E. Meyers and E.N. Ziegler, Environ. Sci. Technol., 1 2 (1978) 302-308. 5 R.C. Henry and G.M. Hidy, Atmos. Environ., 13 (1979) 1581-1596. 6 T . J . Truex, W.R. Pierson and D.E. McKee, Environ. Sci. Technol., 14 (1980) 1118-1121. 7 A.P. Altshuller, Environ. Sci. Technol., 14 (1980) 1337-1348.
393
SIZE, SHAPE AND ELEMENTAL ASSOCIATIONS IN AN URBAN AEROSOL. R. HAMILTON and G. ADIE Urban Pollution Research Centre, Middlesex Polytechnic, London NW4 4 B T .
A BS TR A CT An analysis of 1 2 0 individual airborne particles for size, shape and elemental composition has provided information on elemental occurrence patterns not available trom published cascade impactor studies. Particles ot size greater than 3 k m were analysed by scanning electron microscopy and energy-dispersive X-ray spectrometry. Zinc and copper exhi bit similar occurrence patterns but lead i s appreciably different.
The levels of iron and titanium
i n the bulk aerosol are strongly attected by the existence of a small number of highly enriched particles.
The use of particle morphology i s discussed and the distinctive appearance
ot some zinc particulates i s described.
INTRODUCTION Investigations of the size spectrum of an urban aerosol (rets. 1,2,3)have shown that the volume distribution i s bimodal with a dominant mode formed by particulates ot diameter greater than 2 lLm, commonly known as coarse particles. These particles are inhalable (ref. 4) and have non-health ettects although these effects are generally considered to be less important with coarse particles than with tine particles (ret. 5). A knowledge of the composition of these particles i s important, both to assess their effects and also as a technique for pollution source identification.
In addition, airborne particulates contribute
t o and are enriched by street surtace sediments.
These sediments are known to be important
carriers of heavy metal pollution and also the main contributor to suspended solids i n urban runoff (ref. 6). The particulate parameters most trequently monitored are size and elemental composition. By sampling with a cascade impactor, the aerosol i s size fractionated and each fraction subjected t o multielemental analysis (refs. 7,8,9,10,11,12).
An alternative approach
i s to characterise the aerosol by summing the properties o t the individual particulates, using a scanning electron microscope (SEMI equipped with an energy-dispersive X-ray
394
spectrometer (EDS); a technique which has been used i n air pollution studies to examine pollution from specific sources (ret. 13,14).
This approach ofters three main advantages;
it has superior size resolution to that attainable from a cascade impactor, i t allows an
examination of elemental enrichment on individual particulates and it permits an analysis of particulate morphology.
The disadvantages are that it i s time-consuming and it cannot be
used for particles with diameter much less than 1,,,m because spreading of the electron beam i n the sample results i n a pear-shaped volume with effective diameter of the order ot
1pm from which the X-rays originate. EXPERIMENTAL PROCEDURE Samples were collected at the Middlesex Polytechnic site at Hendon, NW London. There are no major industrial pollution sources i n the immediate vacinity, though one motorway, the M1, and two main trunk roads, the A 1 and A 4 1 , are each 0.5 km away. were collected on 0.8 pm Nucleopore filter paper. with a graphite aerosol.
The samples
Before sampling, the tilters were coated
This procedure permitted the use of a thin second carbon coating
so details of surface texture were not obscured while at the same time charging was avoided.
The samples were located i n an
IS1
Super Ill SEM and a field of view of some 50 particulates
selected. A l l particulates of diameter greater than 3 pm were photographed and their emitted X-rays collected and analysed by Links EDS, using an automatic ZAF correction so that the sulphur K and lead M peaks could be separated.
In this way, each particulate
was recorded as an SEM photograph which could be analysed for size and morphology and a printout of percentage elemental composition.
A total of 120 particulates was analysed.
RESULTS
E I emental Composition To obtain reliable quantitative results from X-ray emission spectrometry, it i s highly desirable to ensure the sample surface i s highly polished and the standard has similar composition to the sample.
This i s not possible with samples of airborne particulates so
our values of elemental concentration are semi-quantitative. concerned with trends rather than absolute values. Reported elemental concentrations are given i n Table 1.
However, this study i s
395
TABLE 1 Elemental concentration (cg 9 - l or "/I of an urban aerosol Location Reference S Si Ca Al Fe Mg
Na K CI Ti Pb Zn
Toronto
Milwaukee
St. Louis
Nagoya
(7)
(9)
(3)
5.3 2.1 2.2 1.4 0.65 0.87 1.20 0.17 0.97 0.32
4.8 3.1 3.0 2.2 0.70 1.2
(8,10,11 averaged) 6.0 1.2 6.9 13 3.1 6.6 2.7 5 2.1 3.7
CU
Total suspended 100 particulates (approximate) (TSP),g m-3 aerosol fraction analysed. total
0.90 0.12 0.05 41
total
0.95 0.43 0.70 1.50 .13 .02
1.4
1.3 .55 1.1 .82 .ll
I02 60
total
4.1
73
coarse
coarse
Size dependence of elemental composition The bulk volume distribution showed the size dependence expected of coarse particulates. The distribution i s shown i n fig. 1.
-
Volume (arbi tary units)
-
-
7
4
Particle diameter (,m) Fig.1.
Volume distribution of total aerosol.
10
396
The size dependence of relative concentration was investigated for each element. A typical result i s shown i n fig.2,
1.5
1
n
Concentration (cg g-' )
I
i n which both mean value and standard deviation
IS
shown.
I
0.51
I
I
I
4 7 10 Fig. 2. Variation of concentration (cg.g-l) with particle size. Fig.2 shows the results for
Particle diameter (,m)
Al, but a l l other elements behaved simularly. The spread of
concentrations for each size i s such that the elemental concentration i n cg.g-'
i s eftectively
size independent. Accordingly, the elemental concentration i n ng m-3 w i l l show the same form ot size dependence as the bulk aerosol.
This explains the distribution reported tor
Si and A l i n the Nagoya aerosol (ref.31, for A l and Pb i n the Toronto aerosol (ref.7) and for Fe, A l and Ca i n the Birmingham aerosol (ret.12).
One result from the Birmingham
study i s clearly inconsistent with our general observation.
CI
That study showed a marked
peak i n the region 3-7 p,m. We can only speculate that this was due t o a localised
pollution source. Parti cu Iate enrichment The cascade impactor studies referred to earlier can only measure the amount of each element present i n each size range. It cannot describe if that amount i s produced by a small number of highly enriched particulates or by a large number of low enrichment particulates.
This information i s readily available from SEM/EDS analysis, and the
results are summarised i n Table 2.
397
Detected at level
'0-0.170 0.'1-0.3% 0.3-170 1.0-3.070 3.0-10.070 10-3070 30-100./6
d[Jet:d S Si Ca Al Fe M9 Na K
CI Ti Pb Zn cu
0 1 6 0 1 9 0 3 4 56 63 20 1
0 12 38 4 22 17 0 20 40 38 7 42 4
3 44 24 48 35 47 6 51 51 3 9 32 89
41 20 12 33 26 24 30 23 5 2 13 6 6
41 15 8 11
8 2 5 2 0 0
6 0 0
15 8 10 3 3 1
a
1 0 1 2
0 0
2 2 2 1 3 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0
A s discussed earlier, these results are only semi-quantitative, but the trends show two points of particular interest.
The observed levels of some minor elements are high because of the occurrence of a small number of particles with anomolously high elemental concentrations.
This i s particularly
true of iron, observed at a concentration of 6070in one particulate, fig. 3(a), presumably a speck of rust.
This also occurred with titanium, tig. 3(b), i n this case the particulate
presumably originating trom road surface markings. With the toxic heavy metals Pb, Zn and Cu, different occurrence patterns were observed. Copper occurred on virtually every particle, Zn on most and Pb on only 37%. We observed that on the 44 Pb-bearing particles, 13 did not contain zinc and this accounted for 6270 of the zinc-free particles. We can offer no explanation for this eftect. However, the occurrence patterns are consistent with quoted mass median equivalent diameters (MMED), (ref.15).
Both Zn and Cu have a MMED of 1.3 *m, Pb has a MMED of 0.6 pm.
Particulate Morphology The use of morphology as a characteristic property, complementary to size and composition yet, like these other properties, capable of providing information on particle source i s a well-established technique i n sedimentology (ref. 16) but one which has found little application i n air pollution studies because airborne particulates are at least an order of magnitude smaller than most sediment grains. It has, however, been used to distinguish soil particles from flyash (ref.17) and also to distinguish the particle emissions from oil-fired from coal-fired power plants (ref. 18).
398
F i g . 3 a . A particulate containing 6076 F e .
F i g . 3b. A particulate containing 976 Ti.
399
Many airborne particles are an aggregate of individual particles and accordingly, our first step in quantifying morphology was a classification of 'degree of aggregation', as summarised i n Table 3.
Table 3 . Degree of aggregation i n an urban aerosol
% of particles (i)
3
single particle
(ii) one main particle with up t o 5 much smaller particles
23
(iii) one main particle with more than 5 much smaller particles
32
(iv)
two particles of approximately equal size
5
(v)
3 - 5 particles of approximately equal size
6
(vi)
aggregate of more than 5 submicron particulates
31
Sedimentologists normally describe the morphology of single particles by the concept of 'form' (ref.191, this description generally being provided by three more or less independent properties.
In descending order of magnitude, these are sphericity, roundness or angularity,
and surface texture. The smaller airborne particulates are normally characterised by descriptive terms.
The recommended terms for shape (ref. 20) are acicular, angular, crystalline,
dendritic, fibrous, granular, irregular, nodular and spherical.
Surface textures are
conveniently described (ref. 2 11 as cemented, cracked, cratered, dimpled, orange peel, porous, reticuled, smooth and valleyed.
The two particles i n figure 3 have very similar
shapes but the difterent surface textures reflect the different sources and confirms the separation by elemental composition.
The elemental composition of flyash and soil
particulates i s similar, and surface texture provides the main method for distinguishing these sources (ref. 17). The McCrone group have described the sphericity of a particle by classifying it according to i t s degree of elongation and/or flattening.
Using this system i n conjunction with a
roundness index, airborne non-aggregate particulates, i .e. those belonging to classes i-v of Table 3, can be classified by morphology and the results are given in Table 4.
400
A"
elongated, flattened flattened but not elongated
1
el ongated but not flattened not elongated not f I attened
17 0
770
170
11%
25%
170
6% 11%
I angu Iar Published photomicrographs (refs.21,22)
I
4%
16% II su brounded
11% Ill rounded
show mineral particulates normally occur in
groups Al, All, BI and BII. The large percentage of particulates i n our study which f e l l i n these groups i s yet another indication that soil and the road surface are the main contributors to coarse airborne particles. Metals which normally occur at trace levels are occasionally found highly enriched on individual particulates and i n these circumstances they frequently exhibit a characteristic morphology.
This has been reported for lead (refs. 23,241 and vanadium (ref. 15). An
aerosol sample collected by us above the roof of St.Bartholomews Medical College i n London EC1 contained zinc i n a very different occurrence pattern t o that shown in Table 2. In this case, Z n was observed at high concentrations i n irregular rods of 1pm diameter and
4 0 pm length (fig.4).
The difference in size, shape and elemental associations between
these zinc-enriched rods and the zinc-bearing particles i n our Hendon study i s a clear indication of the magnitude of the alterations i n zinc particle chemistry which occurs i n the air and on the road surface.
401
FUTURE APPLICATIONS OF SEM/EDS STUDIES. In addition to examining the particulate emissions from specific pollution sources, SEM/EDS offers a valuable technique for the study of situations with anomalous particulate pollution levels.
The values of size, shape and elemental composition for the urban aerosol
i n our study are consistent with the expected sources of airborne particles, namely soil, road surface wear and transport sources such as vehicle emissions and tyre wear. emissions contribute a small amount.
Industrial
Situations producing large spatial and temporal
variations of heavy metal levels i n aerosols and i n street dust have been reported (ret.25) but they are, as yet, poorly understood. Characterisation of the heavy metal bearing particles i n these situations, using SEM/EDS, provides invaluable information for identifying the pollution source. This technique w i l l prove increasingly popular with the development ot digital and computerised instrumentation for processing SEM and EDS data to give automatic particle analysis (rets. 26,271.
---- -
Fig.4.
Irregular rods highly enriched i n Zn.
402
REFERENCES 1 K. Willeke and K.T. Whitby, J. Air Pollut. Control Ass., 25(1975) 529-534. 2 A. Meszaros, Atmospheric Environment, II (1977) 1075-1081. 3 $. Kadowaki, Envir. Sci. Technol, 13(1979) 1130-1133. 4 R.E. Walter, Atmospheric Environment, 14(1980) 1115-1118. 5 J.P. Lodge, A.P. Waggoner, D. T. Klodt and C.N. Crain, Atmospheric Environment,
15(1981) 431-482. 6 J.B. Ellis, R. Hamilton and A.H. Roberts, Proc. Second Int. Conf. on Urban Storm Drainage, Illinois, June 15-19, 1981, Vol II, 184-190. 7 J.J. Paciga and R.E. Jervis, Envir. Sci. Technol, lO(1976) 1 1 2 4 - 1 1 2 8 . 8 J.W. Winchester, R.J. Ferek, D.R. Lawson, J.O. Pilotte, M.H. Thiemens and L.E. Wangen, Wat. A i r Soil Pollut., 12(1979) 431-440. 9 T.R. Stolzenburq and A.W. Andren, Wat. A i r Soil Pollut., 15(1981) 263-270. 1 0 D.J. Alpert and P.K. Hopke, Atmospheric Environment, 1 5 1 9 8 1 ) 675-681. 11 B.H. O’Connor and J.M. Jaklevic, Atmospheric Environment, 1 5 1 9 8 1 ) 1681-1690. 1 2 J.D. Butler and P. Crossley, Sci. Total Envir., 19(1981) 179-194. 13 M. Grasserbauer, i n H. Malissa (Ed.), Analysis of Airborne Particles by Physical Methods, CRC Press, Florida, 1978, p p . 1 2 5 - 1 7 8 . 1 4 S.J. Palenik, i n W.C. McCrone, J.G. Delly and S.J. Palenik (Eds.), The Particle Atlas, Edition Two, Ann Arbor, Michigan, 1979, Vol. V, pp. 1362-1368. 1 5 J.D. Butler, Air Pollution Chemistry, Academic Press, London, 1979. 16 P.A. Bull, Prog. Phys. Geog., 5(1981) 368-397. 1 7 M. Pitchford, R.G. Flocchini, R.G. Draftz, T.A. Cahill, L.L. Ashbaugh and R.A. Eldred, Atmospheric Environment, 15, (19811, 321-335. 1 8 R.J. Cheng, V.A. Mohnen, T.T. Shen, M. Current and J.B. Hudson, J.Air Pollut. Control Ass., 26(1976) 787-790. 1 9 W.B. Whalley, Jour. Sed. Petrology, 42(1972) 961-965. 2 0 British Standards Institution, BS 2955, 1958. 21 W. C. McCrone and J.G. Delly (Eds.), The Particle Atlas, Edition Two (6 volumes), Ann Arbor, Michigan, 1973-1979. 22 E.M. Hamilton and W.D. Jarvis, The Identification of Atmospheric Dust by Use of the Microscope, CEGB, London (1963). 23 W.R. Boggess and B.G. Wixson (Eds.), Lead i n the Environment, Castle House Publications (1979). 24 J.S.C. McKee, C. Lapointe and M.L.H. Wise, J. Environ. Sci. Health, A 1 5 ( 1 9 8 0 ) 1-23. 2 5 M.J. Duggan, Clean Air, l l ( 1 9 8 1 ) 87-89. 26 J. Pawley, P. Statham and T. Menzel, Proc. 1 0 t h Ann. SEM Symp., Chicago, Ill., (19771, 297-306. 27 P.J. Statham and M. Jones, Scanning, 3(1980) 168-171.
403
SUBJECT Page Aerosol ,charged 337 diluter for 273 elemental associations393 2 83 nitrate organi c 227 particles 3 13 rural 36 1 shape 39 3 size 39 3 spherical 337 sulfate 2 83 urban 39 3 Agra, India 31 Alexandria, Egypt 55 Archeological monuments 31 Bacteri a1 i n f e c t i o n 185 Boreal f o r e s t 205 Boundary 1 ayer 119 Cadmi um mi c r o p a r t i cles 185 Carbon monoxide 189 337 Charge, equi 1 i bri um bipolar 337 Chemical r e a c t i o n s , o p t i c a l observation o f 259 Chemistry 379 Coal mine ( I n d i a ) 47 Deposition , 1 ocal 91 regional s c a l e 91 s i t e and season spe ci f i c 91 17 Desert Di spe rsi on coe f f i ci en t 107 Dust, a t m s p h e r i c 369 respi rable 47 Egypt 55 Emission control 71 height 163 Fibers, mineral 2 39 i n the environment 239 i n biological material239 Flue gas, c o l l e c t i o n o f 197 Fluoride deposition 205 Forecast of pollution peaks 103 o f pollution potential 97 Gas c o l l e c t i o n ( f l u e ) 197 Genetic f a c t o r s 189 Ice nucleation 251 I mp a c t p r e d i c t i on 141 India 31,47 Instruments,comparison of 265 Jerusalem 11 L as e r t rans mi ssomet e r 32 1 Leaf l i t t e r 205 Lead aerosols,mnodisperse 251 61 Legi s 1a t i on Los Angeles Basin 345
INDEX Mercury 55 Minimum f l u x 337 12 7 Models, numerical water analogue 197 Mortal i t y 175 Mouse 185 Multicell scrubber 215 Network 41 Nitrogen oxides 71 Nord-Pas-de-Cal ais,France 103 Ozone 11 continental background 17 Paris , France 387 P a r t i c u l a t e matter 265 Peaks (pol 1 ution) 103 Phosphorous plant 205 P1 anetary albedo 313 P1 ants 55 P1 ume 283 Pollution potential 97 Po Valley, I t a l y 361 Precipitation 369,379 Releases , accidental 127 Rural 17 Saudi Arabia 41 55 Soi 1s Sulfates 387 S us cepti bl i t y ,t o i n fe c t i on 185 Thermal analysis 227 Thundersstormymodeling of 151 Trace substance d i s t r i b u t ion 369 Transmissometer, l a s e r 321 Transport, local 91 long range 163 meso-scale 163 of reactive pollutants 163 regional scale 91 s i t e and season speci f i c 91 Tropical area 3 Tunis, Tunisia 61 Turbulence profi l e s 119 Turbulent d i f f u s i v i t y 107 Urban 61 U. S . ,Southwest Desert 17 Viral i n f e c t i o n 185 Visi bi 1 i t y 305 Visual range 293 Water analogue model 197 Wind, calm 107
404
AUTHOR
Page 39 3 Adie, G. 3 Africano, M. Allard, D.W. 345 Allender, P . 103 127 Baker, A.J. 2 15 Belin, C . 163 Benarie, M. 345 Blumenthal, D . L . 185 Boudsne , C. 185 Bouley, G. 345 Bregman, L . D . B u i l t j e s , P.J.H. 107 61 Carbonnel l e , J . 215 Ch arpenti e r , J .C . 185 Chaumard, C . 127 Cooper, R.E. 387 Coviaux, F. 337 Davisson, S. 103 Dejardin, J.M. 189 Dema r i a-Pes ce , V. -H . 2 15 Djerid, S. 345 Eatough , D.J. 17,22 7,32 1 E l l i s , E.C. 55 Elsokkary, I . H . 71 Eschenroeder, A. 17,293,345 Farber, R.J. 387 Festy, B. 36 1 Fuzzi, S. 337 Gentry, J.W. 185 Girard, F. 30 5 Gorraiz, J . 189 Gourlet, V . Grassl, H . 313 273 Guichard, J.-C. 91 H a l b r i t t e r , G. 39 3 Hamilton, R. 34 5 Hansen, L.D. 25 1 Heiklen, J.P. 17,293,321 Hoffer, T.E. 30 5 Horvath, H. 345 Huang, A.A. 2 83 Hudischewskyj, Belle A. 41 Husain, T . 305 Johnson, C . 97 Joukoff, A. 345 Keifer, W.S. 41 Khan, S.M.
INDEX Kocchiu, H . L . Kretzschmar, J.G. Laurent, A. Lee, P.H. Le Moullec, Y . L i p f e r t , F.M. L i u , C.S. Mahoney, R.L. Malet, L.M. Mariotti, M. Msrat, P . Milhe, M. Moyer, J.W. Neumann-Hauf, G. Newiger, M. Novakov, T . Orsi, G. Pauwels, J.B. de Pena, Rosa G. Pepper, D.W. Perdreau, L . Perramon, A. Pi c k e t t , E .E . Quero, A.-M. Rawat, N . S . Rigard, J . Rob@, M.C. Romro , 3 . Rosner, D.E. Sanhueza, E . Saxena, P . Schneiter, D . Schorran, D.E. Seigneur, C. Sharma, D . N . Sharma , J .S . S i d h u , S.S. Spurny, K.R. S t e i nberger, E . H . S t r a u b e l , H. S t u p f e l , M. Thierry, H . Thomas, W . Ueno, Y. Warburton, J.A. Whiting, R . G .
14 1 265 2 15 32 1 387 175 337 345 97 36 1 189 197 32 1 91 313 227 36 1 265 251 127,151 215 189 14 1 185 47 197 61 3 251 3 283 119 293,321 283 31 31 205 239
11 259 189 189 369 251 379 141